Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new 1,3,4-oxa­diazole-containing bis­pyridyl ligand, namely 5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)eth­yl]-1,3,4-oxa­diazole-2(3H)-thione (L), has been used to create the novel complexes tetra­nitrato­bis{μ-5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxa­diazole-2(3H)-thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena-poly[[[dinitrato­copper(II)]-bis­{μ-5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxa­diazole-2(3H)-thione}] nitrate aceto­nitrile sesqui­solvate di­chloro­methane sesqui­solvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a dis­torted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two-dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square-pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are inter­linked via two kinds of π–π stacking inter­actions along [0\overline 11]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of di­chloro­methane and aceto­nitrile solvent mol­ecules and uncoordinated nitrate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113012134/ky3029sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113012134/ky3029Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113012134/ky3029IIsup3.hkl
Contains datablock II

CCDC references: 956982; 956983

Comment top

Polymeric metal–organic complexes have attracted considerable attention because of their fascinating topological structures (Eddaoudi et al., 2002; Chakrabary et al., 2011) and because they are functional materials with potential applications in the fields of gas storage (Rowsell & Yaghi, 2005; Ma & Zhou, 2010), host–guest chemistry (Yoshizawa et al., 2006), catalysis (Kim et al., 2010) and luminescence (Cui et al., 2012). It is well known that the selection of appropriate ligands as building blocks is a key point in the design and synthesis of functional coordination polymers. Although the principles for controlling the solid structures of the target products still need to be classified and established, many rational synthetic strategies have been put forward (Dong et al., 2007; Zhang et al., 2008). 1,3,4-Oxadiazole-2-thione is a potentially versatile ligand, because the electron-rich S atom may significantly influence the properties of the ligand. Thus, we have designed and synthesised a new bispyridyl ligand with a 1,3,4-oxadiazole ring-bridged 2-thione linker, namely 5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione (L), and used it to form the title ZnII and CuII complexes, [Zn2(NO3)4L2], (I), and {[Cu(NO3)L2]NO3.1.5CH3CN.1.5CH2Cl2}n, (II).

Compound (I) crystallizes in the monoclinic space group P21/n. The asymmetric unit contains one ZnII centre, one L ligand and two nitrate anions. Each ZnII centre has a {ZnN2O4} coordination environment consisting of two N atoms from two pyridyl groups and four O atoms from two nitrate anions (Fig. 1). Two bispyridyl ligands act as organic clips to bridge two ZnII centres into a binuclear metallocycle with an internal crystallographic centre of symmetry. The Zn1—N4 bond length of 2.042 (3) Å is almost the same as the Zn1—N1i bond length [2.036 (3) Å; symmetry code: (i) -x + 1, -y + 2, -z + 1]. The Zn1—O bond lengths range from 2.015 (3) to 2.549 (3) Å (Table 1), indicating the highly asymmetric nature of the nitrate chelation.

The Zn—N bond lengths in (I) are shorter than that in the related complex {[Zn(NO3)2(L1)(H2O)2].2CH3CN}n [2.1350 (16) Å; L1 is 2,5-bis-(pyridin-4-yl)-1,3,4-oxadiazole; Dong et al.., 2003]. The same literature compound has a Zn-to-nitrate Zn—O distance of 2.1487 (13) Å, which lies between the short and long Zn1—O bond lengths observed for (I). Treating the metallocycle in (I) as a distorted rectangular ring gives side lengths that are approximately 9.56 and 7.06 Å, and a `diagonal' Zn···Zn distance of 10.484 Å. This is shorter than the Zn···Zn distance of 13.40 (3) Å in {[Zn(NO3)2(L1)(H2O)2].2CH3CN}n (Dong et al., 2003). The binuclear metallocycles of (I) are linked into a two-dimensional network parallel to the ac plane through C—H···O nonclassical hydrogen bonds. The hydrogen-bonding system involves C and H atoms of the pyridyl ring and the uncoordinated O atoms of the neighbouring nitrate anion (Fig. 2 and Table 2).

Compound (II) crystallizes in the triclinic space group P1. Compared with (I), (II) has a higher ratio of L to metal, and thus the asymmetric unit contains one CuII centre, two L ligands, one coordinated and one noncoordinated nitrate anion, and one and a half acetonitrile and one and a half dichloromethane solvent molecules. Each CuII centre lies in a {CuN4O} distorted square-pyramidal coordination environment, with the basal positions occupied by four pyridyl N atoms [N1, N5, N4i and N8i; symmetry code: (i) x - 1, y, z] from four individual L ligands and the apical position occupied by one O atom from the coordinated nitrate anion (Fig. 3). The Cu1—N bond lengths range from 2.004 (3) to 2.033 (3) Å (Table 3), and this range is in line with the values described for [Cu(L2)2(ClO4)2] [L2 is 2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole; Dong et al., 2003] and [Cu(NO3)(L3)(CH3CN)]2 [L3 is 2,5-bis(pyridin-3-yl)-1,3,4-oxadiazole; Dong et al., 2003]. Similar to (I), (II) features a large M2L2 parallelogram-shaped ring, which can be approximated as having sides of length 9.96 and 6.26 Å and a shortest cross-ring Cu···Cu distance of 12.012 (6) Å. This is longer than the corresponding Zn···Zn distance observed in (I), but closer to the Cu···Cu distance [12.84 (3) Å] found in [Cu(hfacac)2(L3)] (hfacac is ????; Dong et al., 2003).

In the solid state, the CuII centres of (II) extend into polymeric one-dimensional double chains via bidentate bridging L ligands. These chains extend parallel to the crystallographic a direction (Fig. 4). There are two kinds of ππ interaction (centroid-to-centroid distances of 3.625 and 3.661 Å) between neighbouring 1,3,4-oxadiazole rings. The coordination chains in (II) are thus further linked into a higher-dimensional network via these ππ stacking interactions in the bc plane, as shown in Fig. 5. Finally, there are cross-shaped channels in (II). The guest entities, consisting of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions, are located in these channels, which run parallel to the crystallographic a axis (Fig. 6).

In summary, the semi-rigid L ligand can be used as a bidentate ligand to coordinate transition metal ions. With ZnII a dimeric metallocycle was formed, while with CuII a novel polymeric network was obtained, both based on such coordination. This study also demonstrates that ππ interactions can play an important role in constructing aggregate supramolecular compounds with oxadiazole species. We are currently extending this study by preparing new ligands of this type with different substituted functional groups. It is anticipated that this approach should be useful for constructing novel supramolecular compounds.

Related literature top

For related literature, see: Chakrabary et al. (2011); Cooper et al. (2002); Cui et al. (2012); Dong et al. (2003, 2007); Eddaoudi et al. (2002); Kim et al. (2010); Ma & Zhou (2010); Rowsell & Yaghi (2005); Yoshizawa et al. (2006); Zhang et al. (2008).

Experimental top

For the preparation of L, 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol (2.69 g, 15 mmol) and 4-vinylpyridine (1.57 g, 15 mmol) were added with stirring to glacial acetic acid (30 ml) The mixture was stirred for 2 h at 373 K and the reaction monitored by thin-layer chromatography. After removal of the solvent under vacuum, a cold NaOH aqueous solution (5%) was used to neutralize the pH of the solution to 7. The product was filtered off, washed and dried in air. The residue was purified on silica gel by column chromatography using CH2Cl2 as eluent, to afford L as a white crystalline solid (yield 3.00 g, 70.4%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3026 (w), 1953 (w), 1590 (ms), 1555 (ms), 1494 (w), 1463 (s), 1415 (s), 1348 (ms), 1316 (m), 1285 (m), 1234 (ms), 1199 (ms), 1101 (m), 1073 (m), 1044 (m), 1027 (ms), 987 (m), 958 (m), 859 (m), 816 (ms), 762 (m), 734 (m), 698 (ms), 685 (m), 579 (m), 546 (ms), 512 (ms); 1H NMR (300 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 8.84–8.82 (d, 2H, –C6H4), 8.48–8.47 (d, 2H, –C6H4), 7.81–7.79 (d, 2H, –C6H4), 7.33–7.31 (d, 2H, –C6H4), 4.45–4.40 (t, 2H, –CH2), 3.21–3.16 (t, 2H, –CH2). Elemental analysis (%), calculated for C14H12N4OS: C 59.14, H 4.25, N 19.70; found: C 59.12, H 4.24, N 19.73.

For the preparation of (I), a solution of Zn(NO3)2 (22.42 mg, 0.053 mmol) in acetonitrile (10 ml) was layered onto a solution of L (14.21 mg, 0.053 mmol) in CH2Cl2 (10 ml). The system was left for about one week at room temperature and yellow crystals of (I) were obtained (yield 10.02 mg, 40%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3446 (w), 3120 (w), 2952 (w), 1626 (s), 1484 (vs), 1411 (vs), 1286 (s), 1243 (m), 1021 (m), 828 (m), 746 (m), 598 (m), 516 (m). Elemental analysis (%), calculated for C28H24N12O14S2Zn2: C 35.49, H 2.55, N 17.73; found: C 35.50, H 2.58, N 17.70.

For the preparation of (II), a solution of Cu(NO3)2 (12.81 mg, 0.053 mmol) in acetonitrile (10 ml) was layered onto a solution of L (14.21 mg, 0.053 mmol) in CH2Cl2 (10 ml). The system was left for about one week at room temperature and blue crystals of (II) were obtained (yield 15.05 mg, 40%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3423 (m), 3045 (w), 1624 (s), 1417 (s), 1384 (vs), 1301 (s), 1253 (m), 1036 (m), 931 (w), 837 (m), 743 (m), 669 (m), 549 (m). Elemental analysis (%), calculated for C32.5H31.5Cl3CuN11.5O8S2: C 41.26, H 3.33, N 17.03; found: C 41.21, H 3.65, N 16.98.

Refinement top

H atoms were placed in geometrically idealized positions and refined using riding models. For (I), C—H = 0.93 or 0.97 Å (CH2), and for (II) C—H = 0.95, 0.99 (CH2) or 0.98 Å (CH3). Uiso(H) values were set at 1.5Ueq(C) for methyl H atoms or at 1.2Ueq(C) otherwise. For (II), after data collection and initial solution and refinement, the program ROTAX (Cooper et al., 2002) suggested that the sample was twinned. Using the twin matrix (-1 0 0, -0.044 0.088 -0.912, 0.044 -1.088 -0.088) a modified reflection file was created, and final refinement against this data gave a batch scale factor of 0.106 (2) and improved both the R factors and the residual electron density. After several trial calculations, a model of disorder involving half a dichloromethane molecule sharing a site with half an acetonitrile molecule was employed to model one of the three solvent sites.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. H atoms have been omitted. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 1, -y + 2, -z + 1.]
[Figure 2] Fig. 2. The two-dimensional structure of (I), in the ac plane. H atoms not involved in the packing interactions have been omitted for clarity. Nonclassical hydrogen bonds are indicated by dashed lines. [Symmetry code: (i) -x + 1, -y + 2, -z + 1.]
[Figure 3] Fig. 3. The molecular structure of (II), with the atom-numbering scheme. H atoms have been omitted. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x - 1, y, z.]
[Figure 4] Fig. 4. The one-dimensional coordination network of (II), viewed along the b axis. H atoms have been omitted. [Symmetry codes: (i) x - 1, y, z; (ii) x - 2, y, z; (iii) x - 3, y, z; (iv) x - 4, y, z.]
[Figure 5] Fig. 5. Inter-chain interactions in (II) achieved through ππ stacking interactions (dashed straight lines). H atoms have been omitted for clarity. The circular dashed lines indicate areas which are successively enlarged from bottom to top.
[Figure 6] Fig. 6. The crystal packing of (II), viewed down the a axis. The uncoordinated nitrate anions, and the dichloromethane and acetonitrile solvent molecules, all shown in ball-and-stick form, can be seen located in the channels.
(I) Tetranitratobis{µ-5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione}zinc(II) top
Crystal data top
[Zn2(NO3)4(C14H12N4OS)2]F(000) = 960
Mr = 947.45Dx = 1.699 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 1366 reflections
a = 7.8239 (17) Åθ = 2.7–20.1°
b = 11.033 (2) ŵ = 1.49 mm1
c = 21.677 (4) ÅT = 298 K
β = 98.125 (4)°Block, yellow
V = 1852.4 (7) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3451 independent reflections
Radiation source: fine-focus sealed tube2477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 79
Tmin = 0.587, Tmax = 0.755k = 1213
8960 measured reflectionsl = 2617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.1503P]
where P = (Fo2 + 2Fc2)/3
3451 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Zn2(NO3)4(C14H12N4OS)2]V = 1852.4 (7) Å3
Mr = 947.45Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8239 (17) ŵ = 1.49 mm1
b = 11.033 (2) ÅT = 298 K
c = 21.677 (4) Å0.40 × 0.20 × 0.20 mm
β = 98.125 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3451 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2477 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.755Rint = 0.046
8960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3451 reflectionsΔρmin = 0.25 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1924 (5)0.8898 (4)0.36855 (18)0.0458 (10)
H10.28850.93280.38700.055*
C20.1499 (5)0.7857 (4)0.39629 (18)0.0453 (10)
H20.21900.75780.43190.054*
C30.0051 (5)0.7214 (3)0.37200 (17)0.0389 (10)
C40.0883 (5)0.7661 (4)0.31815 (19)0.0457 (10)
H40.18690.72590.29970.055*
C50.0353 (5)0.8700 (4)0.29203 (18)0.0435 (10)
H50.09950.89770.25540.052*
C60.0479 (5)0.6086 (3)0.40284 (18)0.0443 (10)
H6A0.05490.56690.42230.053*
H6B0.10710.55520.37120.053*
C70.1652 (5)0.6325 (3)0.45180 (18)0.0440 (10)
H7A0.27300.66740.43200.053*
H7B0.19140.55650.47090.053*
C80.1405 (5)0.8249 (4)0.51453 (17)0.0411 (10)
C90.1182 (5)0.7855 (3)0.56352 (16)0.0352 (9)
C100.2802 (5)0.8104 (3)0.60301 (16)0.0334 (9)
C110.4158 (5)0.7311 (3)0.60591 (18)0.0461 (10)
H110.40350.65860.58380.055*
C120.5691 (5)0.7590 (4)0.64150 (19)0.0495 (11)
H120.66060.70490.64230.059*
C130.4605 (5)0.9356 (4)0.6733 (2)0.0509 (11)
H130.47361.00560.69750.061*
C140.3039 (5)0.9151 (4)0.63742 (19)0.0474 (11)
H140.21510.97140.63640.057*
N10.1031 (4)0.9338 (3)0.31605 (15)0.0387 (8)
N20.0838 (4)0.7152 (3)0.49982 (14)0.0379 (8)
N30.0796 (4)0.6902 (3)0.53068 (14)0.0392 (8)
N40.5932 (4)0.8612 (3)0.67533 (14)0.0408 (8)
N50.9943 (4)0.6994 (3)0.71778 (16)0.0454 (9)
N60.9075 (5)0.9448 (3)0.84361 (19)0.0535 (10)
O10.0073 (3)0.8717 (2)0.55623 (11)0.0403 (7)
O20.7622 (4)0.9465 (3)0.80821 (13)0.0557 (8)
O31.0381 (5)0.9301 (3)0.81804 (17)0.0770 (10)
O40.9123 (5)0.9592 (3)0.89967 (16)0.0788 (11)
O50.9865 (4)0.7964 (3)0.68598 (14)0.0635 (9)
O60.8955 (4)0.6921 (3)0.75781 (15)0.0664 (9)
O71.0940 (4)0.6197 (3)0.70801 (15)0.0651 (9)
S10.32184 (15)0.89597 (11)0.49226 (6)0.0623 (4)
Zn10.82669 (6)0.90971 (4)0.72341 (2)0.04542 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.051 (3)0.042 (3)0.010 (2)0.0041 (19)0.007 (2)
C20.048 (3)0.049 (3)0.037 (2)0.005 (2)0.0019 (18)0.0033 (19)
C30.043 (2)0.035 (2)0.038 (2)0.0037 (19)0.0017 (18)0.0090 (17)
C40.042 (2)0.042 (2)0.050 (3)0.006 (2)0.0056 (19)0.004 (2)
C50.037 (2)0.050 (3)0.041 (2)0.000 (2)0.0053 (18)0.0030 (19)
C60.053 (3)0.034 (2)0.043 (3)0.001 (2)0.0020 (19)0.0077 (18)
C70.045 (3)0.037 (2)0.046 (3)0.0122 (19)0.0064 (19)0.0013 (19)
C80.043 (2)0.045 (3)0.035 (2)0.004 (2)0.0046 (18)0.0014 (18)
C90.036 (2)0.035 (2)0.034 (2)0.0015 (18)0.0045 (16)0.0052 (17)
C100.036 (2)0.033 (2)0.030 (2)0.0049 (17)0.0031 (16)0.0016 (16)
C110.047 (3)0.035 (2)0.052 (3)0.000 (2)0.0101 (19)0.0100 (19)
C120.043 (3)0.039 (2)0.063 (3)0.002 (2)0.005 (2)0.004 (2)
C130.045 (3)0.053 (3)0.056 (3)0.009 (2)0.011 (2)0.023 (2)
C140.040 (2)0.041 (2)0.060 (3)0.002 (2)0.005 (2)0.015 (2)
N10.0357 (19)0.0359 (19)0.044 (2)0.0028 (15)0.0051 (15)0.0026 (15)
N20.0361 (19)0.0365 (19)0.038 (2)0.0025 (15)0.0045 (14)0.0015 (15)
N30.0361 (19)0.0379 (19)0.041 (2)0.0022 (15)0.0032 (14)0.0015 (15)
N40.0373 (19)0.046 (2)0.038 (2)0.0082 (16)0.0008 (14)0.0034 (16)
N50.040 (2)0.047 (2)0.046 (2)0.0031 (18)0.0026 (17)0.0048 (18)
N60.065 (3)0.043 (2)0.049 (3)0.011 (2)0.006 (2)0.0103 (18)
O10.0406 (16)0.0381 (15)0.0399 (17)0.0041 (13)0.0029 (12)0.0031 (12)
O20.0458 (19)0.071 (2)0.0463 (19)0.0034 (15)0.0076 (14)0.0026 (15)
O30.058 (2)0.091 (3)0.081 (3)0.000 (2)0.0063 (19)0.012 (2)
O40.094 (3)0.091 (3)0.045 (2)0.025 (2)0.0108 (18)0.0034 (18)
O50.068 (2)0.055 (2)0.072 (2)0.0029 (17)0.0222 (16)0.0237 (17)
O60.074 (2)0.062 (2)0.068 (2)0.0126 (18)0.0258 (18)0.0188 (17)
O70.058 (2)0.061 (2)0.074 (2)0.0184 (18)0.0026 (16)0.0023 (17)
S10.0485 (7)0.0657 (8)0.0680 (9)0.0178 (6)0.0082 (5)0.0009 (6)
Zn10.0400 (3)0.0484 (3)0.0460 (3)0.0088 (2)0.0000 (2)0.0011 (2)
Geometric parameters (Å, º) top
C1—N11.339 (5)C10—C141.373 (5)
C1—C21.360 (5)C11—C121.366 (5)
C1—H10.9300C11—H110.9300
C2—C31.377 (5)C12—N41.344 (5)
C2—H20.9300C12—H120.9300
C3—C41.378 (5)C13—N41.320 (5)
C3—C61.499 (5)C13—C141.374 (6)
C4—C51.368 (5)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—N11.334 (5)N1—Zn1i2.036 (3)
C5—H50.9300N2—N31.384 (4)
C6—C71.521 (5)N4—Zn12.043 (3)
C6—H6A0.9700N5—O71.214 (4)
C6—H6B0.9700N5—O61.244 (4)
C7—N21.461 (4)N5—O51.270 (4)
C7—H7A0.9700N6—O41.221 (4)
C7—H7B0.9700N6—O31.240 (5)
C8—N21.343 (5)N6—O21.279 (4)
C8—O11.380 (4)O2—Zn12.015 (3)
C8—S11.633 (4)O3—Zn12.457 (3)
C9—N31.281 (4)O5—Zn12.018 (3)
C9—O11.360 (4)O6—Zn12.549 (3)
C9—C101.452 (5)Zn1—N1i2.036 (3)
C10—C111.370 (5)
N1—C1—C2123.4 (4)N4—C12—C11122.8 (4)
N1—C1—H1118.3N4—C12—H12118.6
C2—C1—H1118.3C11—C12—H12118.6
C1—C2—C3120.4 (4)N4—C13—C14123.4 (4)
C1—C2—H2119.8N4—C13—H13118.3
C3—C2—H2119.8C14—C13—H13118.3
C2—C3—C4116.6 (4)C10—C14—C13119.2 (4)
C2—C3—C6121.5 (3)C10—C14—H14120.4
C4—C3—C6121.9 (4)C13—C14—H14120.4
C5—C4—C3119.7 (4)C5—N1—C1115.9 (3)
C5—C4—H4120.2C5—N1—Zn1i122.4 (3)
C3—C4—H4120.2C1—N1—Zn1i121.6 (3)
N1—C5—C4123.9 (4)C8—N2—N3112.2 (3)
N1—C5—H5118.1C8—N2—C7127.3 (3)
C4—C5—H5118.1N3—N2—C7120.0 (3)
C3—C6—C7113.5 (3)C9—N3—N2103.6 (3)
C3—C6—H6A108.9C13—N4—C12117.1 (3)
C7—C6—H6A108.9C13—N4—Zn1119.8 (3)
C3—C6—H6B108.9C12—N4—Zn1123.0 (3)
C7—C6—H6B108.9O7—N5—O6123.5 (4)
H6A—C6—H6B107.7O7—N5—O5119.9 (4)
N2—C7—C6111.1 (3)O6—N5—O5116.5 (4)
N2—C7—H7A109.4O4—N6—O3123.4 (4)
C6—C7—H7A109.4O4—N6—O2119.7 (4)
N2—C7—H7B109.4O3—N6—O2116.9 (4)
C6—C7—H7B109.4C9—O1—C8106.3 (3)
H7A—C7—H7B108.0N6—O2—Zn1103.2 (3)
N2—C8—O1104.4 (3)N6—O3—Zn183.4 (3)
N2—C8—S1131.7 (3)N5—O5—Zn1106.8 (3)
O1—C8—S1123.9 (3)O2—Zn1—O5137.83 (12)
N3—C9—O1113.6 (3)O2—Zn1—N1i109.24 (12)
N3—C9—C10126.9 (3)O5—Zn1—N1i97.86 (12)
O1—C9—C10119.4 (3)O2—Zn1—N4101.35 (12)
C11—C10—C14117.9 (3)O5—Zn1—N4101.13 (13)
C11—C10—C9120.8 (3)N1i—Zn1—N4106.42 (13)
C14—C10—C9121.3 (3)O2—Zn1—O356.35 (12)
C12—C11—C10119.6 (3)O5—Zn1—O390.57 (13)
C12—C11—H11120.2N1i—Zn1—O394.78 (12)
C10—C11—H11120.2N4—Zn1—O3153.91 (13)
N1—C1—C2—C32.4 (6)C14—C13—N4—Zn1173.7 (3)
C1—C2—C3—C41.9 (6)C11—C12—N4—C130.3 (6)
C1—C2—C3—C6178.0 (4)C11—C12—N4—Zn1175.3 (3)
C2—C3—C4—C50.3 (6)N3—C9—O1—C80.6 (4)
C6—C3—C4—C5179.5 (4)C10—C9—O1—C8177.3 (3)
C3—C4—C5—N10.9 (6)N2—C8—O1—C90.5 (4)
C2—C3—C6—C788.6 (5)S1—C8—O1—C9178.9 (3)
C4—C3—C6—C791.3 (4)O4—N6—O2—Zn1176.9 (3)
C3—C6—C7—N257.1 (4)O3—N6—O2—Zn14.1 (4)
N3—C9—C10—C113.4 (6)O4—N6—O3—Zn1177.8 (4)
O1—C9—C10—C11172.8 (3)O2—N6—O3—Zn13.3 (3)
N3—C9—C10—C14178.1 (4)O7—N5—O5—Zn1173.8 (3)
O1—C9—C10—C145.7 (5)O6—N5—O5—Zn16.6 (4)
C14—C10—C11—C121.2 (6)N6—O2—Zn1—O542.0 (3)
C9—C10—C11—C12177.4 (4)N6—O2—Zn1—N1i85.0 (2)
C10—C11—C12—N41.3 (7)N6—O2—Zn1—N4163.0 (2)
C11—C10—C14—C130.4 (6)N6—O2—Zn1—O32.2 (2)
C9—C10—C14—C13178.9 (4)N5—O5—Zn1—O232.8 (3)
N4—C13—C14—C102.1 (7)N5—O5—Zn1—N1i163.2 (2)
C4—C5—N1—C10.6 (6)N5—O5—Zn1—N488.3 (3)
C4—C5—N1—Zn1i178.4 (3)N5—O5—Zn1—O368.3 (2)
C2—C1—N1—C51.1 (6)C13—N4—Zn1—O254.8 (3)
C2—C1—N1—Zn1i179.9 (3)C12—N4—Zn1—O2129.8 (3)
O1—C8—N2—N30.3 (4)C13—N4—Zn1—O5161.1 (3)
S1—C8—N2—N3179.1 (3)C12—N4—Zn1—O514.3 (3)
O1—C8—N2—C7172.1 (3)C13—N4—Zn1—N1i59.4 (3)
S1—C8—N2—C78.5 (6)C12—N4—Zn1—N1i116.1 (3)
C6—C7—N2—C8118.7 (4)C13—N4—Zn1—O383.7 (4)
C6—C7—N2—N353.1 (4)C12—N4—Zn1—O3100.8 (4)
O1—C9—N3—N20.4 (4)N6—O3—Zn1—O22.3 (2)
C10—C9—N3—N2176.8 (3)N6—O3—Zn1—O5149.8 (3)
C8—N2—N3—C90.1 (4)N6—O3—Zn1—N1i112.2 (3)
C7—N2—N3—C9173.0 (3)N6—O3—Zn1—N432.5 (4)
C14—C13—N4—C122.0 (6)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7ii0.932.483.201 (5)135
C11—H11···O4iii0.932.633.297 (5)129
Symmetry codes: (ii) x3/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+3/2.
(II) catena-Poly[[[dinitratocopper(II)]-bis{µ-5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate] top
Crystal data top
[Cu(NO3)(C14H12N4OS)2]NO3·1.5C2H3N·1.5CH2Cl2Z = 2
Mr = 945.20F(000) = 966
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.012 (6) ÅCell parameters from 4378 reflections
b = 13.225 (7) Åθ = 2.6–27.1°
c = 14.402 (7) ŵ = 0.93 mm1
α = 99.751 (7)°T = 123 K
β = 110.223 (7)°Block, blue
γ = 106.204 (7)°0.26 × 0.20 × 0.10 mm
V = 1969.8 (17) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
10698 independent reflections
Radiation source: fine-focus sealed tube8513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.794, Tmax = 0.913k = 1616
10698 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0976P)2 + 1.7273P]
where P = (Fo2 + 2Fc2)/3
10698 reflections(Δ/σ)max < 0.001
553 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(NO3)(C14H12N4OS)2]NO3·1.5C2H3N·1.5CH2Cl2γ = 106.204 (7)°
Mr = 945.20V = 1969.8 (17) Å3
Triclinic, P1Z = 2
a = 12.012 (6) ÅMo Kα radiation
b = 13.225 (7) ŵ = 0.93 mm1
c = 14.402 (7) ÅT = 123 K
α = 99.751 (7)°0.26 × 0.20 × 0.10 mm
β = 110.223 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
10698 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
8513 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.913Rint = 0.000
10698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.07Δρmax = 0.73 e Å3
10698 reflectionsΔρmin = 0.49 e Å3
553 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0619 (4)0.8208 (3)0.5264 (3)0.0213 (8)
H10.13210.84350.50060.026*
C20.0543 (3)0.8995 (3)0.5924 (3)0.0202 (8)
H20.06370.97480.61170.024*
C30.1581 (4)0.8685 (3)0.6309 (3)0.0192 (7)
C40.1382 (4)0.7578 (3)0.6001 (3)0.0232 (8)
H40.20730.73340.62400.028*
C50.0192 (4)0.6837 (3)0.5354 (3)0.0230 (8)
H50.00710.60770.51730.028*
C60.2885 (3)0.9528 (3)0.6967 (3)0.0224 (8)
H6A0.34650.91530.72720.027*
H6B0.28511.00290.75430.027*
C70.3412 (4)1.0197 (3)0.6357 (3)0.0261 (8)
H7A0.28531.05980.60760.031*
H7B0.42691.07490.68240.031*
C80.2748 (4)0.9180 (3)0.4494 (3)0.0240 (8)
C90.4194 (3)0.8435 (3)0.4827 (3)0.0217 (8)
C100.4932 (4)0.7797 (3)0.4606 (3)0.0207 (8)
C110.5859 (4)0.7660 (3)0.5390 (3)0.0236 (8)
H110.60000.79460.60890.028*
C120.6587 (4)0.7105 (3)0.5161 (3)0.0232 (8)
H120.72150.69970.57100.028*
C130.5512 (4)0.6838 (3)0.3425 (3)0.0217 (8)
H130.53980.65590.27320.026*
C140.4717 (3)0.7346 (3)0.3589 (3)0.0210 (8)
H140.40430.73890.30260.025*
C150.0529 (4)0.6454 (3)0.2922 (3)0.0207 (8)
H150.04370.71960.31850.025*
C160.0197 (4)0.6249 (3)0.2411 (3)0.0208 (8)
H160.07860.68360.23260.025*
C170.0051 (4)0.5169 (3)0.2023 (3)0.0222 (8)
C180.0793 (4)0.4334 (3)0.2170 (3)0.0250 (8)
H180.09020.35860.19130.030*
C190.1469 (4)0.4611 (3)0.2697 (3)0.0229 (8)
H190.20440.40360.28070.027*
C200.0759 (4)0.4912 (3)0.1428 (3)0.0249 (8)
C210.2109 (4)0.5254 (3)0.0722 (3)0.0275 (9)
C220.1588 (4)0.3268 (3)0.0158 (3)0.0263 (8)
H22A0.20790.35650.05430.032*
H22B0.07340.27490.06710.032*
C230.2255 (4)0.2653 (3)0.0486 (3)0.0248 (8)
H23A0.17460.23340.08500.030*
H23B0.23020.20370.00230.030*
C240.3571 (4)0.3367 (3)0.1266 (3)0.0226 (8)
C250.3878 (4)0.3593 (3)0.2320 (3)0.0253 (8)
H250.32620.32630.25590.030*
C260.5074 (4)0.4294 (3)0.3013 (3)0.0233 (8)
H260.52730.44240.37320.028*
C270.5681 (4)0.4582 (3)0.1711 (3)0.0219 (8)
H270.63090.49290.14900.026*
C280.4509 (3)0.3871 (3)0.0973 (3)0.0209 (8)
H280.43450.37260.02600.025*
C290.4048 (5)0.8284 (4)0.0570 (4)0.0472 (12)
C300.5098 (5)0.8611 (4)0.0424 (4)0.0498 (12)
H30B0.55530.94100.06390.075*
H30A0.56800.82330.03770.075*
H30C0.47770.84140.09340.075*
C310.2757 (5)0.9767 (4)0.1943 (4)0.0510 (13)
H31A0.31880.99320.27040.061*
H31B0.19310.98690.17770.061*
C320.933 (2)0.0860 (13)0.1436 (17)0.065 (7)0.50
H32A0.86080.10590.10520.079*0.50
H32B0.90440.03450.18020.079*0.50
C330.887 (2)0.085 (2)0.127 (2)0.087 (8)0.50
H33A0.85020.01160.13380.131*0.50
H33B0.87060.07860.05460.131*0.50
H33C0.84850.13390.15120.131*0.50
C341.0259 (13)0.1299 (8)0.1908 (8)0.037 (2)0.50
Cl10.24799 (17)0.83986 (10)0.13530 (11)0.0680 (4)
Cl20.36992 (14)1.06891 (10)0.15306 (11)0.0579 (4)
Cl31.0581 (3)0.2049 (3)0.2343 (2)0.0544 (7)0.50
Cl40.9810 (3)0.0205 (2)0.0557 (2)0.0683 (8)0.50
Cu10.24221 (4)0.59940 (3)0.38295 (3)0.01993 (13)
N10.0818 (3)0.7133 (2)0.4962 (2)0.0187 (6)
N20.3501 (3)0.9495 (2)0.5504 (2)0.0217 (7)
N30.4424 (3)0.9028 (2)0.5728 (2)0.0221 (7)
N40.6438 (3)0.6712 (2)0.4186 (2)0.0201 (6)
N50.1367 (3)0.5649 (2)0.3067 (2)0.0204 (6)
N60.0599 (3)0.3944 (3)0.0915 (2)0.0261 (7)
N70.1449 (3)0.4170 (2)0.0471 (2)0.0242 (7)
N80.5982 (3)0.4809 (2)0.2729 (2)0.0202 (6)
N90.2433 (3)0.4513 (3)0.5325 (3)0.0309 (8)
N100.7546 (3)0.7875 (2)0.2167 (2)0.0260 (7)
N110.3232 (5)0.8035 (4)0.1342 (4)0.0749 (16)
N121.1293 (9)0.1598 (7)0.2420 (6)0.047 (2)0.50
O10.3215 (2)0.84979 (19)0.40484 (19)0.0231 (6)
O20.1647 (3)0.5744 (2)0.1352 (2)0.0269 (6)
O30.2129 (3)0.4670 (2)0.4586 (2)0.0304 (6)
O40.2311 (3)0.3730 (2)0.5648 (2)0.0399 (7)
O50.2904 (5)0.5104 (3)0.5668 (3)0.0801 (14)
O70.7940 (3)0.8094 (2)0.3124 (2)0.0399 (7)
O60.6784 (3)0.6944 (2)0.1613 (2)0.0474 (8)
O80.7936 (4)0.8580 (2)0.1786 (2)0.0506 (9)
S10.15509 (10)0.94974 (8)0.38462 (8)0.0315 (2)
S20.32176 (11)0.59376 (9)0.04184 (9)0.0376 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (2)0.0226 (18)0.0214 (18)0.0114 (16)0.0144 (16)0.0063 (14)
C20.023 (2)0.0201 (17)0.0211 (18)0.0078 (15)0.0132 (16)0.0056 (14)
C30.028 (2)0.0196 (17)0.0163 (17)0.0111 (16)0.0144 (16)0.0045 (14)
C40.025 (2)0.0240 (19)0.0221 (19)0.0130 (17)0.0079 (16)0.0075 (15)
C50.029 (2)0.0168 (17)0.0238 (19)0.0110 (16)0.0108 (17)0.0046 (14)
C60.019 (2)0.0238 (18)0.0212 (18)0.0072 (16)0.0082 (16)0.0013 (15)
C70.027 (2)0.0220 (19)0.033 (2)0.0107 (17)0.0171 (18)0.0032 (16)
C80.031 (2)0.0164 (17)0.034 (2)0.0116 (16)0.0214 (18)0.0084 (15)
C90.019 (2)0.0192 (18)0.028 (2)0.0056 (15)0.0118 (16)0.0076 (15)
C100.023 (2)0.0169 (17)0.0258 (19)0.0059 (15)0.0141 (16)0.0080 (14)
C110.029 (2)0.0208 (18)0.0227 (19)0.0091 (16)0.0142 (17)0.0044 (15)
C120.023 (2)0.0223 (18)0.0210 (19)0.0065 (16)0.0082 (16)0.0035 (15)
C130.029 (2)0.0174 (17)0.0223 (19)0.0101 (16)0.0133 (17)0.0053 (14)
C140.0186 (19)0.0193 (17)0.0216 (19)0.0064 (15)0.0050 (15)0.0054 (14)
C150.024 (2)0.0179 (17)0.0244 (19)0.0095 (15)0.0147 (16)0.0049 (14)
C160.021 (2)0.0205 (18)0.0228 (19)0.0039 (15)0.0129 (16)0.0074 (14)
C170.022 (2)0.0259 (19)0.0191 (18)0.0101 (16)0.0090 (16)0.0044 (15)
C180.031 (2)0.0198 (18)0.028 (2)0.0103 (17)0.0179 (18)0.0036 (15)
C190.023 (2)0.0195 (18)0.027 (2)0.0082 (16)0.0123 (17)0.0054 (15)
C200.020 (2)0.028 (2)0.026 (2)0.0049 (16)0.0129 (17)0.0059 (16)
C210.033 (2)0.032 (2)0.025 (2)0.0186 (19)0.0154 (18)0.0102 (16)
C220.023 (2)0.032 (2)0.0204 (19)0.0100 (17)0.0095 (16)0.0018 (16)
C230.029 (2)0.0201 (18)0.0218 (19)0.0057 (16)0.0124 (17)0.0012 (15)
C240.026 (2)0.0218 (18)0.0232 (19)0.0123 (16)0.0118 (16)0.0060 (15)
C250.031 (2)0.0229 (18)0.026 (2)0.0090 (17)0.0180 (18)0.0060 (15)
C260.031 (2)0.0272 (19)0.0191 (18)0.0131 (17)0.0152 (17)0.0087 (15)
C270.028 (2)0.0210 (18)0.0260 (19)0.0111 (16)0.0196 (17)0.0089 (15)
C280.025 (2)0.0224 (18)0.0210 (18)0.0101 (16)0.0156 (16)0.0057 (14)
C290.056 (3)0.034 (2)0.041 (3)0.002 (2)0.017 (3)0.015 (2)
C300.043 (3)0.041 (3)0.048 (3)0.006 (2)0.006 (2)0.012 (2)
C310.068 (4)0.037 (3)0.063 (3)0.019 (3)0.044 (3)0.016 (2)
C320.063 (16)0.026 (6)0.070 (12)0.029 (8)0.041 (12)0.026 (7)
C330.042 (13)0.134 (18)0.079 (12)0.011 (11)0.027 (10)0.046 (12)
C340.063 (9)0.016 (5)0.034 (5)0.009 (5)0.030 (6)0.003 (4)
Cl10.1086 (13)0.0358 (6)0.0641 (9)0.0193 (7)0.0468 (9)0.0136 (6)
Cl20.0644 (9)0.0474 (7)0.0644 (8)0.0155 (7)0.0278 (7)0.0286 (6)
Cl30.0576 (18)0.0609 (19)0.0400 (14)0.0062 (16)0.0263 (13)0.0165 (15)
Cl40.066 (2)0.0419 (14)0.082 (2)0.0001 (13)0.0362 (17)0.0020 (13)
Cu10.0201 (3)0.0191 (2)0.0208 (2)0.00786 (19)0.01034 (19)0.00148 (17)
N10.0215 (17)0.0201 (15)0.0186 (15)0.0085 (13)0.0118 (13)0.0064 (12)
N20.0267 (18)0.0224 (15)0.0252 (17)0.0138 (14)0.0171 (14)0.0075 (13)
N30.0204 (17)0.0208 (15)0.0303 (18)0.0098 (13)0.0137 (14)0.0089 (13)
N40.0246 (17)0.0165 (14)0.0191 (15)0.0059 (13)0.0110 (13)0.0038 (12)
N50.0194 (17)0.0216 (15)0.0207 (15)0.0090 (13)0.0093 (13)0.0031 (12)
N60.0226 (18)0.0325 (18)0.0269 (17)0.0101 (14)0.0167 (15)0.0038 (14)
N70.0235 (18)0.0272 (17)0.0267 (17)0.0084 (14)0.0181 (15)0.0043 (13)
N80.0249 (17)0.0152 (14)0.0222 (16)0.0096 (13)0.0120 (14)0.0011 (12)
N90.034 (2)0.0303 (18)0.0299 (19)0.0145 (16)0.0124 (16)0.0099 (15)
N100.0331 (19)0.0259 (17)0.0264 (18)0.0164 (15)0.0166 (15)0.0074 (14)
N110.076 (4)0.058 (3)0.044 (3)0.014 (3)0.003 (3)0.024 (2)
N120.058 (6)0.040 (5)0.032 (5)0.010 (5)0.011 (5)0.013 (4)
O10.0264 (15)0.0229 (13)0.0275 (14)0.0128 (11)0.0165 (12)0.0080 (11)
O20.0303 (16)0.0243 (13)0.0345 (15)0.0121 (12)0.0219 (13)0.0072 (11)
O30.0414 (18)0.0273 (14)0.0275 (15)0.0144 (13)0.0171 (13)0.0111 (11)
O40.048 (2)0.0352 (16)0.0513 (19)0.0205 (15)0.0253 (16)0.0299 (14)
O50.156 (4)0.080 (3)0.085 (3)0.088 (3)0.093 (3)0.054 (2)
O70.053 (2)0.0506 (18)0.0195 (15)0.0240 (16)0.0158 (14)0.0075 (13)
O60.058 (2)0.0302 (16)0.0408 (18)0.0015 (15)0.0239 (17)0.0041 (14)
O80.083 (3)0.0371 (17)0.0459 (19)0.0211 (18)0.039 (2)0.0207 (15)
S10.0355 (6)0.0354 (6)0.0360 (6)0.0235 (5)0.0184 (5)0.0149 (4)
S20.0454 (7)0.0337 (6)0.0497 (7)0.0144 (5)0.0360 (6)0.0167 (5)
Geometric parameters (Å, º) top
C1—N11.341 (4)C22—C231.506 (5)
C1—C21.368 (5)C22—H22A0.9900
C1—H10.9500C22—H22B0.9900
C2—C31.383 (5)C23—C241.494 (5)
C2—H20.9500C23—H23A0.9900
C3—C41.381 (5)C23—H23B0.9900
C3—C61.495 (5)C24—C281.379 (5)
C4—C51.363 (5)C24—C251.388 (5)
C4—H40.9500C25—C261.368 (5)
C5—N11.345 (5)C25—H250.9500
C5—H50.9500C26—N81.345 (5)
C6—C71.514 (5)C26—H260.9500
C6—H6A0.9900C27—N81.339 (4)
C6—H6B0.9900C27—C281.373 (5)
C7—N21.464 (4)C27—H270.9500
C7—H7A0.9900C28—H280.9500
C7—H7B0.9900C29—N111.117 (6)
C8—N21.334 (5)C29—C301.437 (7)
C8—O11.370 (4)C30—H30B0.9800
C8—S11.630 (4)C30—H30A0.9800
C9—N31.289 (5)C30—H30C0.9800
C9—O11.350 (4)C31—Cl11.748 (5)
C9—C101.457 (5)C31—Cl21.749 (5)
C10—C111.364 (5)C31—H31A0.9900
C10—C141.387 (5)C31—H31B0.9900
C11—C121.374 (5)C32—Cl31.749 (16)
C11—H110.9500C32—Cl41.757 (18)
C12—N41.341 (4)C32—H32A0.9900
C12—H120.9500C32—H32B0.9900
C13—N41.338 (5)C33—C341.48 (2)
C13—C141.371 (5)C33—H33A0.9800
C13—H130.9500C33—H33B0.9800
C14—H140.9500C33—H33C0.9800
C15—N51.347 (4)C34—N121.112 (15)
C15—C161.373 (5)Cl4—Cl4i1.850 (6)
C15—H150.9500Cu1—N12.005 (3)
C16—C171.380 (5)Cu1—N8ii2.006 (3)
C16—H160.9500Cu1—N4ii2.022 (3)
C17—C181.376 (5)Cu1—N52.033 (3)
C17—C201.463 (5)Cu1—O32.259 (3)
C18—C191.366 (5)N2—N31.385 (4)
C18—H180.9500N4—Cu1iii2.022 (3)
C19—N51.340 (4)N6—N71.374 (4)
C19—H190.9500N8—Cu1iii2.006 (3)
C20—N61.291 (5)N9—O51.219 (4)
C20—O21.352 (4)N9—O41.230 (4)
C21—N71.344 (5)N9—O31.269 (4)
C21—O21.377 (4)N10—O81.224 (4)
C21—S21.627 (4)N10—O61.234 (4)
C22—N71.457 (4)N10—O71.243 (4)
N1—C1—C2123.4 (3)C28—C24—C25117.3 (3)
N1—C1—H1118.3C28—C24—C23121.6 (3)
C2—C1—H1118.3C25—C24—C23121.1 (3)
C1—C2—C3119.4 (3)C26—C25—C24119.6 (3)
C1—C2—H2120.3C26—C25—H25120.2
C3—C2—H2120.3C24—C25—H25120.2
C4—C3—C2117.5 (3)N8—C26—C25123.3 (3)
C4—C3—C6121.4 (3)N8—C26—H26118.3
C2—C3—C6121.0 (3)C25—C26—H26118.3
C5—C4—C3119.9 (3)N8—C27—C28123.1 (3)
C5—C4—H4120.0N8—C27—H27118.5
C3—C4—H4120.0C28—C27—H27118.5
N1—C5—C4123.0 (3)C27—C28—C24120.0 (3)
N1—C5—H5118.5C27—C28—H28120.0
C4—C5—H5118.5C24—C28—H28120.0
C3—C6—C7112.1 (3)N11—C29—C30179.6 (6)
C3—C6—H6A109.2C29—C30—H30B109.5
C7—C6—H6A109.2C29—C30—H30A109.5
C3—C6—H6B109.2H30B—C30—H30A109.5
C7—C6—H6B109.2C29—C30—H30C109.5
H6A—C6—H6B107.9H30B—C30—H30C109.5
N2—C7—C6111.5 (3)H30A—C30—H30C109.5
N2—C7—H7A109.3Cl1—C31—Cl2111.8 (3)
C6—C7—H7A109.3Cl1—C31—H31A109.3
N2—C7—H7B109.3Cl2—C31—H31A109.3
C6—C7—H7B109.3Cl1—C31—H31B109.3
H7A—C7—H7B108.0Cl2—C31—H31B109.3
N2—C8—O1104.4 (3)H31A—C31—H31B107.9
N2—C8—S1131.6 (3)Cl3—C32—Cl4111.4 (11)
O1—C8—S1124.0 (3)Cl3—C32—H32A109.3
N3—C9—O1113.7 (3)Cl4—C32—H32A109.3
N3—C9—C10125.8 (3)Cl3—C32—H32B109.3
O1—C9—C10120.4 (3)Cl4—C32—H32B109.3
C11—C10—C14119.4 (3)H32A—C32—H32B108.0
C11—C10—C9120.7 (3)C34—C33—H33A109.5
C14—C10—C9119.8 (3)C34—C33—H33B109.5
C10—C11—C12119.4 (3)H33A—C33—H33B109.5
C10—C11—H11120.3C34—C33—H33C109.5
C12—C11—H11120.3H33A—C33—H33C109.5
N4—C12—C11122.1 (4)H33B—C33—H33C109.5
N4—C12—H12118.9N12—C34—C33175.8 (15)
C11—C12—H12118.9C32—Cl4—Cl4i163.9 (9)
N4—C13—C14123.6 (3)N1—Cu1—N8ii177.63 (12)
N4—C13—H13118.2N1—Cu1—N4ii93.81 (12)
C14—C13—H13118.2N8ii—Cu1—N4ii86.99 (12)
C13—C14—C10117.6 (3)N1—Cu1—N588.58 (12)
C13—C14—H14121.2N8ii—Cu1—N591.57 (12)
C10—C14—H14121.2N4ii—Cu1—N5156.54 (12)
N5—C15—C16122.8 (3)N1—Cu1—O391.35 (11)
N5—C15—H15118.6N8ii—Cu1—O386.29 (12)
C16—C15—H15118.6N4ii—Cu1—O3114.84 (11)
C15—C16—C17118.3 (3)N5—Cu1—O388.39 (11)
C15—C16—H16120.8C1—N1—C5116.8 (3)
C17—C16—H16120.8C1—N1—Cu1124.4 (2)
C18—C17—C16119.8 (3)C5—N1—Cu1118.2 (2)
C18—C17—C20120.2 (3)C8—N2—N3112.7 (3)
C16—C17—C20120.0 (3)C8—N2—C7128.3 (3)
C19—C18—C17118.1 (3)N3—N2—C7118.9 (3)
C19—C18—H18120.9C9—N3—N2102.6 (3)
C17—C18—H18120.9C13—N4—C12117.7 (3)
N5—C19—C18123.7 (3)C13—N4—Cu1iii119.1 (2)
N5—C19—H19118.2C12—N4—Cu1iii123.2 (3)
C18—C19—H19118.2C19—N5—C15117.3 (3)
N6—C20—O2114.1 (3)C19—N5—Cu1121.3 (2)
N6—C20—C17126.4 (3)C15—N5—Cu1121.4 (2)
O2—C20—C17119.4 (3)C20—N6—N7102.7 (3)
N7—C21—O2104.3 (3)C21—N7—N6112.8 (3)
N7—C21—S2132.0 (3)C21—N7—C22127.4 (3)
O2—C21—S2123.7 (3)N6—N7—C22119.7 (3)
N7—C22—C23112.2 (3)C27—N8—C26116.8 (3)
N7—C22—H22A109.2C27—N8—Cu1iii124.7 (2)
C23—C22—H22A109.2C26—N8—Cu1iii118.0 (2)
N7—C22—H22B109.2O5—N9—O4120.8 (3)
C23—C22—H22B109.2O5—N9—O3119.6 (3)
H22A—C22—H22B107.9O4—N9—O3119.4 (3)
C24—C23—C22112.9 (3)O8—N10—O6120.8 (3)
C24—C23—H23A109.0O8—N10—O7119.5 (3)
C22—C23—H23A109.0O6—N10—O7119.7 (3)
C24—C23—H23B109.0C9—O1—C8106.6 (3)
C22—C23—H23B109.0C20—O2—C21106.0 (3)
H23A—C23—H23B107.8N9—O3—Cu1123.8 (2)
N1—C1—C2—C30.1 (5)O1—C8—N2—C7177.4 (3)
C1—C2—C3—C40.2 (5)S1—C8—N2—C74.1 (6)
C1—C2—C3—C6175.3 (3)C6—C7—N2—C8104.7 (4)
C2—C3—C4—C50.9 (5)C6—C7—N2—N371.6 (4)
C6—C3—C4—C5176.4 (3)O1—C9—N3—N20.8 (4)
C3—C4—C5—N12.2 (5)C10—C9—N3—N2177.0 (3)
C4—C3—C6—C7106.1 (4)C8—N2—N3—C90.1 (4)
C2—C3—C6—C769.3 (4)C7—N2—N3—C9176.9 (3)
C3—C6—C7—N259.8 (4)C14—C13—N4—C120.2 (5)
N3—C9—C10—C119.1 (5)C14—C13—N4—Cu1iii177.8 (3)
O1—C9—C10—C11175.0 (3)C11—C12—N4—C132.6 (5)
N3—C9—C10—C14169.1 (3)C11—C12—N4—Cu1iii175.3 (3)
O1—C9—C10—C146.8 (5)C18—C19—N5—C151.3 (5)
C14—C10—C11—C121.8 (5)C18—C19—N5—Cu1179.3 (3)
C9—C10—C11—C12176.4 (3)C16—C15—N5—C190.6 (5)
C10—C11—C12—N41.6 (5)C16—C15—N5—Cu1180.0 (3)
N4—C13—C14—C103.1 (5)N1—Cu1—N5—C19130.1 (3)
C11—C10—C14—C134.0 (5)N8ii—Cu1—N5—C1947.5 (3)
C9—C10—C14—C13174.3 (3)N4ii—Cu1—N5—C19133.6 (3)
N5—C15—C16—C170.6 (5)O3—Cu1—N5—C1938.7 (3)
C15—C16—C17—C181.1 (5)N1—Cu1—N5—C1549.3 (3)
C15—C16—C17—C20176.9 (3)N8ii—Cu1—N5—C15133.1 (3)
C16—C17—C18—C190.4 (6)N4ii—Cu1—N5—C1547.1 (5)
C20—C17—C18—C19177.5 (3)O3—Cu1—N5—C15140.6 (3)
C17—C18—C19—N50.8 (6)O2—C20—N6—N70.2 (4)
C18—C17—C20—N67.2 (6)C17—C20—N6—N7177.3 (4)
C16—C17—C20—N6170.8 (4)O2—C21—N7—N60.5 (4)
C18—C17—C20—O2175.4 (4)S2—C21—N7—N6179.1 (3)
C16—C17—C20—O26.6 (5)O2—C21—N7—C22177.8 (3)
N7—C22—C23—C2460.4 (4)S2—C21—N7—C221.7 (6)
C22—C23—C24—C2862.4 (4)C20—N6—N7—C210.5 (4)
C22—C23—C24—C25114.4 (4)C20—N6—N7—C22178.0 (3)
C28—C24—C25—C260.2 (5)C23—C22—N7—C21105.6 (4)
C23—C24—C25—C26176.7 (3)C23—C22—N7—N671.5 (4)
C24—C25—C26—N81.6 (6)C28—C27—N8—C260.6 (5)
N8—C27—C28—C241.1 (5)C28—C27—N8—Cu1iii170.8 (3)
C25—C24—C28—C271.4 (5)C25—C26—N8—C271.9 (5)
C23—C24—C28—C27175.5 (3)C25—C26—N8—Cu1iii170.1 (3)
Cl3—C32—Cl4—Cl4i85 (3)N3—C9—O1—C81.5 (4)
C2—C1—N1—C51.0 (5)C10—C9—O1—C8177.8 (3)
C2—C1—N1—Cu1169.7 (3)N2—C8—O1—C91.4 (4)
C4—C5—N1—C12.2 (5)S1—C8—O1—C9179.9 (3)
C4—C5—N1—Cu1169.1 (3)N6—C20—O2—C210.1 (4)
N8ii—Cu1—N1—C1146 (3)C17—C20—O2—C21177.8 (3)
N4ii—Cu1—N1—C136.3 (3)N7—C21—O2—C200.3 (4)
N5—Cu1—N1—C1120.3 (3)S2—C21—O2—C20179.3 (3)
O3—Cu1—N1—C1151.3 (3)O5—N9—O3—Cu10.6 (5)
N8ii—Cu1—N1—C543 (3)O4—N9—O3—Cu1175.6 (3)
N4ii—Cu1—N1—C5153.1 (3)N1—Cu1—O3—N981.8 (3)
N5—Cu1—N1—C550.3 (3)N8ii—Cu1—O3—N997.9 (3)
O3—Cu1—N1—C538.1 (3)N4ii—Cu1—O3—N913.0 (3)
O1—C8—N2—N31.0 (4)N5—Cu1—O3—N9170.4 (3)
S1—C8—N2—N3179.5 (3)
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn2(NO3)4(C14H12N4OS)2][Cu(NO3)(C14H12N4OS)2]NO3·1.5C2H3N·1.5CH2Cl2
Mr947.45945.20
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)298123
a, b, c (Å)7.8239 (17), 11.033 (2), 21.677 (4)12.012 (6), 13.225 (7), 14.402 (7)
α, β, γ (°)90, 98.125 (4), 9099.751 (7), 110.223 (7), 106.204 (7)
V3)1852.4 (7)1969.8 (17)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.490.93
Crystal size (mm)0.40 × 0.20 × 0.200.26 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.587, 0.7550.794, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
8960, 3451, 2477 10698, 10698, 8513
Rint0.0460.000
(sin θ/λ)max1)0.6060.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.112, 1.04 0.052, 0.170, 1.07
No. of reflections345110698
No. of parameters262553
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.250.73, 0.49

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) for (I) top
N1—Zn1i2.036 (3)O3—Zn12.457 (3)
N4—Zn12.043 (3)O5—Zn12.018 (3)
O2—Zn12.015 (3)O6—Zn12.549 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7ii0.932.483.201 (5)134.6
C11—H11···O4iii0.932.633.297 (5)129.4
Symmetry codes: (ii) x3/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+3/2.
Selected bond lengths (Å) for (II) top
Cu1—N12.005 (3)Cu1—N52.033 (3)
Cu1—N8i2.006 (3)Cu1—O32.259 (3)
Cu1—N4i2.022 (3)
Symmetry code: (i) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds