Download citation
Download citation
link to html
The ReI centres of two ReI–tricarbonyl complexes, viz. tricarbonyl(pyridine-κN){5-[2-(2,4,6-tri­methyl­phenyl)diazen-1-yl]quinolin-8-olato-κ2N1,O}rhenium(I), [Re(C23H21N4O)(CO)3], (I), and {5,7-bis­[2-(2-methylphenyl)diazen-1-yl]quino­lin-8-ol­ato-κ2N1,O}tricarbonyl(pyridine-κN)rhenium(I), [Re(C28H23N6O)(CO)3], (II), are facially surrounded by three carbonyl ligands, a pyridine ligand and either a 5-[2-(2,4,6-tri­methyl­phenyl)diazen-1-yl]quinolin-8-olate [in (I)] or a 5,7-bis­[2-(2-methyl­phenyl)diazen-1-yl]quinolin-8-olate [in (II)] ligand, in a slightly distorted octa­hedral environment. The crystal structure of (I) is stabilized by two inter­molecular C—H...O inter­actions and that of (II) is stabilized by three inter­molecular C—H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113027947/ky3040sup1.cif
Contains datablocks global, 12hmsc1_0ma, 10lmsc12_0m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113027947/ky304012hmsc1_0masup2.hkl
Contains datablock 12hmsc1_0ma

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113027947/ky304010lmsc12_0msup3.hkl
Contains datablock 10lmsc12_0m

CCDC references: 966015; 966016

Introduction top

There is ongoing inter­est in the physiological action of certain derivatives of quinoline and acridine. Preliminary results on the potential anti­cancer properties of 5-[2-(2,4,6-tri­methyl­phenyl)­diazen-1-yl]-8-hy­droxy­quinolin-8-ol and 5,7-bis­[2-(2-methyl­phenyl)­diazen-1-yl]quinolin-8-ol are considered promising (Pretorius, 2011). In this paper, we report the preparation of a 5- and 5,7-coordinated quinolin-8-ol ligand system, together with the crystal structures of the tri­carbonyl­rhenium(I) complexes thereof.

Bidentate ligand systems play an important role in catalysis (van Leeuwen et al., 2003), and can influence the reaction rate and selectivity of most metal complexes. Quinolin-8-ol mostly binds to metal ions in a bidentate fashion (McCleverty & Meyer, 2004). It has attracted inter­est in industrial applications, showing potential as an extracting agent for metal ions in dilute solutions (Farajzadeh et al., 2009). The bidentate ligand quinolin-8-ol can complex to a variety of metal ions, either as a neutral molecule or, more commonly, as a deprotonated anion with the loss of the hy­droxy H atom (Maiti et al., 2005; Colquhoun et al., 2002; Xiang et al., 2011). In this type of complexation, the pyridine N atom and the phenolate O atom act as N and O electron donors to the metal centre, resulting in the formation of a five-membered chelate ring. Quinolin-8-ol and some of its derivatives are well proven precipitation agents and complexants in chemical analysis that are known to form well defined chelate complexes with many ions of main group and transition metals. Quinolin-8-ol has also been used as a structural element to synthesise noncyclic crown-type compounds, yielding crystalline complexes with alkali and alkaline earth metal ions. In the field of organic light-emitting devices (OLEDs), Tang & Van Slyke (1987) were the first to use tris­(quinolin-8-olato)aluminium as an efficient green electroluminescent material. Quinolin-8-ol exhibits a powerful chelating capability and its luminescence properties are tuneable through appropriate substitutions. In OLEDs, the metal coordination compound also acts as an electron-transport material and it has been suggested that such abilities arise from ππ inter­actions between adjacent molecules (Sapochak et al., 1996). La Deda et al. (2004) designed a range of phenyl­diazenyl derivatives of quinolin-8-ol substituted at the 5-position to obtain materials with enhanced electron-transport properties. Quinolin-8-ol species also display enhanced noncentrosymmetry due to the lack of rotational symmetry, an essential property for exhibiting nonlinear optical (NLO) activity. Baul and co-workers (Baul, Mizar, Song et al., 2006; Baul, Mizar, Lycka et al., 2006; Baul, Mizar, Chandra et al., 2008; Baul, Mizar, Rivarola et al., 2008) have synthesized relevant tin(IV) complexes, while Chen et al. (2007) have prepared and reported similar ligand systems. As part of our study of different bidentate ligand systems, two different quinolin-8-ol ligands were synthesised by functionalizing position 5 and/or 7 of the quinolin-8-ol backbone with diazenyl substituents to give 5-[2-(2,4,6-tri­methyl­phenyl)­diazen-1-yl]quinolin-8-ol and 5,7-bis­[2-(2-methyl­phenyl)­diazen-1-yl]quinolin-8-ol. These functionalizations were performed to change the donor and acceptor character of the pyridine and benzene rings. Functionalization of the quinoline backbone might also influence the electronic properties of the ring system or the coordination behaviour towards metal centres. These ligand systems are the first of their kind, with the only other similar structures having functionalities at the 4-position. Such related ligand systems have only been complexed with Sn, Cd, Pb and Mn, making the two title rhenium structures, (I) and (II), the first of their kind to be reported.

Experimental top

Synthesis and crystallization top

5-[2-(2,4,6-Tri­methyl­phenyl)­diazen-1-yl]quinolin-8-ol was prepared as described by van Rensburg (2008). Spectroscopic analysis: 13C NMR (600 MHz, C5D5N, δ, p.p.m.): 149.56, 149.23, 140.77, 139.64, 138.94, 132.84, 132.53, 130.90, 128.85, 123.43, 115.08, 112.62, 21.34, 20.37; IR (ATR, ν, cm-1): 1510 (diazenyl, vs).

5,7-Bis[2-(2-methyl­phenyl)­diazen-1-yl]quinolin-8-ol was prepared via bis-azo-coupling between aromatic diazo­nium ions and quinolin-8-ol in a manner based on the synthesis of mono-azo-quinolin-8-ol substitution described by La Deda et al. (2004). Hydro­chloric acid (12 M, 2 ml) was slowly added to a stirred solution of o-toluidine (0.716 g, 6.682 mmol) in water (10 ml). The resulting solution was cooled in an ice bath and an aqueous sodium nitrite (0.5 g, 7.246 mmol) solution (10 ml) was added dropwise. The diazo­nium chloride which formed was then coupled with quinolin-8-ol (0.49 g, 3.375 mmol) dissolved in ethanol (50 ml) and aqueous sodium hydroxide (50 ml, 15.401 mmol), and the reaction mixture was stirred for 1 h at 273 K. The resulting suspension was acidified [To what pH?] with dilute hydro­chloric acid (2 ml) and allowed to reach room temperature. The precipitate that formed was collected by filtration and washed with a water (40 ml) and ethanol (40 ml) mixture, dried, and used without further purification. Spectroscopic analysis: 13C NMR (600 MHz, C5D5N, δ, p.p.m.): 152.59, 152.49, 148.02, 147.79, 141.20, 137.41, 136.82, 133.98, 133.12, 132.88, 132.42, 132.04, 131.94, 131.44, 129.76, 129.43, 126.93, 123.47, 123.30, 116.24, 18.13, 17.91; IR (ATR, ν, cm-1): 1498 (diazenyl, vs), 1454 (diazenyl, vs).

Complex (I) was prepared by dissolving (NEt4)2[Re(CO)3Br3] (30 mg, 0.0389 mmol), prepared according to the method of Alberto et al. (1996), in methanol (10 ml). 5-[2-(2,4,6-Tri­methyl­phenyl)­diazen-1-yl]quinolin-8-ol (11.4 mg, 0.0389 mmol) was added to the solution as a solid and the mixture was stirred overnight at room temperature. The precipitate which formed was filtered off, dried and dissolved in pyridine. Brown plate-like crystals of (I) were obtained. Spectroscopic analysis: 13C NMR (600 MHz, C5D5N, δ, p.p.m.): 155.01, 152.25, 149.83, 142.76, 139.47, 138.32, 135.50, 132.11, 130.79, 130.33, 128.70, 126.45, 124.30, 123.48, 118.06, 116.54, 23.01, 21.30, 20.24; IR (ATR, ν, cm-1): 2018 (CO, vs), 1900 (CO, vs), 1507 (diazenyl, vs).

Complex (II) was synthesized by dissolving (NEt4)2[Re(CO)3Br3] (30 mg, 0.0389 mmol) in methanol (10 ml). 5,7-Bis[2-(2-methyl­phenyl)­diazen-1-yl]quinolin-8-ol (14.4 mg, 0.0389 mmol) was added to the solution and the mixture was stirred for 24 h. The red precipitate which formed was dried and dissolved in pyridine to yield red cuboidal crystals of (II). Spectroscopic analysis: 13C NMR (600 MHz, C5D5N, δ, p.p.m.): 155.97, 151.50, 150.78, 140.42, 137.11, 136.45, 132.94, 129.65, 129.49, 129.33, 127.56, 127.43, 125.09, 124.43, 117.68, 117.14, 105.13, 98.60, 19.019; IR (ATR, ν, cm-1): 2022 (CO, vs), 1894 (CO, vs), 1501 (diazenyl, vs), 1449 (diazenyl, vs).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. For (I) and (II), all H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for sp2 CH, and with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. For (I), a large residual electron-density peak is present less than 1 Å from the Re centre. This feature was not improved by the use of alternative data processing or absorption correction methods. For (II), the pyridine ligand was modelled as disordered over two sites. To obtain chemically reasonable geometries required restraint of the geometry of the minor disorder component to be similar to that of the major component and imposition of restraints upon the displacement parameters of the pyridine ring. This gave a total of 60 restraints.

Results and discussion top

In the crystal structures of both tri­carbonyl­(pyridine-κN){5-[2-(2,4,6-tri­methyl­phenyl)­diazen-1-yl]quinolin-8-olato-κ2N1,O}rhenium(I), (I) (Fig. 1), and tri­carbonyl­(pyridine-κN){5,7-bis­[2-(2-methyl­phenyl)­diazen-1-yl]quinolin-8-olato-κ2N1,O}rhenium(I), (II) (Fig. 2), the o­cta­hedral fac geometries are slightly distorted, with chelate N1—Re—O4 bite angles of 76.85 (14) and 76.35 (7)°, and C3—Re—N2 angles of 176.50 (18) and 175.9 (3)°, respectively. This compares well with the similar structure, fac-[Re(2,4-Quin)(CO)3(Py)] (2,4-Quin is 2-carboxyl­ato­quinoline-4-carb­oxy­lic acid and Py is pyridine) reported by Schutte et al. (2011), with a chelate bite angle of 75.66° and a carbonyl–Re–N(Py) angle of 178.01°. The chelate bite angle also compares well with those of the diazenylquiniolin-8-ol ligands reported by Baul and co-workers (Baul, Mizar, Song et al., 2006; Baul, Mizar, Lycka et al., 2006; Baul, Mizar, Chandra et al., 2008; Baul, Mizar, Rivarola et al., 2008), which range between 75.18 (4) and 73.53 (4)°.

In both (I) and (II), the pyridine ligands are slightly bent towards the bidentate ligands, with N2—Re—O4 angles of 82.00 (13) and 81.1 (3)°, respectively. This same `bending' is observed in the structure of fac-[Re(2,4-Quin)(CO)3(Py)], with an equivalent N—Re—O angle of 80.85°. Note, though, that structure (II) exhibits disorder of the pyridine ligand, with refined site-occupancy factors of 0.707 (12) and 0.293 (12). The Re—CO distances of (I) vary between 1.909 (5) and 1.924 (5) Å and those of (II) between 1.894 (3) and 1.922 (3) Å. These are well within the range of distances seen for other tri­carbonyl­rhenium(I) structures (Schutte & Visser, 2008; Schutte et al., 2007, 2008, 2009, 2010, 2011; Schutte et al., 2012a,b; Schutte, Brink et al., 2012). The Re—O bond lengths for the quinolin-8-ol ligands are almost equal at 2.121 (3) and 2.1256 (16) Å for (I) and (II), respectively, while the Re—N bond lengths are also similar at 2.179 (4) and 2.163 (2) Å, respectively. Inter­estingly, whilst the Re—N and Re—O bond lengths are quite similar in both (I) and (II), this was not found for related Sn complexes, where the Sn—O and Sn—N bond lengths reported by Baul and co-workers (Baul, Mizar, Song et al., 2006; Baul, Mizar, Lycka et al., 2006; Baul, Mizar, Chandra et al., 2008; Baul, Mizar, Rivarola et al., 2008) differed by 0.2 to 0.3 Å.

The diazenyl NN bond lengths of (II) are 1.271 (3) and 1.262 (3) Å, while that of (I) is 1.256 (6) Å. These values are again within the range found for structures reported by Baul and co-workers (Baul, Mizar, Song et al., 2006; Baul, Mizar, Lycka et al., 2006; Baul, Mizar, Chandra et al., 2008; Baul, Mizar, Rivarola et al., 2008) and compare well with similar distances in free ligands.

In (I), the dihedral angle formed between the plane of the 2,4,6-tri­methyl­phenyl ring (C31–C36; r.m.s. deviation = 0.0092 Å) and the plane of the oxygen-substituted ring of the quinolin-8-ol ligand (C24–C29; r.m.s. deviation = 0.0115 Å) is 2.44 (35)° [Is such a large s.u. correct?]. A near coplanar conformation is also seen in (II), as is shown by the angle between the plane of the (2-methyl­phenyl)­diazenyl ring (C21–C26; r.m.s. deviation = 0.0040 Å) and the oxygen-bearing ring of the quinolin-8-ol ligand (C14–C19, r.m.s. deviation = 0.0103 Å) of 3.05 (15)°. Meanwhile, the dihedral angle between the plane of the C31–C36 ring (r.m.s. deviation = 0.0130 Å) and the C14–C19 ring is slightly larger, at 6.24 (15)°. The Re—N(pyridine) bond length is 2.217 (4) Å for (I), while the Re—N bond lengths of disordered (II) are 2.164 (8) and 2.334 (19) Å. These all compare well with similar complexes with tropolone and 2,4-di­quinoline, where bond lengths of 2.208 (4) (Schutte et al., 2012a) and 2.203 (4) Å were reported (Schutte et al., 2011).

Two inter­molecular C—H···O inter­actions are observed in the crystal structure of (I) (see Table 2). The pyridine ligand forms C—H···O inter­actions with the carbonyl O atoms of neighbouring molecules. A short O4···C14?? inter­action [3.205 (6) Å; Please give symmetry operator] is also observed between neighbouring molecules in (I), and this inter­action results in an infinite one-dimensional chain being formed by the translation of molecules along the [010] vector (Fig. 3). The structure of (II) displays three inter­molecular C—H···O inter­actions (Table 3). As atom C41 is part of the disordered pyridine ligand, some care needs to be taken with inter­preting the detail here. However, as with (I), it can be seen that the pyridine ligand forms inter­molecular C—H···O inter­actions with neighbouring molecules, in this case one with the coordinated O atom of the bidentate ligand and another with a carbonyl O atom. Lastly, an inter­molecular C—H···O inter­action is observed between the quinolin-8-ol backbone and a carbonyl O atom of a neighbouring molecule. Similarly to (I), the structure of (II) also exhibits a Py-to-chelate inter­action [O4···C44?? = 3.166 (8) Å; Please give symmetry operator], which results in an infinite one-dimensional chain of molecules propagating by translation symmetry, in this case parallel to the a axis (Fig. 4).

The CO stretching frequencies of (I) (2018 and 1900 cm-1) and (II) (2022 and 1894 cm-1) are comparable with a similar pyridine complex, that of fac-[Re(2,4-Quin)(CO)3(Py)], which were reported as 2024, 1926 and 1869 cm-1 (Schutte et al. 2011). As has been described previously, if the electron density on the metal centre increases due to the donating capabilities of the bidentate ligand, the backbonding into the CO anti­bonding orbitals increases and therefore lowers the observed IR stretching frequencies (Schutte et al. 2011; Schutte et al., 2012a, Schutte et al., 2012b or Schutte, Brink et al., 2012 ?). However, it is not clear that (I) and (II) behave in this fashion. The quinoline backbone cores are the same for 5-[2-(2,4,6-tri­methyl­phenyl)­diazen-1-yl]quinolin-8-olate in (I) and 5,7-bis­[2-(2-methyl­phenyl)­diazen-1-yl]quinolin-8-olate in (II), with the only difference being the substituents. Theoretically, 5,7-bis­[2-(2-methyl­phenyl)­diazen-1-yl]quinolin-8-olate has more electron donation because of the second diazenyl-substituted ring on the backbone, but this cannot be seen in the IR stretching frequencies of (I) and (II), where (I) should in theory have a higher symmetric CO stretching frequency than (II). This might be explained by the fact that these electron-donating substituents are situated some distance from the metal centre itself.

Related literature top

For related literature, see: Alberto et al. (1996); Baul, Mizar, Chandra, Song, Eng, Jirasko, Holcapek, de Vos & Linden (2008); Baul, Mizar, Lycka, Rivarola, Jirasko, Holcapek, de Vos & Englert (2006); Baul, Mizar, Rivarola & Englert (2008); Baul, Mizar, Song, Eng, Jirasko, Holcapek, Willem, Biesemans, Verbruggen & Butcher (2006); Chen et al. (2007); Colquhoun et al. (2002); Farajzadeh et al. (2009); La Deda, Grisolia, Aiello, Crispini, Ghedini, Belvisio, Amati & Lelj (2004); Leeuwen et al. (2003); Maiti et al. (2005); McCleverty & Meyer (2004); Pretorius (2011); Sapochak et al. (1996); Schutte & Visser (2008); Schutte et al. (2007, 2009, 2010, 2011, 2012, 2012a, 2012b); Schutte, Visser & Roodt (2008); Tang & Van Slyke (1987); Xiang et al. (2011); van Rensburg (2008).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXS97 (Sheldrick, 2008) for 12hmsc1_0ma; SHELXL97 (Sheldrick, 2008) for 10lmsc12_0m. Molecular graphics: DIAMOND (Brandenburg & Putz, 2005) for 12hmsc1_0ma; SHELXTL (Sheldrick, 2008) for 10lmsc12_0m. Software used to prepare material for publication: WinGX (Farrugia, 2012) for 12hmsc1_0ma; SHELXTL (Sheldrick, 2008) for 10lmsc12_0m.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Both components of the disordered pyridine ligand are shown.
[Figure 3] Fig. 3. A graphical representation of the infinite one-dimensional chains formed by the generation of symmetry-related molecules along the [010] vector in the structure of (I). [Dashed lines indicate hydrogen bonds? Indicate the symmetry operator?]
[Figure 4] Fig. 4. A graphical representation of the infinite one-dimensional chains formed by the generation of symmetry-related molecules along the [100] vector in the structure of (II). [Dashed lines indicate hydrogen bonds? Indicate the symmetry operator?]
(12hmsc1_0ma) Tricarbonyl(pyridine-κN){5-[2-(2,4,6-trimethylphenyl)diazen-1-yl]quinolin-8-olato-κ2N1,O}rhenium(I) top
Crystal data top
[Re(C23H21N4O)(CO)3]F(000) = 1248
Mr = 639.67Dx = 1.803 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9930 reflections
a = 23.723 (3) Åθ = 2.6–28.3°
b = 6.7123 (7) ŵ = 5.20 mm1
c = 14.8382 (17) ÅT = 100 K
β = 94.178 (4)°Plate, brown
V = 2356.5 (5) Å30.5 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3131
Tmin = 0.391, Tmax = 0.640k = 85
30040 measured reflectionsl = 1919
5833 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0122P)2 + 12.6794P]
where P = (Fo2 + 2Fc2)/3
5833 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 4.32 e Å3
0 restraintsΔρmin = 1.58 e Å3
Crystal data top
[Re(C23H21N4O)(CO)3]V = 2356.5 (5) Å3
Mr = 639.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 23.723 (3) ŵ = 5.20 mm1
b = 6.7123 (7) ÅT = 100 K
c = 14.8382 (17) Å0.5 × 0.16 × 0.09 mm
β = 94.178 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5833 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4678 reflections with I > 2σ(I)
Tmin = 0.391, Tmax = 0.640Rint = 0.045
30040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0122P)2 + 12.6794P]
where P = (Fo2 + 2Fc2)/3
5833 reflectionsΔρmax = 4.32 e Å3
319 parametersΔρmin = 1.58 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5703 (2)0.0612 (7)0.6417 (3)0.0230 (10)
C20.6119 (2)0.3853 (7)0.7257 (3)0.0245 (10)
C30.6737 (2)0.0455 (8)0.7223 (3)0.0264 (10)
C150.60654 (19)0.6023 (7)0.5162 (3)0.0239 (10)
H150.6290.66550.56350.029*
C140.5857 (2)0.7159 (7)0.4444 (3)0.0252 (10)
H140.59460.85370.44180.03*
C130.5515 (2)0.6280 (7)0.3758 (3)0.0250 (10)
H130.53650.70380.32560.03*
C120.5399 (2)0.4268 (7)0.3824 (3)0.0253 (10)
H120.51610.36230.33710.03*
C110.56334 (19)0.3207 (7)0.4558 (3)0.0243 (10)
H110.55560.18210.4590.029*
C210.7312 (2)0.5539 (8)0.6442 (3)0.0267 (10)
H210.71680.59260.69960.032*
C220.7736 (2)0.6697 (8)0.6091 (4)0.0306 (11)
H220.78780.78390.64110.037*
C230.7947 (2)0.6188 (8)0.5290 (4)0.0300 (11)
H230.82260.69940.50440.036*
C240.77447 (19)0.4443 (8)0.4824 (3)0.0259 (10)
C290.7940 (2)0.3738 (8)0.4007 (3)0.0288 (11)
C280.7721 (2)0.1978 (8)0.3641 (3)0.0286 (11)
H280.78590.15040.30950.034*
C270.7307 (2)0.0871 (8)0.4035 (3)0.0274 (11)
H270.71760.03460.37680.033*
C260.70832 (19)0.1562 (8)0.4832 (3)0.0238 (10)
C250.73209 (18)0.3345 (7)0.5223 (3)0.0222 (10)
N30.83498 (17)0.4928 (7)0.3620 (3)0.0306 (10)
N40.84495 (18)0.4428 (7)0.2832 (3)0.0335 (10)
C310.8870 (2)0.5567 (8)0.2421 (4)0.0308 (11)
C320.9127 (2)0.7340 (9)0.2745 (4)0.0346 (12)
C330.9535 (2)0.8212 (9)0.2243 (4)0.0383 (13)
H330.97150.940.24610.046*
C340.9688 (2)0.7406 (9)0.1435 (4)0.0340 (12)
C350.9418 (2)0.5702 (9)0.1115 (4)0.0337 (12)
H350.95110.51630.05530.04*
C360.9014 (2)0.4752 (9)0.1591 (4)0.0317 (12)
C370.8979 (3)0.8366 (11)0.3601 (5)0.059 (2)
H37A0.91890.9620.36710.088*
H37C0.9080.75010.4120.088*
H37B0.85720.86420.35680.088*
C381.0149 (3)0.8377 (10)0.0941 (4)0.0468 (15)
H38C1.05180.79760.12210.07*
H38A1.01110.98290.09740.07*
H38B1.01160.79570.03070.07*
C390.8734 (2)0.2880 (10)0.1216 (4)0.0436 (15)
H39A0.83230.30490.11810.065*
H39B0.88410.17540.16130.065*
H39C0.88570.26210.06110.065*
N20.59658 (15)0.4047 (6)0.5228 (3)0.0196 (8)
N10.71074 (15)0.3925 (6)0.6026 (3)0.0235 (9)
O10.53063 (15)0.0338 (5)0.6480 (2)0.0311 (8)
O20.59666 (16)0.4896 (5)0.7805 (3)0.0344 (9)
O30.69356 (16)0.0630 (6)0.7758 (3)0.0373 (9)
O40.66811 (14)0.0642 (5)0.5216 (2)0.0250 (7)
Re10.636957 (7)0.21790 (3)0.632607 (12)0.02021 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (3)0.020 (2)0.019 (2)0.0005 (19)0.0014 (19)0.0035 (18)
C20.025 (2)0.022 (3)0.027 (3)0.0033 (19)0.0002 (19)0.002 (2)
C30.027 (2)0.024 (3)0.029 (3)0.0017 (19)0.000 (2)0.004 (2)
C150.023 (2)0.022 (3)0.027 (3)0.0019 (18)0.0030 (19)0.0049 (19)
C140.029 (2)0.018 (2)0.029 (3)0.0015 (19)0.0032 (19)0.000 (2)
C130.031 (3)0.020 (3)0.024 (2)0.0024 (19)0.0015 (19)0.0016 (19)
C120.027 (2)0.023 (3)0.025 (3)0.0023 (19)0.0022 (19)0.001 (2)
C110.025 (2)0.022 (3)0.027 (2)0.0039 (18)0.0027 (19)0.0027 (19)
C210.026 (2)0.026 (3)0.027 (3)0.001 (2)0.001 (2)0.004 (2)
C220.026 (2)0.031 (3)0.034 (3)0.007 (2)0.002 (2)0.008 (2)
C230.026 (2)0.030 (3)0.034 (3)0.005 (2)0.000 (2)0.001 (2)
C240.021 (2)0.030 (3)0.027 (3)0.0021 (19)0.0015 (19)0.000 (2)
C290.020 (2)0.037 (3)0.030 (3)0.002 (2)0.0009 (19)0.001 (2)
C280.026 (2)0.035 (3)0.025 (2)0.005 (2)0.0027 (19)0.006 (2)
C270.025 (2)0.028 (3)0.028 (3)0.002 (2)0.000 (2)0.006 (2)
C260.019 (2)0.026 (3)0.026 (2)0.0038 (18)0.0031 (18)0.004 (2)
C250.019 (2)0.025 (3)0.023 (2)0.0017 (18)0.0008 (17)0.0033 (19)
N30.024 (2)0.038 (3)0.030 (2)0.0022 (18)0.0037 (17)0.003 (2)
N40.026 (2)0.043 (3)0.033 (2)0.0004 (19)0.0054 (18)0.003 (2)
C310.023 (2)0.038 (3)0.031 (3)0.001 (2)0.000 (2)0.000 (2)
C320.031 (3)0.041 (3)0.032 (3)0.000 (2)0.006 (2)0.004 (2)
C330.040 (3)0.039 (3)0.036 (3)0.007 (2)0.000 (2)0.003 (2)
C340.030 (3)0.041 (3)0.031 (3)0.002 (2)0.000 (2)0.007 (2)
C350.033 (3)0.043 (3)0.025 (3)0.002 (2)0.002 (2)0.001 (2)
C360.025 (3)0.040 (3)0.030 (3)0.002 (2)0.002 (2)0.001 (2)
C370.067 (5)0.058 (5)0.055 (4)0.026 (4)0.026 (4)0.027 (4)
C380.052 (4)0.048 (4)0.041 (3)0.010 (3)0.007 (3)0.006 (3)
C390.039 (3)0.054 (4)0.039 (3)0.013 (3)0.013 (3)0.016 (3)
N20.0198 (18)0.019 (2)0.0201 (19)0.0003 (14)0.0049 (15)0.0011 (15)
N10.0191 (19)0.028 (2)0.023 (2)0.0005 (16)0.0007 (15)0.0048 (17)
O10.0307 (19)0.026 (2)0.037 (2)0.0067 (15)0.0046 (16)0.0009 (16)
O20.042 (2)0.027 (2)0.035 (2)0.0006 (16)0.0096 (17)0.0090 (16)
O30.043 (2)0.030 (2)0.037 (2)0.0026 (17)0.0088 (17)0.0012 (17)
O40.0270 (17)0.0229 (18)0.0253 (18)0.0015 (14)0.0032 (14)0.0056 (14)
Re10.02070 (9)0.01862 (10)0.02123 (9)0.00015 (7)0.00101 (6)0.00218 (8)
Geometric parameters (Å, º) top
C1—O11.145 (6)C27—C261.409 (7)
C1—Re11.913 (5)C27—H270.95
C2—O21.151 (6)C26—O41.303 (6)
C2—Re11.909 (5)C26—C251.428 (7)
C3—O31.153 (6)C25—N11.384 (6)
C3—Re11.924 (5)N3—N41.256 (6)
C15—N21.352 (6)N4—C311.428 (7)
C15—C141.372 (7)C31—C321.406 (8)
C15—H150.95C31—C361.412 (7)
C14—C131.387 (7)C32—C331.392 (8)
C14—H140.95C32—C371.509 (8)
C13—C121.383 (7)C33—C341.388 (8)
C13—H130.95C33—H330.95
C12—C111.384 (7)C34—C351.378 (8)
C12—H120.95C34—C381.509 (8)
C11—N21.347 (6)C35—C361.386 (7)
C11—H110.95C35—H350.95
C21—N11.322 (6)C36—C391.508 (8)
C21—C221.401 (7)C37—H37A0.98
C21—H210.95C37—H37C0.98
C22—C231.366 (7)C37—H37B0.98
C22—H220.95C38—H38C0.98
C23—C241.425 (7)C38—H38A0.98
C23—H230.95C38—H38B0.98
C24—C291.410 (7)C39—H39A0.98
C24—C251.412 (7)C39—H39B0.98
C29—C281.386 (7)C39—H39C0.98
C29—N31.412 (7)N2—Re12.217 (4)
C28—C271.395 (7)N1—Re12.179 (4)
C28—H280.95O4—Re12.121 (3)
O1—C1—Re1179.3 (5)C34—C33—C32122.2 (5)
O2—C2—Re1178.5 (5)C34—C33—H33118.9
O3—C3—Re1176.9 (4)C32—C33—H33118.9
N2—C15—C14123.1 (4)C35—C34—C33118.5 (5)
N2—C15—H15118.4C35—C34—C38121.8 (5)
C14—C15—H15118.4C33—C34—C38119.7 (5)
C15—C14—C13119.5 (5)C34—C35—C36121.8 (5)
C15—C14—H14120.3C34—C35—H35119.1
C13—C14—H14120.3C36—C35—H35119.1
C12—C13—C14118.2 (5)C35—C36—C31119.1 (5)
C12—C13—H13120.9C35—C36—C39119.8 (5)
C14—C13—H13120.9C31—C36—C39121.1 (5)
C13—C12—C11119.2 (5)C32—C37—H37A109.5
C13—C12—H12120.4C32—C37—H37C109.5
C11—C12—H12120.4H37A—C37—H37C109.5
N2—C11—C12123.1 (4)C32—C37—H37B109.5
N2—C11—H11118.5H37A—C37—H37B109.5
C12—C11—H11118.5H37C—C37—H37B109.5
N1—C21—C22122.1 (5)C34—C38—H38C109.5
N1—C21—H21119C34—C38—H38A109.5
C22—C21—H21119H38C—C38—H38A109.5
C23—C22—C21120.1 (5)C34—C38—H38B109.5
C23—C22—H22119.9H38C—C38—H38B109.5
C21—C22—H22119.9H38A—C38—H38B109.5
C22—C23—C24119.8 (5)C36—C39—H39A109.5
C22—C23—H23120.1C36—C39—H39B109.5
C24—C23—H23120.1H39A—C39—H39B109.5
C29—C24—C25118.3 (5)C36—C39—H39C109.5
C29—C24—C23125.0 (5)H39A—C39—H39C109.5
C25—C24—C23116.7 (4)H39B—C39—H39C109.5
C28—C29—C24119.1 (5)C11—N2—C15116.9 (4)
C28—C29—N3124.9 (5)C11—N2—Re1120.3 (3)
C24—C29—N3116.0 (5)C15—N2—Re1122.7 (3)
C29—C28—C27123.0 (5)C21—N1—C25119.2 (4)
C29—C28—H28118.5C21—N1—Re1128.2 (3)
C27—C28—H28118.5C25—N1—Re1112.0 (3)
C28—C27—C26119.8 (5)C26—O4—Re1114.7 (3)
C28—C27—H27120.1C2—Re1—C188.3 (2)
C26—C27—H27120.1C2—Re1—C390.2 (2)
O4—C26—C27122.9 (4)C1—Re1—C387.5 (2)
O4—C26—C25119.9 (4)C2—Re1—O4173.00 (17)
C27—C26—C25117.1 (4)C1—Re1—O497.13 (16)
N1—C25—C24122.1 (4)C3—Re1—O494.50 (17)
N1—C25—C26115.3 (4)C2—Re1—N197.37 (17)
C24—C25—C26122.6 (4)C1—Re1—N1172.29 (17)
N4—N3—C29114.2 (4)C3—Re1—N197.73 (18)
N3—N4—C31116.1 (5)O4—Re1—N176.85 (14)
C32—C31—C36120.0 (5)C2—Re1—N293.34 (17)
C32—C31—N4127.3 (5)C1—Re1—N292.74 (17)
C36—C31—N4112.7 (5)C3—Re1—N2176.50 (18)
C33—C32—C31118.3 (5)O4—Re1—N282.00 (13)
C33—C32—C37118.1 (5)N1—Re1—N281.73 (14)
C31—C32—C37123.6 (5)
N2—C15—C14—C131.7 (7)C14—C15—N2—Re1174.2 (3)
C15—C14—C13—C120.3 (7)C22—C21—N1—C250.6 (7)
C14—C13—C12—C111.1 (7)C22—C21—N1—Re1169.6 (4)
C13—C12—C11—N21.2 (7)C24—C25—N1—C211.1 (7)
N1—C21—C22—C230.8 (8)C26—C25—N1—C21178.7 (4)
C21—C22—C23—C241.8 (8)C24—C25—N1—Re1170.6 (4)
C22—C23—C24—C29178.1 (5)C26—C25—N1—Re19.6 (5)
C22—C23—C24—C251.2 (7)C27—C26—O4—Re1173.9 (4)
C25—C24—C29—C281.6 (7)C25—C26—O4—Re16.8 (5)
C23—C24—C29—C28177.8 (5)O2—C2—Re1—C1114 (17)
C25—C24—C29—N3177.9 (4)O2—C2—Re1—C3159 (17)
C23—C24—C29—N32.8 (7)O2—C2—Re1—O427 (17)
C24—C29—C28—C270.9 (8)O2—C2—Re1—N161 (17)
N3—C29—C28—C27178.5 (5)O2—C2—Re1—N221 (17)
C29—C28—C27—C261.6 (8)O1—C1—Re1—C28E1 (4)
C28—C27—C26—O4177.4 (4)O1—C1—Re1—C31E1 (4)
C28—C27—C26—C253.3 (7)O1—C1—Re1—O410E1 (4)
C29—C24—C25—N1179.6 (4)O1—C1—Re1—N114E1 (4)
C23—C24—C25—N10.2 (7)O1—C1—Re1—N218E1 (10)
C29—C24—C25—C260.2 (7)O3—C3—Re1—C294 (8)
C23—C24—C25—C26179.6 (4)O3—C3—Re1—C16 (8)
O4—C26—C25—N12.2 (6)O3—C3—Re1—O491 (8)
C27—C26—C25—N1177.2 (4)O3—C3—Re1—N1168 (8)
O4—C26—C25—C24178.0 (4)O3—C3—Re1—N287 (9)
C27—C26—C25—C242.7 (7)C26—O4—Re1—C225.8 (15)
C28—C29—N3—N49.9 (7)C26—O4—Re1—C1166.2 (3)
C24—C29—N3—N4169.5 (4)C26—O4—Re1—C3105.8 (3)
C29—N3—N4—C31178.8 (4)C26—O4—Re1—N18.9 (3)
N3—N4—C31—C329.5 (8)C26—O4—Re1—N274.4 (3)
N3—N4—C31—C36171.8 (5)C21—N1—Re1—C24.5 (4)
C36—C31—C32—C332.1 (8)C25—N1—Re1—C2166.2 (3)
N4—C31—C32—C33179.3 (5)C21—N1—Re1—C1141.4 (12)
C36—C31—C32—C37177.0 (6)C25—N1—Re1—C129.4 (15)
N4—C31—C32—C371.6 (9)C21—N1—Re1—C386.6 (4)
C31—C32—C33—C340.9 (9)C25—N1—Re1—C3102.6 (3)
C37—C32—C33—C34178.3 (6)C21—N1—Re1—O4179.5 (4)
C32—C33—C34—C351.1 (9)C25—N1—Re1—O49.7 (3)
C32—C33—C34—C38177.6 (5)C21—N1—Re1—N296.9 (4)
C33—C34—C35—C362.0 (8)C25—N1—Re1—N273.9 (3)
C38—C34—C35—C36176.7 (5)C11—N2—Re1—C2130.1 (4)
C34—C35—C36—C310.8 (8)C15—N2—Re1—C254.2 (4)
C34—C35—C36—C39179.5 (5)C11—N2—Re1—C141.6 (4)
C32—C31—C36—C351.2 (8)C15—N2—Re1—C1142.7 (4)
N4—C31—C36—C35180.0 (5)C11—N2—Re1—C352 (3)
C32—C31—C36—C39178.5 (5)C15—N2—Re1—C3124 (3)
N4—C31—C36—C390.3 (7)C11—N2—Re1—O455.2 (3)
C12—C11—N2—C150.2 (7)C15—N2—Re1—O4120.5 (4)
C12—C11—N2—Re1175.7 (4)C11—N2—Re1—N1133.0 (3)
C14—C15—N2—C111.7 (7)C15—N2—Re1—N142.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4i0.952.483.205 (6)133
C12—H12···O1ii0.952.493.139 (6)126
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
(10lmsc12_0m) {5,7-Bis[2-(2-methylphenyl)diazen-1-yl]quinolin-8-olato-κ2N1,O}tricarbonyl(pyridine-κN)rhenium(I) top
Crystal data top
[Re(C28H23N6O)(CO)3]Z = 2
Mr = 729.75F(000) = 716
Triclinic, P1Dx = 1.709 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9776 (6) ÅCell parameters from 9973 reflections
b = 11.6818 (8) Åθ = 2.7–28.0°
c = 15.3994 (11) ŵ = 4.33 mm1
α = 92.113 (4)°T = 100 K
β = 98.130 (3)°Cuboid, red
γ = 92.384 (4)°0.28 × 0.13 × 0.1 mm
V = 1418.13 (18) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.511, Tmax = 0.648k = 1513
21043 measured reflectionsl = 2019
6726 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0155P)2 + 0.9052P]
where P = (Fo2 + 2Fc2)/3
6726 reflections(Δ/σ)max = 0.002
400 parametersΔρmax = 1.16 e Å3
60 restraintsΔρmin = 1.56 e Å3
Crystal data top
[Re(C28H23N6O)(CO)3]γ = 92.384 (4)°
Mr = 729.75V = 1418.13 (18) Å3
Triclinic, P1Z = 2
a = 7.9776 (6) ÅMo Kα radiation
b = 11.6818 (8) ŵ = 4.33 mm1
c = 15.3994 (11) ÅT = 100 K
α = 92.113 (4)°0.28 × 0.13 × 0.1 mm
β = 98.130 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6726 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6014 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.648Rint = 0.023
21043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02260 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.09Δρmax = 1.16 e Å3
6726 reflectionsΔρmin = 1.56 e Å3
400 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. 7 low angle reflections were omitted due to extremely poor fit between Fo and Fc. It is believed that this was caused by interference from the beam stop.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.638666 (13)0.750241 (9)0.936888 (6)0.02028 (4)
O40.4992 (2)0.66867 (14)0.82177 (11)0.0193 (4)
C10.5792 (3)0.6463 (2)1.02272 (17)0.0227 (6)
C20.7909 (4)0.8267 (3)1.02828 (18)0.0310 (7)
O10.5437 (3)0.58915 (17)1.07734 (13)0.0368 (5)
O20.8910 (3)0.8737 (2)1.08141 (13)0.0468 (6)
N10.7029 (3)0.85534 (18)0.83254 (13)0.0228 (5)
C170.4542 (3)0.6665 (2)0.66382 (16)0.0202 (5)
C160.5244 (3)0.7123 (2)0.74765 (16)0.0185 (5)
C150.6344 (3)0.8138 (2)0.75010 (16)0.0198 (5)
C190.5908 (3)0.8185 (2)0.59116 (16)0.0208 (5)
C130.7824 (3)0.9642 (2)0.68483 (17)0.0257 (6)
H130.81111.0020.6350.031*
C120.8496 (3)1.0043 (2)0.76748 (17)0.0283 (6)
H120.92561.06990.77530.034*
C140.6703 (3)0.8664 (2)0.67383 (16)0.0203 (5)
C110.8060 (3)0.9486 (2)0.84026 (17)0.0288 (6)
H110.85170.97830.89730.035*
C180.4873 (3)0.7214 (2)0.58795 (16)0.0218 (5)
H180.4360.68990.53230.026*
O30.3522 (3)0.89501 (17)0.98826 (13)0.0347 (5)
C30.4606 (4)0.8425 (2)0.96750 (16)0.0255 (6)
N30.6313 (3)0.87649 (18)0.51750 (13)0.0232 (5)
N40.5499 (3)0.83961 (19)0.44490 (14)0.0259 (5)
C210.5979 (3)0.8976 (2)0.37159 (17)0.0254 (6)
C220.7080 (4)0.9942 (2)0.38008 (18)0.0278 (6)
H220.75351.02490.43690.033*
C260.5278 (4)0.8514 (3)0.28898 (18)0.0312 (6)
N20.8380 (10)0.6523 (6)0.8935 (7)0.0221 (14)0.707 (12)
C410.8099 (8)0.5457 (6)0.8581 (5)0.0290 (14)0.707 (12)
H410.69910.51090.85390.035*0.707 (12)
C420.9356 (7)0.4839 (6)0.8274 (4)0.0415 (15)0.707 (12)
H420.91130.40860.80210.05*0.707 (12)
C431.0977 (7)0.5344 (7)0.8342 (4)0.0455 (19)0.707 (12)
H431.18630.49430.81340.055*0.707 (12)
C441.1279 (8)0.6420 (7)0.8711 (7)0.0471 (18)0.707 (12)
H441.23760.67830.87520.057*0.707 (12)
C450.9984 (10)0.6985 (7)0.9027 (7)0.0344 (13)0.707 (12)
H451.02270.77170.93160.041*0.707 (12)
C230.7519 (4)1.0460 (3)0.30661 (19)0.0324 (7)
H230.82681.11220.31260.039*
C240.6850 (4)0.9999 (3)0.22435 (19)0.0372 (7)
H240.71521.03420.17340.045*
C250.5757 (4)0.9053 (3)0.21571 (19)0.0388 (8)
H250.5310.87530.15850.047*
C270.4086 (4)0.7471 (3)0.2782 (2)0.0433 (8)
H27A0.3740.7280.21550.065*
H27B0.30820.76290.30590.065*
H27C0.46580.68250.30610.065*
N50.3525 (3)0.56333 (19)0.65987 (15)0.0265 (5)
N60.3185 (3)0.51923 (19)0.58235 (15)0.0281 (5)
C310.2099 (3)0.4182 (2)0.57341 (19)0.0274 (6)
C320.1780 (4)0.3545 (2)0.64501 (19)0.0315 (6)
H320.23520.37550.70210.038*
C360.1327 (4)0.3861 (2)0.48863 (19)0.0311 (6)
C370.1705 (4)0.4519 (3)0.4104 (2)0.0384 (7)
H37A0.29340.46460.41330.058*
H37B0.11730.5260.41110.058*
H37C0.12530.40780.35620.058*
C350.0163 (4)0.2935 (3)0.4778 (2)0.0382 (7)
H350.04010.27150.42070.046*
C330.0645 (4)0.2619 (3)0.6331 (2)0.0410 (8)
H330.0430.21840.68160.049*
C340.0189 (4)0.2325 (3)0.5489 (2)0.0467 (9)
H340.10050.17010.54040.056*
N2A0.849 (3)0.6298 (16)0.9029 (19)0.0221 (14)0.293 (12)
C41A0.806 (2)0.5207 (15)0.8787 (12)0.0290 (14)0.293 (12)
H41A0.6910.49450.87760.035*0.293 (12)
C42A0.9203 (17)0.4436 (14)0.8550 (11)0.0415 (15)0.293 (12)
H42A0.88620.36550.84050.05*0.293 (12)
C43A1.0835 (18)0.4825 (15)0.8528 (12)0.0455 (19)0.293 (12)
H43A1.16620.43110.83910.055*0.293 (12)
C44A1.126 (2)0.5956 (16)0.870 (2)0.0471 (18)0.293 (12)
H44A1.23860.62390.86850.057*0.293 (12)
C45A1.006 (3)0.6690 (18)0.8911 (19)0.0344 (13)0.293 (12)
H45A1.03410.7490.89740.041*0.293 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01829 (6)0.02938 (6)0.01247 (5)0.00815 (4)0.00271 (4)0.00012 (4)
O40.0169 (9)0.0266 (9)0.0141 (9)0.0073 (7)0.0030 (7)0.0005 (7)
C10.0198 (14)0.0298 (14)0.0182 (13)0.0006 (11)0.0021 (11)0.0005 (11)
C20.0294 (16)0.0438 (17)0.0200 (14)0.0119 (13)0.0082 (12)0.0004 (12)
O10.0512 (14)0.0366 (12)0.0255 (11)0.0010 (10)0.0141 (10)0.0097 (9)
O20.0351 (13)0.0762 (16)0.0247 (11)0.0232 (11)0.0001 (10)0.0119 (11)
N10.0205 (12)0.0318 (12)0.0150 (11)0.0104 (9)0.0024 (9)0.0007 (9)
C170.0162 (13)0.0243 (13)0.0191 (13)0.0022 (10)0.0004 (10)0.0002 (10)
C160.0144 (12)0.0238 (13)0.0169 (12)0.0020 (10)0.0019 (10)0.0004 (10)
C150.0148 (13)0.0293 (14)0.0148 (12)0.0043 (10)0.0025 (10)0.0001 (10)
C190.0220 (14)0.0257 (13)0.0150 (12)0.0012 (10)0.0035 (10)0.0009 (10)
C130.0246 (15)0.0335 (15)0.0185 (13)0.0087 (11)0.0034 (11)0.0061 (11)
C120.0248 (15)0.0353 (15)0.0226 (14)0.0166 (12)0.0012 (11)0.0028 (12)
C140.0170 (13)0.0276 (13)0.0158 (12)0.0032 (10)0.0023 (10)0.0004 (10)
C110.0284 (15)0.0386 (16)0.0167 (13)0.0169 (12)0.0001 (11)0.0008 (11)
C180.0233 (14)0.0249 (13)0.0158 (13)0.0001 (10)0.0015 (10)0.0020 (10)
O30.0451 (13)0.0367 (12)0.0243 (11)0.0090 (10)0.0100 (9)0.0009 (9)
C30.0340 (16)0.0294 (14)0.0117 (12)0.0086 (12)0.0006 (11)0.0034 (11)
N30.0271 (13)0.0280 (12)0.0142 (11)0.0004 (9)0.0022 (9)0.0003 (9)
N40.0291 (13)0.0307 (12)0.0178 (11)0.0002 (10)0.0035 (10)0.0002 (9)
C210.0271 (15)0.0333 (15)0.0167 (13)0.0060 (11)0.0048 (11)0.0021 (11)
C220.0331 (16)0.0317 (15)0.0191 (14)0.0039 (12)0.0050 (12)0.0014 (11)
C260.0292 (16)0.0451 (17)0.0184 (14)0.0042 (13)0.0012 (12)0.0031 (12)
N20.0137 (15)0.040 (3)0.013 (3)0.0018 (19)0.0005 (16)0.006 (3)
C410.0204 (16)0.041 (3)0.026 (4)0.001 (2)0.005 (2)0.002 (2)
C420.036 (2)0.050 (4)0.039 (4)0.009 (2)0.008 (2)0.009 (3)
C430.022 (2)0.074 (5)0.040 (3)0.013 (3)0.005 (2)0.015 (3)
C440.0171 (17)0.079 (5)0.043 (2)0.002 (3)0.0042 (15)0.025 (5)
C450.0182 (17)0.059 (4)0.025 (3)0.003 (3)0.0032 (16)0.014 (3)
C230.0337 (17)0.0375 (16)0.0288 (16)0.0070 (13)0.0102 (13)0.0084 (13)
C240.0368 (18)0.055 (2)0.0232 (16)0.0121 (15)0.0107 (13)0.0134 (14)
C250.0350 (18)0.067 (2)0.0141 (14)0.0097 (16)0.0015 (12)0.0005 (14)
C270.0398 (19)0.062 (2)0.0241 (16)0.0059 (16)0.0026 (14)0.0119 (15)
N50.0240 (13)0.0303 (12)0.0239 (12)0.0023 (9)0.0013 (10)0.0016 (10)
N60.0284 (13)0.0299 (12)0.0254 (13)0.0000 (10)0.0035 (10)0.0033 (10)
C310.0249 (15)0.0246 (14)0.0322 (16)0.0002 (11)0.0036 (12)0.0008 (12)
C320.0330 (17)0.0305 (15)0.0308 (16)0.0008 (12)0.0051 (13)0.0017 (12)
C360.0306 (16)0.0304 (15)0.0321 (16)0.0067 (12)0.0046 (13)0.0059 (12)
C370.045 (2)0.0413 (18)0.0291 (17)0.0068 (14)0.0051 (14)0.0053 (13)
C350.0414 (19)0.0323 (16)0.0380 (18)0.0017 (13)0.0013 (15)0.0089 (14)
C330.045 (2)0.0314 (16)0.047 (2)0.0039 (14)0.0104 (16)0.0004 (14)
C340.047 (2)0.0334 (17)0.057 (2)0.0145 (15)0.0035 (17)0.0062 (16)
N2A0.0137 (15)0.040 (3)0.013 (3)0.0018 (19)0.0005 (16)0.006 (3)
C41A0.0204 (16)0.041 (3)0.026 (4)0.001 (2)0.005 (2)0.002 (2)
C42A0.036 (2)0.050 (4)0.039 (4)0.009 (2)0.008 (2)0.009 (3)
C43A0.022 (2)0.074 (5)0.040 (3)0.013 (3)0.005 (2)0.015 (3)
C44A0.0171 (17)0.079 (5)0.043 (2)0.002 (3)0.0042 (15)0.025 (5)
C45A0.0182 (17)0.059 (4)0.025 (3)0.003 (3)0.0032 (16)0.014 (3)
Geometric parameters (Å, º) top
Re1—C21.894 (3)C42—H420.95
Re1—C31.919 (3)C43—C441.357 (7)
Re1—C11.922 (3)C43—H430.95
Re1—O42.1256 (16)C44—C451.383 (6)
Re1—N12.163 (2)C44—H440.95
Re1—N22.164 (8)C45—H450.95
Re1—N2A2.334 (19)C23—C241.384 (4)
O4—C161.305 (3)C23—H230.95
C1—O11.152 (3)C24—C251.370 (4)
C2—O21.164 (3)C24—H240.95
N1—C111.329 (3)C25—H250.95
N1—C151.372 (3)C27—H27A0.98
C17—C181.405 (3)C27—H27B0.98
C17—C161.409 (3)C27—H27C0.98
C17—N51.419 (3)N5—N61.271 (3)
C16—C151.442 (3)N6—C311.425 (3)
C15—C141.405 (3)C31—C361.393 (4)
C19—C181.370 (3)C31—C321.399 (4)
C19—N31.411 (3)C32—C331.371 (4)
C19—C141.424 (3)C32—H320.95
C13—C121.367 (4)C36—C351.385 (4)
C13—C141.411 (3)C36—C371.512 (4)
C13—H130.95C37—H37A0.98
C12—C111.395 (4)C37—H37B0.98
C12—H120.95C37—H37C0.98
C11—H110.95C35—C341.384 (5)
C18—H180.95C35—H350.95
O3—C31.155 (3)C33—C341.395 (5)
N3—N41.262 (3)C33—H330.95
N4—C211.428 (3)C34—H340.95
C21—C221.391 (4)N2A—C41A1.331 (14)
C21—C261.395 (4)N2A—C45A1.359 (14)
C22—C231.384 (4)C41A—C42A1.386 (14)
C22—H220.95C41A—H41A0.95
C26—C251.403 (4)C42A—C43A1.366 (14)
C26—C271.503 (4)C42A—H42A0.95
N2—C411.337 (7)C43A—C44A1.358 (15)
N2—C451.354 (6)C43A—H43A0.95
C41—C421.386 (6)C44A—C45A1.373 (14)
C41—H410.95C44A—H44A0.95
C42—C431.387 (7)C45A—H45A0.95
C2—Re1—C389.53 (12)C41—C42—C43118.6 (5)
C2—Re1—C187.41 (11)C41—C42—H42120.7
C3—Re1—C186.85 (11)C43—C42—H42120.7
C2—Re1—O4170.81 (9)C44—C43—C42119.1 (5)
C3—Re1—O496.81 (9)C44—C43—H43120.5
C1—Re1—O499.54 (9)C42—C43—H43120.5
C2—Re1—N196.44 (10)C43—C44—C45119.8 (5)
C3—Re1—N195.90 (10)C43—C44—H44120.1
C1—Re1—N1175.27 (9)C45—C44—H44120.1
O4—Re1—N176.35 (7)N2—C45—C44121.9 (5)
C2—Re1—N292.1 (3)N2—C45—H45119.1
C3—Re1—N2175.9 (3)C44—C45—H45119.1
C1—Re1—N297.0 (2)C24—C23—C22118.9 (3)
O4—Re1—N281.1 (3)C24—C23—H23120.6
N1—Re1—N280.2 (2)C22—C23—H23120.6
C2—Re1—N2A91.4 (6)C25—C24—C23120.6 (3)
C3—Re1—N2A177.0 (6)C25—C24—H24119.7
C1—Re1—N2A90.3 (6)C23—C24—H24119.7
O4—Re1—N2A82.7 (6)C24—C25—C26121.8 (3)
N1—Re1—N2A86.9 (6)C24—C25—H25119.1
N2—Re1—N2A6.7 (8)C26—C25—H25119.1
C16—O4—Re1115.87 (14)C26—C27—H27A109.5
O1—C1—Re1176.2 (2)C26—C27—H27B109.5
O2—C2—Re1176.3 (2)H27A—C27—H27B109.5
C11—N1—C15118.8 (2)C26—C27—H27C109.5
C11—N1—Re1127.27 (17)H27A—C27—H27C109.5
C15—N1—Re1113.82 (16)H27B—C27—H27C109.5
C18—C17—C16120.4 (2)N6—N5—C17112.5 (2)
C18—C17—N5122.2 (2)N5—N6—C31115.1 (2)
C16—C17—N5117.4 (2)C36—C31—C32120.8 (3)
O4—C16—C17125.0 (2)C36—C31—N6116.4 (3)
O4—C16—C15118.5 (2)C32—C31—N6122.8 (2)
C17—C16—C15116.5 (2)C33—C32—C31120.3 (3)
N1—C15—C14122.1 (2)C33—C32—H32119.9
N1—C15—C16115.2 (2)C31—C32—H32119.9
C14—C15—C16122.7 (2)C35—C36—C31118.3 (3)
C18—C19—N3125.3 (2)C35—C36—C37120.5 (3)
C18—C19—C14119.7 (2)C31—C36—C37121.3 (3)
N3—C19—C14115.0 (2)C36—C37—H37A109.5
C12—C13—C14119.7 (2)C36—C37—H37B109.5
C12—C13—H13120.1H37A—C37—H37B109.5
C14—C13—H13120.1C36—C37—H37C109.5
C13—C12—C11119.7 (2)H37A—C37—H37C109.5
C13—C12—H12120.1H37B—C37—H37C109.5
C11—C12—H12120.1C34—C35—C36120.9 (3)
C15—C14—C13117.4 (2)C34—C35—H35119.6
C15—C14—C19118.1 (2)C36—C35—H35119.6
C13—C14—C19124.5 (2)C32—C33—C34119.1 (3)
N1—C11—C12122.3 (2)C32—C33—H33120.4
N1—C11—H11118.8C34—C33—H33120.4
C12—C11—H11118.8C35—C34—C33120.6 (3)
C19—C18—C17122.5 (2)C35—C34—H34119.7
C19—C18—H18118.7C33—C34—H34119.7
C17—C18—H18118.7C41A—N2A—C45A116.9 (15)
O3—C3—Re1177.4 (2)C41A—N2A—Re1118.9 (13)
N4—N3—C19114.8 (2)C45A—N2A—Re1123.1 (12)
N3—N4—C21113.3 (2)N2A—C41A—C42A123.1 (15)
C22—C21—C26120.9 (3)N2A—C41A—H41A118.5
C22—C21—N4123.2 (2)C42A—C41A—H41A118.5
C26—C21—N4115.9 (2)C43A—C42A—C41A118.4 (13)
C23—C22—C21120.7 (3)C43A—C42A—H42A120.8
C23—C22—H22119.7C41A—C42A—H42A120.8
C21—C22—H22119.7C44A—C43A—C42A119.1 (13)
C21—C26—C25117.1 (3)C44A—C43A—H43A120.4
C21—C26—C27121.9 (3)C42A—C43A—H43A120.4
C25—C26—C27121.0 (3)C43A—C44A—C45A120.1 (14)
C41—N2—C45117.8 (6)C43A—C44A—H44A120
C41—N2—Re1122.4 (5)C45A—C44A—H44A120
C45—N2—Re1119.8 (5)N2A—C45A—C44A121.4 (16)
N2—C41—C42122.7 (6)N2A—C45A—H45A119.3
N2—C41—H41118.6C44A—C45A—H45A119.3
C42—C41—H41118.6
C2—Re1—O4—C1634.9 (7)C19—N3—N4—C21178.0 (2)
C3—Re1—O4—C1698.48 (17)N3—N4—C21—C227.5 (4)
C1—Re1—O4—C16173.59 (17)N3—N4—C21—C26172.3 (2)
N1—Re1—O4—C164.03 (16)C26—C21—C22—C230.7 (4)
N2—Re1—O4—C1677.9 (3)N4—C21—C22—C23179.1 (2)
N2A—Re1—O4—C1684.5 (6)C22—C21—C26—C251.1 (4)
C2—Re1—C1—O142 (4)N4—C21—C26—C25178.7 (2)
C3—Re1—C1—O148 (4)C22—C21—C26—C27180.0 (3)
O4—Re1—C1—O1144 (4)N4—C21—C26—C270.2 (4)
N1—Re1—C1—O1174 (3)C2—Re1—N2—C41147.8 (7)
N2—Re1—C1—O1133 (4)C3—Re1—N2—C4198 (3)
N2A—Re1—C1—O1133 (4)C1—Re1—N2—C4160.1 (7)
C3—Re1—C2—O2140 (4)O4—Re1—N2—C4138.5 (6)
C1—Re1—C2—O2133 (4)N1—Re1—N2—C41116.0 (7)
O4—Re1—C2—O26 (5)N2A—Re1—N2—C4164 (7)
N1—Re1—C2—O244 (4)C2—Re1—N2—C4531.5 (9)
N2—Re1—C2—O236 (4)C3—Re1—N2—C4582 (4)
N2A—Re1—C2—O243 (4)C1—Re1—N2—C45119.1 (8)
C2—Re1—N1—C115.7 (3)O4—Re1—N2—C45142.3 (9)
C3—Re1—N1—C1184.5 (2)N1—Re1—N2—C4564.7 (8)
C1—Re1—N1—C11150.1 (11)N2A—Re1—N2—C45115 (8)
O4—Re1—N1—C11179.9 (2)C45—N2—C41—C423.0 (12)
N2—Re1—N1—C1196.8 (3)Re1—N2—C41—C42177.7 (5)
N2A—Re1—N1—C1196.7 (6)N2—C41—C42—C430.6 (9)
C2—Re1—N1—C15170.22 (19)C41—C42—C43—C440.3 (9)
C3—Re1—N1—C1599.59 (19)C42—C43—C44—C451.3 (13)
C1—Re1—N1—C1525.8 (12)C41—N2—C45—C444.7 (16)
O4—Re1—N1—C153.99 (17)Re1—N2—C45—C44176.0 (8)
N2—Re1—N1—C1579.1 (3)C43—C44—C45—N23.9 (16)
N2A—Re1—N1—C1579.2 (6)C21—C22—C23—C240.3 (4)
Re1—O4—C16—C17175.27 (19)C22—C23—C24—C250.7 (4)
Re1—O4—C16—C153.5 (3)C23—C24—C25—C260.2 (5)
C18—C17—C16—O4179.0 (2)C21—C26—C25—C240.7 (4)
N5—C17—C16—O41.9 (4)C27—C26—C25—C24179.5 (3)
C18—C17—C16—C152.2 (4)C18—C17—N5—N69.9 (3)
N5—C17—C16—C15176.9 (2)C16—C17—N5—N6169.2 (2)
C11—N1—C15—C140.3 (4)C17—N5—N6—C31177.2 (2)
Re1—N1—C15—C14176.01 (19)N5—N6—C31—C36162.8 (2)
C11—N1—C15—C16179.8 (2)N5—N6—C31—C3216.1 (4)
Re1—N1—C15—C163.6 (3)C36—C31—C32—C332.7 (4)
O4—C16—C15—N10.1 (3)N6—C31—C32—C33176.1 (3)
C17—C16—C15—N1179.0 (2)C32—C31—C36—C353.7 (4)
O4—C16—C15—C14179.4 (2)N6—C31—C36—C35175.2 (2)
C17—C16—C15—C140.6 (4)C32—C31—C36—C37178.0 (3)
C14—C13—C12—C110.3 (4)N6—C31—C36—C373.1 (4)
N1—C15—C14—C130.7 (4)C31—C36—C35—C341.8 (4)
C16—C15—C14—C13178.9 (2)C37—C36—C35—C34179.9 (3)
N1—C15—C14—C19178.8 (2)C31—C32—C33—C340.2 (5)
C16—C15—C14—C191.6 (4)C36—C35—C34—C331.1 (5)
C12—C13—C14—C150.6 (4)C32—C33—C34—C352.1 (5)
C12—C13—C14—C19178.9 (3)C2—Re1—N2A—C41A143.0 (19)
C18—C19—C14—C152.2 (4)C3—Re1—N2A—C41A36 (14)
N3—C19—C14—C15179.3 (2)C1—Re1—N2A—C41A56 (2)
C18—C19—C14—C13178.3 (3)O4—Re1—N2A—C41A44.0 (19)
N3—C19—C14—C130.1 (4)N1—Re1—N2A—C41A121 (2)
C15—N1—C11—C121.3 (4)N2—Re1—N2A—C41A120 (8)
Re1—N1—C11—C12174.4 (2)C2—Re1—N2A—C45A49 (2)
C13—C12—C11—N11.3 (5)C3—Re1—N2A—C45A156 (11)
N3—C19—C18—C17178.9 (2)C1—Re1—N2A—C45A137 (2)
C14—C19—C18—C170.6 (4)O4—Re1—N2A—C45A124 (2)
C16—C17—C18—C191.7 (4)N1—Re1—N2A—C45A47 (2)
N5—C17—C18—C19177.4 (2)N2—Re1—N2A—C45A48 (6)
C2—Re1—C3—O387 (5)C45A—N2A—C41A—C42A10 (4)
C1—Re1—C3—O30 (5)Re1—N2A—C41A—C42A178.2 (14)
O4—Re1—C3—O3100 (5)N2A—C41A—C42A—C43A3 (3)
N1—Re1—C3—O318E1 (10)C41A—C42A—C43A—C44A3 (3)
N2—Re1—C3—O3159 (5)C42A—C43A—C44A—C45A1 (4)
N2A—Re1—C3—O320 (14)C41A—N2A—C45A—C44A11 (4)
C18—C19—N3—N47.3 (4)Re1—N2A—C45A—C44A179 (2)
C14—C19—N3—N4174.4 (2)C43A—C44A—C45A—N2A6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.523.142 (3)123
C41—H41···O40.952.502.913 (7)106
C41—H41···O1ii0.952.593.459 (7)152
C44—H44···O4iii0.952.353.166 (7)143
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y, z.

Experimental details

(12hmsc1_0ma)(10lmsc12_0m)
Crystal data
Chemical formula[Re(C23H21N4O)(CO)3][Re(C28H23N6O)(CO)3]
Mr639.67729.75
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)100100
a, b, c (Å)23.723 (3), 6.7123 (7), 14.8382 (17)7.9776 (6), 11.6818 (8), 15.3994 (11)
α, β, γ (°)90, 94.178 (4), 9092.113 (4), 98.130 (3), 92.384 (4)
V3)2356.5 (5)1418.13 (18)
Z42
Radiation typeMo KαMo Kα
µ (mm1)5.204.33
Crystal size (mm)0.5 × 0.16 × 0.090.28 × 0.13 × 0.1
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.391, 0.6400.511, 0.648
No. of measured, independent and
observed [I > 2σ(I)] reflections
30040, 5833, 4678 21043, 6726, 6014
Rint0.0450.023
(sin θ/λ)max1)0.6690.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.13 0.022, 0.045, 1.09
No. of reflections58336726
No. of parameters319400
No. of restraints060
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0122P)2 + 12.6794P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0155P)2 + 0.9052P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)4.32, 1.581.16, 1.56

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) for (12hmsc1_0ma) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4i0.952.483.205 (6)133
C12—H12···O1ii0.952.493.139 (6)126
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (10lmsc12_0m) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.523.142 (3)123
C41—H41···O40.952.502.913 (7)106
C41—H41···O1ii0.952.593.459 (7)152
C44—H44···O4iii0.952.353.166 (7)143
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds