Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An infinite one-dimensional cadmium metal–organic chain, namely catena-poly[aqua­bis­(μ3-2,2′-{[1,2-phenyl­ene­bis(methyl­ene)]bis­(sulfane­diyl)}dibenzoato)dicadmium(II)], [Cd2(C22H16O4S2)2(H2O)]n, was synthesized by solvothermal reaction of Cd(NO3)2·4H2O and 2,2′-{[1,2-phenyl­ene­bis(methyl­ene)]bis­(sulfane­diyl)}di­benzoic acid (H2L). The CdII centres have six-coordinate CdS2O4 and CdSO5 geometries. Due to the flexible –CH2–S– arms, the L2− ligand adopts both syn and anti conformations. Four CdII cations are linked by two syn L2− ligands to form a centrosymmetric planar tetra­nuclear CdII core, which is further extended through bonding to the anti L2− ligands to form a one-dimensional metal–organic chain. Adjacent one-dimensional chains are connected by C—H...π inter­actions and nonclassical C—H...O hydrogen bonds to form the resultant three-dimensional supra­molecular framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113025699/ky3038sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025699/ky3038Isup2.hkl
Contains datablock I

CCDC reference: 961456

Introduction top

Recently, there has been great inter­est in the rational design and synthesis of metal–organic coordination polymers, not only because of their structural diversity and intriguing molecular topologies, but also because of their potential as new functional materials in the fields of separation, magnetism, catalysis, gas storage and luminescence (Cui et al., 2011; Horcajada et al., 2011; Kreno et al., 2011; Li et al., 2011; Zhang et al., 2011; Zhang & Xiong, 2011; Kurmoo, 2009; Lee et al., 2009). To the best of our knowledge, the shape, conformation and coordinating orientation of organic ligands determines the structures of the resulting supra­molecular aggregates (Bu et al., 2001; Liang et al., 2000; Hill et al., 2005; Blake et al., 2010; Zhang et al., 2004; Zhang & Chen, 2008). So, for the successful construction of such materials, judicious design and synthesis of the bridging ligands is one of the most important factors. It is known that, compared with rigid organic ligands, flexible counterparts can transform their conformations to match the coordination requirements of the metal centre. This can give a richer variety of structures than found for a rigid-ligand equivalent (Zhao et al., 2003; Dong et al., 2004; Chen et al., 2009; Lang et al., 2004). Among various flexible ligands, multi­carboxyl­ates containing the linkers –CH2–O– or –CH2–S– have attracted great inter­est. Polyhedral species and polymeric two- and three-dimensional transition-metal organic frameworks based on –CH2–O– linked tripodal hexa­carboxyl­ates and tetra­podal o­cta­carboxyl­ates have been documented (Wu et al., 2009; Lin et al., 2011). Recently, Sun and coworkers synthesized a series of flexible di­carboxyl­ate ligands based on aromatic cores linked to thio­ether–carboxyl­ate pendent arms and they derived from these a diverse set of coordination compound arrays ranging from metallamacrocycles and metal–organic cages to one- or two-dimensional coordination polymers (Dai et al., 2009; Dai, Dou et al., 2010; Dai, Gong et al., 2010). With these considerations in mind, we synthesized a flexible di­carboxyl­ate ligand, namely 2,2'-{[1,2-phenyl­enebis(methyl­ene)]bis­(sulfanediyl)}di­benzoic acid (H2L), which is potentially flexible enough to adopt either a syn or an anti conformation. Using this ligand to assemble with CdII cations, a metal–organic chain based on the planar [Cd4(COO)4] cluster, viz. the title compound, [Cd2(L)2(H2O)]n, (I), was obtained.

Experimental top

Synthesis and crystallization top

All reagents and solvents were used as obtained commercially and without further purification. H2L was synthesized according to the procedure of Dai et al. (2009). A mixture of Cd(NO3)2.4H2O (0.02 mmol) and H2L (0.02 mmol) was suspended in a mixed solvent of H2O (0.5 ml) and di­methyl­formamide (0.5 ml), which was then sealed in a glass tube and heated at 393 K for 50 h. Yellow single crystals of (I) were obtained after cooling the solution to room temperature. The block-shaped crystals were collected and washed with distilled water (yield: 67%, based on Cd).

Refinement top

The H atoms of the water molecule were initially placed at calculated positions (Nardelli, 1999) and then refined with O—H and H···H distance restraints of 0.85 (1) and 1.33 (2) Å, respectively, and with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in geometrically generated positions and allowed to ride on their parent atoms in the riding-model approximation, with aromatic C—H = 0.93 Å and methyl­ene C—H = 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Results and discussion top

The asymmetric unit of [Cd2(L)2(H2O)]n, (I) (Fig. 1), contains two crystallographically independent CdII centres, two L2- ligands and one metal-coordinated water molecule. Both CdII centres are six-coordinate but have different ligating atoms. In detail, Cd1 is bonded to four O atoms and two S atoms (CdS2O4), while Cd2 has a CdSO5 geometry. The Cd—O and Cd—S bond lengths are in the ranges 2.198 (3)–2.437 (3) and 2.7741 (15)–2.8582 (16) Å, respectively (Table 2), which fit well with the similar ranges found for related compounds (Bai et al., 2010; Cheng et al., 2012; Sun et al., 2013). The relatively large Cd—O bond-length range is associated with the µ2-Ocarboxyl­ate bridge, here atom O2, which not unusually gives asymmetric Cd—O bonds. The water molecule is a terminal ligand and coordinates to Cd1 with Cd1—O1W = 2.368 (5) Å, and forms hydrogen bonds with the O atoms of carboxyl­ate groups (Table 3). This Cd—Owater distance is comparable with those of 2.338 (3) and 2.368 (3) Å in the previously reported CdII coordination polymer, {[Cd(tib)(SO4)(H2O)2].EtOH.H2O}n [tib is 1,3,5-tris­(imidazol-1-yl­methyl)­benzene and EtOH is ethanol; Xu et al., 2009]. Notably, of the two unique L2- ligands, one has a syn conformation and the other has an anti conformation, as shown by the distribution of the two substituted 2-mercaptobenzoate groups with respect to the plane of the central aromatic ring. The syn and anti L2- ligands bind to the CdII centres with µ3-κ1O:κ2O':κ1S:κ1S':κ1O'':κ1O''' and µ3-κ1O:κ1S:κ1O':κ1O'' modes, respectively. A further conformational difference is that in the syn conformer of L2-, the planes of the aromatic rings of the 2-mercaptobenzoate arms make angles of 84.8 (3) and 77.8 (3)°, respectively, with the plane of the central aromatic ring, whereas the two equivalent angles in the anti conformation of L2- are 82.8 (3) and 48.5 (3)°.

A pair of syn L2- ligands bind four CdII cations to form a centrosymmetric [Cd4(COO)4] core (Fig. 2a), with four planar Cd centres and Cd1···Cd2 and Cd1···Cd2i separations of 4.3457 (13) and 4.8416 (13) Å, respectively [symmetry code: (i) -x + 1, -y + 1, -z + 1]. In contrast, the anti L2- ligand links the [Cd4(COO)4] cluster cores into a one-dimensional chain running along the direction parallel to the c axis.

Another inter­esting and important supra­molecular force within the chain of (I) is the lone pair (l.p.)···π association observed between carbonyl atom O6 and a 2-mercapto­benzoic acid ring (that formed by atoms C2–C7). The distance between the ring centroid and the O atom is 3.433 (5) Å, and this O(l.p.)···π separation is within the range of the few experimental examples reported so far (Mooibroek et al.; 2008, Egli & Sarkhel, 2006). The angle θ (which corresponds to the angle between the C and O atoms and the centroid of the aromatic plane) is 89.4 (3)°. This directionality indicates that the inter­action is definitive and essentially a lone pair (l.p.)···π type (Fig. 2b). Adjacent one-dimensional chains are bound together to form the resultant three-dimensional supra­molecular framework by inter­chain C—H···π inter­actions [C33—H33···Cg1vi = 143°, H33···Cg1vi = 2.98 Å, C33···Cg1vi = 3.761 (9)Å and C40—H40···Cg2vi = 134°, H40···Cg2vi = 2.97 Å, C40···Cg2vi = 3.684 (8) Å; Cg1 and Cg2 are the centroids of the C23–C29 and C2–C7 rings, respectively; symmetry code: (vi) -x, -y + 2, -z + 2; Fig. 3a] and non-classical C—H···O hydrogen bonds (Fig. 3b and Table 2).

According to a survey of the 2013 version of the Cambridge Structural Database (CSD, Version 5.34, May 2013 update; Allen, 2002), only three structures of coordination compounds based on the L2- ligand have been reported to date. All are discrete CuII species and only single ligand conformations, syn or anti, were found in each of them (Sun et al., 2011). For example, [Cu2(L)2(DMF)2].DMF.H2O, (II) (DMF is di­methyl­formamide), was obtained as a zero-dimensional molecular chair incorporating syn L2- and a binuclear [Cu2(COO)2] paddle-wheel secondary building unit (Dai et al., 2009). These results demonstrate that ligand conformation has a significant influence on the structure of the final product. In (I), the syn L2- ligand acts not only as a chelating but also as a bridging ligand to bind the metal centres to form a discrete [Cd4(COO)4] core, whereas the anti L2- ligand acts exclusively as a bridging ligand and extends the tetra­metallic core to form the observed one-dimensional cluster-based metal–organic chain.

In conclusion, using a flexible di­carb­oxy­lic acid ligand we obtained an infinite one-dimensional cadmium metal–organic chain incorporating a centrosymmetric planar tetra­nuclear CdII cluster. The L2- ligand, with flexible –CH2–S– arms, adopts both syn and anti conformations in (I). Inter­chain C—H···π inter­actions and non-classical C—H···O hydrogen bonds contribute to the stability of the resultant three-dimensional supra­molecular framework.

Related literature top

For related literature, see: Allen (2002); Bai et al. (2010); Blake et al. (2010); Bu et al. (2001); Chen et al. (2009); Cheng et al. (2012); Cui et al. (2011); Dai et al. (2009); Dai, Dou, He, Zhao & Sun (2010); Dai, Gong, Cui, Zhang, Qiu, Ye, Sun, Pang, Zhang, Dong & Zhang (2010); Dong et al. (2004); Egli & Sarkhel (2006); Hill et al. (2005); Horcajada et al. (2011); Kreno et al. (2011); Kurmoo (2009); Lang et al. (2004); Lee et al. (2009); Li et al. (2011); Liang et al. (2000); Lin et al. (2011); Mooibroek et al. (2008); Nardelli (1999); Sun et al. (2011, 2013); Wu et al. (2009); Xu et al. (2009); Zhang & Chen (2008); Zhang & Xiong (2011); Zhang et al. (2004); Zhang, Zhang, Lin & Chen (2011); Zhao et al. (2003).

Computing details top

Data collection: APEX2 (Bruker,2005); cell refinement: APEX2 (Bruker,2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and the coordination environment around the CdII centres. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x + 1, -y + 1, -z + 2.]
[Figure 2] Fig. 2. (a) A ball-and-stick view of the planar [Cd4(COO)4] secondary building unit of (I). (b) A ball-and-stick perspective of the one-dimensional chain incorporating the intrachain hydrogen bonds (black dashed lines) and lone pair (l.p.)···π interactions (lighter dashed lines; green in the electronic version of the paper).
[Figure 3] Fig. 3. Ball-and-stick perspective views of (a) the interchain C—H···π interactions of (I) (dashed lines) and (b) the interchain C—H···O hydrogen bonds (dashed lines).
catena-poly[aquabis(µ3-2,2'-{[1,2-phenylenebis(methylene)]bis(sulfanediyl)}dibenzoato)dicadmium(II)] top
Crystal data top
[Cd2(C22H16O4S2)2(H2O)]Z = 2
Mr = 1059.75F(000) = 1060
Triclinic, P1Dx = 1.726 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.472 (4) ÅCell parameters from 3006 reflections
b = 12.760 (4) Åθ = 2.5–26.1°
c = 14.192 (4) ŵ = 1.31 mm1
α = 76.778 (5)°T = 298 K
β = 80.258 (5)°Block, yellow
γ = 68.709 (4)°0.15 × 0.10 × 0.10 mm
V = 2039.4 (11) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
7826 independent reflections
Radiation source: fine-focus sealed tube5171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1215
Tmin = 0.828, Tmax = 0.881k = 1415
10613 measured reflectionsl = 917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
7826 reflections(Δ/σ)max = 0.001
538 parametersΔρmax = 0.63 e Å3
3 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Cd2(C22H16O4S2)2(H2O)]γ = 68.709 (4)°
Mr = 1059.75V = 2039.4 (11) Å3
Triclinic, P1Z = 2
a = 12.472 (4) ÅMo Kα radiation
b = 12.760 (4) ŵ = 1.31 mm1
c = 14.192 (4) ÅT = 298 K
α = 76.778 (5)°0.15 × 0.10 × 0.10 mm
β = 80.258 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7826 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5171 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.881Rint = 0.032
10613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.63 e Å3
7826 reflectionsΔρmin = 1.05 e Å3
538 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.33555 (3)0.70091 (3)0.70573 (3)0.03459 (12)
Cd20.47331 (3)0.65745 (3)0.40932 (3)0.03434 (12)
S10.14084 (11)0.87936 (11)0.64153 (10)0.0340 (3)
S20.17337 (11)0.60709 (11)0.82497 (10)0.0339 (3)
S30.23750 (12)0.84680 (11)0.99173 (10)0.0329 (3)
S40.24515 (12)0.74045 (11)1.34910 (10)0.0366 (3)
C10.3638 (4)0.8528 (4)0.4890 (4)0.0286 (12)
C20.3091 (4)0.9605 (4)0.5311 (4)0.0279 (11)
C30.3601 (4)1.0455 (4)0.4965 (4)0.0350 (13)
H30.41541.03790.44330.042*
C40.3295 (5)1.1404 (5)0.5401 (5)0.0430 (15)
H40.36301.19670.51550.052*
C50.2496 (5)1.1508 (5)0.6200 (5)0.0445 (15)
H50.23291.21190.65190.053*
C60.1934 (5)1.0712 (5)0.6539 (4)0.0380 (13)
H60.13711.08090.70640.046*
C70.2217 (4)0.9755 (4)0.6084 (4)0.0284 (12)
C80.0447 (4)0.9241 (5)0.7487 (4)0.0404 (14)
H8A0.08900.90190.80440.048*
H8B0.00851.00660.73710.048*
C90.0475 (4)0.8678 (5)0.7693 (4)0.0361 (13)
C100.1460 (5)0.9219 (5)0.7193 (4)0.0435 (15)
H100.15080.98820.67370.052*
C110.2360 (5)0.8805 (6)0.7351 (5)0.0504 (16)
H110.30160.91970.70200.060*
C120.2284 (5)0.7803 (6)0.8005 (5)0.0536 (17)
H120.28800.75040.81040.064*
C130.1313 (5)0.7242 (5)0.8515 (4)0.0451 (15)
H130.12690.65710.89600.054*
C140.0402 (4)0.7672 (4)0.8369 (4)0.0351 (13)
C150.0604 (4)0.7024 (5)0.8969 (4)0.0416 (14)
H15A0.03580.65820.95620.050*
H15B0.08970.75540.91440.050*
C160.2791 (4)0.5234 (4)0.9087 (4)0.0293 (12)
C170.2587 (5)0.5340 (4)1.0067 (4)0.0381 (13)
H170.19130.58731.02920.046*
C180.3411 (5)0.4635 (5)1.0702 (4)0.0413 (14)
H180.32780.47051.13530.050*
C190.4417 (5)0.3838 (5)1.0387 (4)0.0438 (15)
H190.49570.33741.08190.053*
C200.4606 (5)0.3742 (4)0.9419 (4)0.0369 (13)
H200.52790.31950.92080.044*
C210.3831 (4)0.4431 (4)0.8748 (4)0.0292 (12)
C220.4142 (4)0.4316 (4)0.7699 (4)0.0299 (12)
C230.3972 (5)0.8627 (4)0.7921 (4)0.0358 (13)
C240.3799 (4)0.9469 (4)0.8569 (4)0.0305 (12)
C250.4345 (5)1.0279 (5)0.8247 (4)0.0392 (14)
H250.47751.02850.76440.047*
C260.4272 (5)1.1076 (5)0.8795 (5)0.0466 (15)
H260.46371.16160.85610.056*
C270.3651 (5)1.1055 (5)0.9688 (4)0.0439 (15)
H270.36101.15761.00680.053*
C280.3086 (5)1.0275 (5)1.0036 (4)0.0381 (13)
H280.26641.02831.06430.046*
C290.3135 (4)0.9464 (4)0.9486 (4)0.0282 (11)
C300.1630 (5)0.8841 (5)1.1078 (4)0.0364 (13)
H30A0.21820.87431.15250.044*
H30B0.11150.96301.09880.044*
C310.0956 (4)0.8040 (4)1.1460 (4)0.0325 (12)
C320.0127 (5)0.8318 (5)1.1132 (4)0.0444 (15)
H320.04230.90161.07210.053*
C330.0775 (6)0.7601 (7)1.1390 (5)0.0585 (18)
H330.14910.78091.11570.070*
C340.0337 (6)0.6574 (6)1.2000 (5)0.0582 (18)
H340.07510.60701.21670.070*
C350.0713 (6)0.6282 (5)1.2369 (4)0.0487 (16)
H350.09810.55951.28000.058*
C360.1380 (5)0.6999 (5)1.2105 (4)0.0349 (13)
C370.2523 (5)0.6640 (5)1.2514 (4)0.0404 (14)
H37A0.30960.67831.19960.048*
H37B0.27700.58241.27680.048*
C380.1602 (4)0.6830 (4)1.4475 (4)0.0326 (12)
C390.0485 (5)0.7573 (5)1.4655 (4)0.0443 (15)
H390.02330.82841.42530.053*
C400.0258 (5)0.7274 (6)1.5424 (5)0.0584 (18)
H400.10030.77801.55320.070*
C410.0099 (6)0.6244 (6)1.6020 (6)0.068 (2)
H410.03930.60461.65430.082*
C420.1211 (6)0.5482 (6)1.5842 (5)0.0618 (19)
H420.14390.47701.62460.074*
C430.1995 (4)0.5749 (4)1.5081 (4)0.0333 (12)
C440.3202 (5)0.4875 (4)1.5040 (4)0.0347 (13)
O10.4159 (3)0.8556 (3)0.4060 (3)0.0373 (9)
O1W0.5399 (4)0.6328 (4)0.7001 (3)0.0596 (12)
H1WA0.582 (5)0.604 (4)0.653 (3)0.072*
H1WB0.549 (5)0.698 (3)0.690 (4)0.072*
O20.3615 (3)0.7555 (3)0.5413 (2)0.0346 (9)
O30.3748 (3)0.5153 (3)0.7027 (3)0.0421 (10)
O40.4839 (3)0.3362 (3)0.7514 (3)0.0388 (9)
O50.3291 (3)0.8033 (3)0.8132 (3)0.0396 (9)
O60.4739 (4)0.8532 (3)0.7225 (3)0.0514 (11)
O70.4014 (3)0.5106 (3)1.4487 (4)0.0624 (13)
O80.3376 (3)0.3926 (3)1.5575 (3)0.0492 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0490 (3)0.0245 (2)0.0293 (2)0.00947 (18)0.00497 (19)0.00708 (17)
Cd20.0371 (2)0.0308 (2)0.0355 (2)0.00869 (17)0.00295 (18)0.01185 (18)
S10.0371 (8)0.0319 (7)0.0385 (8)0.0166 (6)0.0010 (6)0.0105 (6)
S20.0352 (7)0.0318 (7)0.0338 (8)0.0089 (6)0.0053 (6)0.0072 (6)
S30.0418 (8)0.0301 (7)0.0337 (8)0.0196 (6)0.0002 (6)0.0095 (6)
S40.0440 (8)0.0316 (7)0.0373 (8)0.0154 (6)0.0103 (7)0.0035 (6)
C10.031 (3)0.029 (3)0.030 (3)0.012 (2)0.006 (2)0.011 (2)
C20.028 (3)0.027 (3)0.031 (3)0.008 (2)0.008 (2)0.007 (2)
C30.026 (3)0.036 (3)0.045 (3)0.012 (2)0.008 (3)0.008 (3)
C40.042 (3)0.031 (3)0.065 (4)0.018 (3)0.011 (3)0.013 (3)
C50.047 (4)0.032 (3)0.060 (4)0.012 (3)0.007 (3)0.020 (3)
C60.040 (3)0.038 (3)0.040 (3)0.011 (3)0.003 (3)0.018 (3)
C70.030 (3)0.021 (3)0.034 (3)0.007 (2)0.008 (2)0.004 (2)
C80.036 (3)0.035 (3)0.052 (4)0.015 (3)0.002 (3)0.012 (3)
C90.029 (3)0.042 (3)0.041 (3)0.014 (2)0.007 (3)0.019 (3)
C100.039 (3)0.043 (3)0.046 (4)0.008 (3)0.007 (3)0.008 (3)
C110.030 (3)0.062 (4)0.054 (4)0.007 (3)0.009 (3)0.010 (3)
C120.041 (4)0.073 (5)0.057 (4)0.028 (3)0.001 (3)0.020 (4)
C130.052 (4)0.037 (3)0.050 (4)0.020 (3)0.002 (3)0.007 (3)
C140.029 (3)0.033 (3)0.043 (3)0.010 (2)0.001 (3)0.013 (3)
C150.042 (3)0.038 (3)0.041 (3)0.007 (3)0.005 (3)0.009 (3)
C160.036 (3)0.021 (3)0.034 (3)0.012 (2)0.005 (2)0.007 (2)
C170.043 (3)0.032 (3)0.036 (3)0.008 (3)0.003 (3)0.012 (3)
C180.053 (4)0.041 (3)0.031 (3)0.013 (3)0.008 (3)0.008 (3)
C190.046 (3)0.046 (4)0.037 (3)0.011 (3)0.013 (3)0.003 (3)
C200.039 (3)0.031 (3)0.038 (3)0.008 (2)0.001 (3)0.010 (3)
C210.037 (3)0.024 (3)0.030 (3)0.015 (2)0.004 (2)0.003 (2)
C220.030 (3)0.030 (3)0.037 (3)0.019 (2)0.001 (2)0.007 (3)
C230.041 (3)0.023 (3)0.040 (3)0.008 (2)0.011 (3)0.000 (2)
C240.031 (3)0.029 (3)0.031 (3)0.009 (2)0.005 (2)0.006 (2)
C250.043 (3)0.042 (3)0.040 (3)0.024 (3)0.000 (3)0.006 (3)
C260.055 (4)0.036 (3)0.059 (4)0.028 (3)0.011 (3)0.006 (3)
C270.057 (4)0.038 (3)0.049 (4)0.026 (3)0.007 (3)0.012 (3)
C280.047 (3)0.041 (3)0.034 (3)0.020 (3)0.000 (3)0.016 (3)
C290.030 (3)0.025 (3)0.032 (3)0.011 (2)0.008 (2)0.005 (2)
C300.050 (3)0.035 (3)0.030 (3)0.023 (3)0.004 (3)0.004 (2)
C310.038 (3)0.033 (3)0.030 (3)0.014 (2)0.001 (2)0.011 (2)
C320.048 (4)0.044 (4)0.038 (3)0.014 (3)0.004 (3)0.005 (3)
C330.047 (4)0.092 (6)0.047 (4)0.033 (4)0.003 (3)0.019 (4)
C340.059 (4)0.085 (5)0.053 (4)0.054 (4)0.003 (4)0.012 (4)
C350.070 (4)0.053 (4)0.032 (3)0.037 (3)0.006 (3)0.001 (3)
C360.039 (3)0.040 (3)0.030 (3)0.016 (3)0.002 (3)0.015 (3)
C370.044 (3)0.037 (3)0.041 (3)0.011 (3)0.010 (3)0.010 (3)
C380.036 (3)0.034 (3)0.034 (3)0.015 (2)0.008 (2)0.009 (2)
C390.034 (3)0.042 (4)0.049 (4)0.006 (3)0.008 (3)0.002 (3)
C400.035 (3)0.064 (5)0.069 (5)0.006 (3)0.001 (3)0.019 (4)
C410.059 (4)0.061 (5)0.073 (5)0.020 (4)0.015 (4)0.005 (4)
C420.059 (4)0.054 (4)0.055 (4)0.016 (3)0.004 (4)0.012 (3)
C430.037 (3)0.034 (3)0.029 (3)0.013 (2)0.005 (2)0.004 (2)
C440.042 (3)0.022 (3)0.042 (3)0.007 (2)0.012 (3)0.010 (3)
O10.045 (2)0.033 (2)0.037 (2)0.0179 (17)0.0032 (19)0.0097 (17)
O1W0.061 (3)0.057 (3)0.062 (3)0.007 (2)0.013 (2)0.030 (3)
O20.053 (2)0.025 (2)0.0267 (19)0.0126 (17)0.0033 (17)0.0076 (16)
O30.064 (3)0.022 (2)0.036 (2)0.0096 (18)0.008 (2)0.0040 (17)
O40.045 (2)0.030 (2)0.038 (2)0.0092 (17)0.0041 (18)0.0103 (17)
O50.048 (2)0.038 (2)0.040 (2)0.0212 (19)0.0007 (19)0.0147 (18)
O60.065 (3)0.046 (2)0.043 (2)0.024 (2)0.020 (2)0.019 (2)
O70.049 (3)0.030 (2)0.090 (4)0.0072 (19)0.025 (3)0.008 (2)
O80.047 (2)0.027 (2)0.071 (3)0.0108 (18)0.018 (2)0.002 (2)
Geometric parameters (Å, º) top
Cd1—O52.198 (3)C18—H180.9300
Cd1—O32.246 (3)C19—C201.381 (7)
Cd1—O22.281 (3)C19—H190.9300
Cd1—O1W2.368 (5)C20—C211.387 (7)
Cd1—S12.7741 (15)C20—H200.9300
Cd1—S22.8392 (15)C21—C221.501 (7)
Cd2—O4i2.243 (4)C22—O31.266 (6)
Cd2—O7ii2.280 (4)C22—O41.267 (6)
Cd2—O8iii2.309 (4)C23—O61.248 (6)
Cd2—O12.355 (3)C23—O51.290 (6)
Cd2—O22.437 (3)C23—C241.504 (7)
Cd2—S4ii2.8582 (16)C24—C251.389 (7)
S1—C71.794 (5)C24—C291.420 (7)
S1—C81.833 (6)C25—C261.385 (7)
S2—C161.794 (5)C25—H250.9300
S2—C151.829 (5)C26—C271.369 (8)
S3—C291.792 (5)C26—H260.9300
S3—C301.822 (5)C27—C281.377 (7)
S4—C381.790 (5)C27—H270.9300
S4—C371.843 (5)C28—C291.410 (7)
S4—Cd2iv2.8582 (16)C28—H280.9300
C1—O11.246 (6)C30—C311.504 (7)
C1—O21.300 (6)C30—H30A0.9700
C1—C21.506 (7)C30—H30B0.9700
C2—C71.402 (7)C31—C321.399 (7)
C2—C31.405 (7)C31—C361.406 (7)
C3—C41.388 (7)C32—C331.381 (8)
C3—H30.9300C32—H320.9300
C4—C51.374 (8)C33—C341.373 (9)
C4—H40.9300C33—H330.9300
C5—C61.391 (8)C34—C351.384 (8)
C5—H50.9300C34—H340.9300
C6—C71.415 (7)C35—C361.401 (7)
C6—H60.9300C35—H350.9300
C8—C91.521 (7)C36—C371.504 (7)
C8—H8A0.9700C37—H37A0.9700
C8—H8B0.9700C37—H37B0.9700
C9—C101.394 (8)C38—C391.391 (7)
C9—C141.399 (7)C38—C431.412 (7)
C10—C111.372 (8)C39—C401.386 (8)
C10—H100.9300C39—H390.9300
C11—C121.380 (9)C40—C411.354 (9)
C11—H110.9300C40—H400.9300
C12—C131.391 (8)C41—C421.394 (8)
C12—H120.9300C41—H410.9300
C13—C141.399 (7)C42—C431.398 (8)
C13—H130.9300C42—H420.9300
C14—C151.506 (7)C43—C441.514 (7)
C15—H15A0.9700C44—O81.239 (6)
C15—H15B0.9700C44—O71.254 (6)
C16—C171.399 (7)O1W—H1WA0.849 (10)
C16—C211.419 (7)O1W—H1WB0.852 (10)
C17—C181.396 (7)O4—Cd2i2.243 (4)
C17—H170.9300O7—Cd2iv2.280 (4)
C18—C191.377 (7)O8—Cd2iii2.309 (4)
O5—Cd1—O3136.94 (14)C19—C18—H18119.2
O5—Cd1—O2125.09 (13)C17—C18—H18119.2
O3—Cd1—O295.41 (13)C18—C19—C20118.7 (5)
O5—Cd1—O1W88.86 (14)C18—C19—H19120.6
O3—Cd1—O1W79.27 (14)C20—C19—H19120.6
O2—Cd1—O1W85.85 (14)C19—C20—C21122.4 (5)
O5—Cd1—S185.59 (10)C19—C20—H20118.8
O3—Cd1—S1125.70 (10)C21—C20—H20118.8
O2—Cd1—S170.36 (9)C20—C21—C16118.1 (5)
O1W—Cd1—S1145.89 (12)C20—C21—C22118.8 (5)
O5—Cd1—S291.85 (10)C16—C21—C22123.1 (5)
O3—Cd1—S266.46 (10)O3—C22—O4121.6 (5)
O2—Cd1—S2131.51 (9)O3—C22—C21121.0 (5)
O1W—Cd1—S2129.50 (12)O4—C22—C21117.4 (5)
S1—Cd1—S284.36 (5)O6—C23—O5123.5 (5)
O4i—Cd2—O7ii100.24 (15)O6—C23—C24120.3 (5)
O4i—Cd2—O8iii94.95 (14)O5—C23—C24116.2 (5)
O7ii—Cd2—O8iii114.49 (14)C25—C24—C29119.0 (5)
O4i—Cd2—O197.06 (13)C25—C24—C23117.2 (5)
O7ii—Cd2—O1141.03 (13)C29—C24—C23123.8 (5)
O8iii—Cd2—O198.34 (13)C26—C25—C24122.2 (5)
O4i—Cd2—O2147.81 (12)C26—C25—H25118.9
O7ii—Cd2—O295.85 (14)C24—C25—H25118.9
O8iii—Cd2—O2103.48 (13)C27—C26—C25118.8 (5)
O1—Cd2—O254.65 (12)C27—C26—H26120.6
O4i—Cd2—S4ii80.20 (10)C25—C26—H26120.6
O7ii—Cd2—S4ii71.74 (11)C26—C27—C28121.2 (5)
O8iii—Cd2—S4ii172.88 (10)C26—C27—H27119.4
O1—Cd2—S4ii77.23 (9)C28—C27—H27119.4
O2—Cd2—S4ii78.65 (9)C27—C28—C29121.1 (5)
C7—S1—C8104.6 (2)C27—C28—H28119.5
C7—S1—Cd190.72 (16)C29—C28—H28119.5
C8—S1—Cd1107.91 (19)C28—C29—C24117.8 (5)
C16—S2—C15103.9 (2)C28—C29—S3121.5 (4)
C16—S2—Cd190.75 (17)C24—C29—S3120.7 (4)
C15—S2—Cd1116.0 (2)C31—C30—S3105.7 (3)
C29—S3—C30103.7 (2)C31—C30—H30A110.6
C38—S4—C37103.5 (3)S3—C30—H30A110.6
C38—S4—Cd2iv105.38 (17)C31—C30—H30B110.6
C37—S4—Cd2iv105.98 (18)S3—C30—H30B110.6
O1—C1—O2119.7 (4)H30A—C30—H30B108.7
O1—C1—C2120.3 (5)C32—C31—C36118.1 (5)
O2—C1—C2119.9 (4)C32—C31—C30118.6 (5)
C7—C2—C3118.8 (4)C36—C31—C30123.2 (5)
C7—C2—C1124.8 (4)C33—C32—C31122.8 (6)
C3—C2—C1116.0 (4)C33—C32—H32118.6
C4—C3—C2121.3 (5)C31—C32—H32118.6
C4—C3—H3119.3C34—C33—C32118.5 (6)
C2—C3—H3119.3C34—C33—H33120.8
C5—C4—C3119.6 (5)C32—C33—H33120.8
C5—C4—H4120.2C33—C34—C35120.6 (6)
C3—C4—H4120.2C33—C34—H34119.7
C4—C5—C6120.8 (5)C35—C34—H34119.7
C4—C5—H5119.6C34—C35—C36121.3 (6)
C6—C5—H5119.6C34—C35—H35119.3
C5—C6—C7120.0 (5)C36—C35—H35119.3
C5—C6—H6120.0C35—C36—C31118.6 (5)
C7—C6—H6120.0C35—C36—C37119.5 (5)
C2—C7—C6119.3 (5)C31—C36—C37121.9 (5)
C2—C7—S1119.4 (4)C36—C37—S4112.5 (4)
C6—C7—S1121.2 (4)C36—C37—H37A109.1
C9—C8—S1109.3 (4)S4—C37—H37A109.1
C9—C8—H8A109.8C36—C37—H37B109.1
S1—C8—H8A109.8S4—C37—H37B109.1
C9—C8—H8B109.8H37A—C37—H37B107.8
S1—C8—H8B109.8C39—C38—C43119.9 (5)
H8A—C8—H8B108.3C39—C38—S4114.4 (4)
C10—C9—C14118.6 (5)C43—C38—S4125.6 (4)
C10—C9—C8117.6 (5)C40—C39—C38121.2 (6)
C14—C9—C8123.8 (5)C40—C39—H39119.4
C11—C10—C9122.2 (6)C38—C39—H39119.4
C11—C10—H10118.9C41—C40—C39120.0 (6)
C9—C10—H10118.9C41—C40—H40120.0
C10—C11—C12119.4 (6)C39—C40—H40120.0
C10—C11—H11120.3C40—C41—C42119.5 (6)
C12—C11—H11120.3C40—C41—H41120.2
C11—C12—C13119.8 (6)C42—C41—H41120.2
C11—C12—H12120.1C41—C42—C43122.5 (6)
C13—C12—H12120.1C41—C42—H42118.7
C12—C13—C14120.9 (6)C43—C42—H42118.7
C12—C13—H13119.5C42—C43—C38116.8 (5)
C14—C13—H13119.5C42—C43—C44116.1 (5)
C13—C14—C9119.0 (5)C38—C43—C44127.0 (5)
C13—C14—C15117.4 (5)O8—C44—O7120.3 (5)
C9—C14—C15123.6 (5)O8—C44—C43118.6 (5)
C14—C15—S2108.4 (4)O7—C44—C43121.1 (5)
C14—C15—H15A110.0C1—O1—Cd295.4 (3)
S2—C15—H15A110.0Cd1—O1W—H1WA121 (5)
C14—C15—H15B110.0Cd1—O1W—H1WB98 (4)
S2—C15—H15B110.0H1WA—O1W—H1WB102 (2)
H15A—C15—H15B108.4C1—O2—Cd1130.5 (3)
C17—C16—C21120.0 (5)C1—O2—Cd290.2 (3)
C17—C16—S2121.0 (4)Cd1—O2—Cd2134.19 (15)
C21—C16—S2118.9 (4)C22—O3—Cd1126.4 (3)
C18—C17—C16119.1 (5)C22—O4—Cd2i111.1 (3)
C18—C17—H17120.5C23—O5—Cd1116.1 (3)
C16—C17—H17120.5C44—O7—Cd2iv137.1 (4)
C19—C18—C17121.6 (5)C44—O8—Cd2iii102.8 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O7iii0.85 (1)2.21 (3)2.935 (6)144 (5)
O1W—H1WB···O60.85 (1)1.99 (3)2.706 (6)141 (5)
C4—H4···O8v0.932.603.321 (6)135
C26—H26···O4vi0.932.453.309 (7)154
Symmetry codes: (iii) x+1, y+1, z+2; (v) x, y+1, z1; (vi) x, y+1, z.
Selected geometric parameters (Å, º) top
Cd1—O52.198 (3)Cd2—O4i2.243 (4)
Cd1—O32.246 (3)Cd2—O7ii2.280 (4)
Cd1—O22.281 (3)Cd2—O8iii2.309 (4)
Cd1—O1W2.368 (5)Cd2—O12.355 (3)
Cd1—S12.7741 (15)Cd2—O22.437 (3)
Cd1—S22.8392 (15)Cd2—S4ii2.8582 (16)
O5—Cd1—O3136.94 (14)O4i—Cd2—O7ii100.24 (15)
O5—Cd1—O2125.09 (13)O4i—Cd2—O8iii94.95 (14)
O3—Cd1—O295.41 (13)O7ii—Cd2—O8iii114.49 (14)
O5—Cd1—O1W88.86 (14)O4i—Cd2—O197.06 (13)
O3—Cd1—O1W79.27 (14)O7ii—Cd2—O1141.03 (13)
O2—Cd1—O1W85.85 (14)O8iii—Cd2—O198.34 (13)
O5—Cd1—S185.59 (10)O4i—Cd2—O2147.81 (12)
O3—Cd1—S1125.70 (10)O7ii—Cd2—O295.85 (14)
O2—Cd1—S170.36 (9)O8iii—Cd2—O2103.48 (13)
O1W—Cd1—S1145.89 (12)O1—Cd2—O254.65 (12)
O5—Cd1—S291.85 (10)O4i—Cd2—S4ii80.20 (10)
O3—Cd1—S266.46 (10)O7ii—Cd2—S4ii71.74 (11)
O2—Cd1—S2131.51 (9)O8iii—Cd2—S4ii172.88 (10)
O1W—Cd1—S2129.50 (12)O1—Cd2—S4ii77.23 (9)
S1—Cd1—S284.36 (5)O2—Cd2—S4ii78.65 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd2(C22H16O4S2)2(H2O)]
Mr1059.75
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)12.472 (4), 12.760 (4), 14.192 (4)
α, β, γ (°)76.778 (5), 80.258 (5), 68.709 (4)
V3)2039.4 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.828, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
10613, 7826, 5171
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 0.96
No. of reflections7826
No. of parameters538
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 1.05

Computer programs: APEX2 (Bruker,2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O7iii0.849 (10)2.21 (3)2.935 (6)144 (5)
O1W—H1WB···O60.852 (10)1.99 (3)2.706 (6)141 (5)
C4—H4···O8iv0.932.603.321 (6)135.0
C26—H26···O4v0.932.453.309 (7)153.8
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x, y+1, z1; (v) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds