Download citation
Download citation
link to html
A new tantalum phosphate, trideca­sodium distrontium ditantalum nona­phosphate, Na13Sr2Ta2(PO4)9, was prepared using the high-temperature flux method. The structure can be described as a three-dimensional open framework containing isolated [TaV2(PO4)9]17− units that are inter­locked by Na and Sr ions. Band structure studies by the first-principles method revealed that Na13Sr2Ta2(PO4)9 is an insulator with an indirect band gap of 4.78 eV, which makes it suitable as a luminescent host matrix. A series of solid solutions, i.e. Na13Sr2–xTa2(PO4)9:xDy3+ (x = 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12 and 0.14), were prepared and their photoluminescence properties studied. Under 350 nm light excitation, these emit two typical emissions of the Dy3+ ion, i.e. the 4F9/26H15/2 transition centred at 476 nm and the 4F9/26H13/2 transition centred at 570 nm.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618011877/ky3148sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618011877/ky3148Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618011877/ky3148sup3.pdf
Expanded experimental section and PXRD patterns

CCDC reference: 1833497

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tridecasodium distrontium ditantalum nonaphosphate top
Crystal data top
Na13Sr2Ta2(PO4)9Dx = 3.453 Mg m3
Mr = 1690.74Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 617 reflections
a = 9.0062 (5) Åθ = 2.4–24.5°
c = 23.1525 (12) ŵ = 10.72 mm1
V = 1626.3 (2) Å3T = 296 K
Z = 2Parallelopiped, colorless
F(000) = 15760.20 × 0.20 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
1382 independent reflections
Radiation source: fine-focus sealed tube1296 reflections with I > 2σ(I)
Detector resolution: 83.33 pixels mm-1Rint = 0.043
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(APEX2; Bruker, 2014)
h = 1112
Tmin = 0.392, Tmax = 0.715k = 118
10998 measured reflectionsl = 2330
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.001
wR(F2) = 0.042Δρmax = 0.68 e Å3
S = 1.06Δρmin = 1.32 e Å3
1382 reflectionsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
102 parametersExtinction coefficient: 0.00258 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.03444 (18)0.35671 (19)0.04715 (6)0.0214 (3)
Na20.3333330.6666670.17305 (11)0.0218 (6)
Na30.3865 (3)0.3975 (3)0.2500000.0150 (4)
Na40.6666670.3333330.00910 (9)0.0141 (5)
Sr10.6666670.3333330.16076 (2)0.00917 (11)
Ta10.0000000.0000000.14844 (2)0.00495 (8)
P10.34762 (11)0.33999 (11)0.09335 (3)0.00755 (16)
P20.28920 (15)0.01818 (16)0.2500000.0055 (2)
O10.4195 (4)0.4350 (4)0.14930 (10)0.0196 (6)
O20.4403 (3)0.2445 (3)0.07626 (10)0.0166 (6)
O30.3452 (4)0.4536 (3)0.04555 (11)0.0192 (6)
O40.1498 (3)0.1977 (3)0.10115 (9)0.0112 (6)
O50.1934 (3)0.0383 (3)0.19715 (11)0.0182 (6)
O60.2812 (4)0.1514 (4)0.2500000.0135 (8)
O70.4687 (4)0.1709 (4)0.2500000.0082 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0124 (8)0.0186 (8)0.0328 (9)0.0074 (6)0.0027 (7)0.0034 (7)
Na20.0224 (8)0.0224 (8)0.0204 (12)0.0112 (4)0.0000.000
Na30.0126 (10)0.0170 (11)0.0194 (11)0.0103 (8)0.0000.000
Na40.0148 (7)0.0148 (7)0.0129 (11)0.0074 (4)0.0000.000
Sr10.01062 (16)0.01062 (16)0.0063 (2)0.00531 (8)0.0000.000
Ta10.00532 (9)0.00532 (9)0.00422 (11)0.00266 (4)0.0000.000
P10.0065 (4)0.0071 (4)0.0078 (4)0.0024 (3)0.0007 (3)0.0016 (3)
P20.0049 (6)0.0057 (6)0.0059 (5)0.0027 (5)0.0000.000
O10.0198 (15)0.0201 (15)0.0130 (13)0.0056 (13)0.0006 (10)0.0055 (10)
O20.0125 (13)0.0169 (15)0.0237 (13)0.0098 (12)0.0042 (11)0.0007 (11)
O30.0155 (13)0.0197 (15)0.0203 (14)0.0071 (12)0.0018 (12)0.0146 (12)
O40.0068 (12)0.0099 (12)0.0132 (13)0.0013 (10)0.0002 (9)0.0039 (9)
O50.0166 (14)0.0225 (15)0.0152 (13)0.0094 (12)0.0097 (11)0.0008 (10)
O60.0147 (19)0.0119 (18)0.0152 (18)0.0075 (16)0.0000.000
O70.0044 (17)0.0058 (16)0.0120 (17)0.0007 (13)0.0000.000
Geometric parameters (Å, º) top
Na1—O2i2.286 (3)Sr1—O7xi2.642 (2)
Na1—O3ii2.422 (3)Sr1—O72.642 (2)
Na1—O3iii2.478 (3)Sr1—O7v2.642 (2)
Na1—O32.481 (3)Sr1—O2xi2.645 (2)
Na1—O42.486 (3)Sr1—O2xii2.645 (2)
Na2—O6iv2.617 (3)Sr1—O22.645 (2)
Na2—O6i2.617 (3)Sr1—O1xi2.812 (3)
Na2—O6v2.617 (3)Sr1—O1xii2.812 (3)
Na2—O1ii2.622 (3)Sr1—O12.812 (3)
Na2—O1vi2.622 (3)Ta1—O4xiii1.946 (2)
Na2—O12.622 (3)Ta1—O41.946 (2)
Na3—O6i2.292 (4)Ta1—O4i1.946 (2)
Na3—O12.353 (2)Ta1—O51.956 (2)
Na3—O1vii2.353 (2)Ta1—O5i1.956 (2)
Na3—O7v2.472 (4)Ta1—O5xiii1.956 (2)
Na3—O72.495 (4)P1—O11.509 (2)
Na3—O6v2.512 (4)P1—O31.515 (2)
Na4—O3viii2.345 (3)P1—O21.520 (2)
Na4—O3ix2.345 (3)P1—O41.602 (3)
Na4—O3x2.345 (3)P2—O61.493 (4)
Na4—O2xi2.363 (3)P2—O71.511 (3)
Na4—O22.363 (3)P2—O5vii1.559 (3)
Na4—O2xii2.363 (3)P2—O51.559 (3)
O4xiii—Ta1—O491.45 (10)O5i—Ta1—O5xiii90.07 (11)
O4xiii—Ta1—O4i91.45 (10)O1—P1—O3113.02 (16)
O4—Ta1—O4i91.45 (10)O1—P1—O2110.11 (16)
O4xiii—Ta1—O587.71 (10)O3—P1—O2112.91 (15)
O4—Ta1—O590.81 (10)O1—P1—O4110.31 (14)
O4i—Ta1—O5177.61 (10)O3—P1—O4103.70 (14)
O4xiii—Ta1—O5i177.61 (10)O2—P1—O4106.39 (14)
O4—Ta1—O5i87.71 (10)O6—P2—O7114.44 (19)
O4i—Ta1—O5i90.81 (10)O6—P2—O5vii111.86 (12)
O5—Ta1—O5i90.07 (11)O7—P2—O5vii107.26 (13)
O4xiii—Ta1—O5xiii90.81 (10)O6—P2—O5111.86 (12)
O4—Ta1—O5xiii177.61 (10)O7—P2—O5107.26 (13)
O4i—Ta1—O5xiii87.71 (10)O5vii—P2—O5103.4 (2)
O5—Ta1—O5xiii90.07 (11)
Symmetry codes: (i) y, xy, z; (ii) x+y, x+1, z; (iii) xy, x, z; (iv) x, y+1, z; (v) x+y+1, x+1, z+1/2; (vi) y+1, xy+1, z; (vii) x, y, z+1/2; (viii) xy+1, x, z; (ix) y, x+y, z; (x) x+1, y+1, z; (xi) y+1, xy, z; (xii) x+y+1, x+1, z; (xiii) x+y, x, z.
The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) at some k-points of Na13Sr2Ta2(PO4)9 top
k-pointG(0,0,0)A(0,0,1/2)H(-1/3,2/3,1/2)K(-1/3,2/3,0)G(0,0,0)M(0,1/2,0)L(0,1/2,1/2)
L-CB5.1225.1325.1805.1695.1255.1695.178
H-VB-0.031-0.034-0.0040-0.029-0.012-0.012
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds