Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C20H30O2, one of the two crystallographically independent mol­ecules lies across a centre of inversion and the other resides in a general position (Z′ = 1.5). The supra­molecular structure exists as an unusual two-dimensional network incorporating centrosymmetric hexa­meric hydrogen-bonded alcohol (OH)6 clusters [O...O = 2.6637 (12)–2.6993 (12) Å] as the net nodes. The hexa­mers adopt a chair conformation [O...O...O = 106.55 (4)–115.81 (4)°] and are connected into a network with a square-grid topology (44) by a combination of single and double 1,1′-biadamantanediyl links. The bulky aliphatic groups appear to require specific hexa­gonal packing and so generate distinct noncovalent hydro­phobic layers, which are essential for the stabilization of the hexa­meric alcohol array rather than the formation of the more commonly encountered tetra­mer-based arrays.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112051785/ky3025sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051785/ky3025Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112051785/ky3025Isup3.cml
Supplementary material

CCDC reference: 925772

Comment top

Alcohols are the simplest self-complementary donor–acceptor species suitable for the generation of different catemeric and oligomeric cluster motifs by strong and directional O—H···O hydrogen bonding (McGregor et al., 2006). From the crystal design perspective, these motifs attract attention as versatile synthons for the supramolecular synthesis of hydrogen-bonded frameworks and for the evaluation of subtle packing effects influencing the rich polymorphism of alcohols (Allan & Clark, 1999). Unlike simpler species, the solid-state supramolecular chemistry of bulky tertiary alcohols is dominated by self-assembly of oligomers, with the tetrameric pattern representing the commonest motif. This synthon is equally important for both simple monofunctional species, such as 1-adamantol (Amoureux et al., 1979) and 1-diamantol (Yu et al., 2006), and for the polymeric self-assembly of the structures of bulky aliphatic diols. In this way, tetrameric clusters commonly provide tetrahedral nodes for the generation of elegant three-dimensional arrays, such as the diamondoid framework found for bicyclo[4.4.1]undecane-1,6-diol (White & Bovill, 1977) and the threefold interpenetrated diamondoid framework of diamantane-4,9-diol (Schwertfeger et al., 2008). That higher oligomers could also possess a comparable significance for the solid-state supramolecular chemistry of alcohols was suggested by examination of the hexamer-based structure of phase II of tert-BuOH (McGregor et al., 2006). In the present contribution, the structure of the first entirely aliphatic diol, the title compound, (I), to generate a framework structure based upon hexameric synthons is reported. The extremely bulky 1,1'-biadamantanediyl spacer was essential for constraining molecular alignment and thus facilitating self-assembly of the alcohol hexamers.

The structure of (I) comprises two independent molecules, one of which (A) is situated across a centre of inversion, whilst the second (B) resides in a general position (Fig. 1). Both molecules adopt staggered conformations, but they are different conformers, as shown by the mutual orientation of the –OH groups: pseudo-anti for centrosymmetric molecule A and pseudo-gauche for molecule B [O2···C18—C23···O3 = 59.76 (13)°]. The long central C—C bonds [C5—C5i = 1.585 (2) Å and C18—C23 = 1.5804 (14) Å; symmetry code: (i) -x + 1, -y + 1, -z] agree with the geometric parameters found for 1,1'-biadamantane [1.579 (3) Å; Alden et al., 1968] and for 1,1'-biadamantane-supported bis(1,2,4-triazole) [1.582 (5) Å; Senchyk et al., 2010].

Directional and relatively strong hydrogen bonding of the type O—H···O [O···O = 2.6637 (12)–2.6993 (12) Å; Table 1] is responsible for the assembly of centrosymmetric (OH)6 hexamers (Figs. 1 and 2). Each hexamer involves both A and B molecules. The nonplanar hexagons, defined by the O atoms, possess a chair conformation and adopt an almost perfect cyclohexane-like geometry, with O···O···O angles of 106.55 (4)–115.81 (4)° [average 110.63 (4)°], and the average O···O···O···O pseudo-torsion angle is 57.17 (6)°. This type of self-assembly of alcohol oligomers is relatively rare in the solid state, although hexameric clusters are the predominant species in liquid methanol at room temperature (Sarkar & Joarder, 1993) and the (MeOH)6 cluster has even been captured as a guest entity in a lattice clathrate complex (Penkert et al., 1998). All solid-state examples of ROH hexamers are for bulky alcohols: the low-temperature and high-pressure phase II of tert-butanol (McGregor et al., 2006), bis(pentafluorophenyl)methanol (Ferguson et al., 1995), 2,4,6-tris(trifluoromethyl)benzyl alcohol (Edelmann et al., 2004), and the closely related ferrocenyldimethylsilanol (Sharma et al., 2005). The most closely comparable structure is that of tert-butanol, though the bonding is certainly weaker [O···O = 2.729 (1)–2.779 (1) Å], leading to a slight flattening of the hexagons [average O···O···O···O torsion angle = 50.1°; McGregor et al., 2006].

In (I), the hexamers provide an origin of connectivity for the generation of a layered hydrogen-bonded network, parallel to the ab plane. The topology of this layer may be best described as a `square grid net' (44), with the nodes represented by the hydrogen-bonded hexamers and with two kinds of links in equal proportions: single bridges of molecules A and double bridges of molecules B [internodal distance = 12.3821 (9) Å and a = 11.3855 (8) Å]. The presence of the double links decreases the connectedness of the nodes down to four. The layers are stacked on top of one another at 11.5351 (8) Å (parameter c of the unit cell) (Fig. 3).

The stabilization of hexameric clusters rather than the formation of the more common tetramers is a peculiar feature of the system. No other aliphatic diol adopts such a relatively open architecture and the prototypical monofunctional 1-adamantol also crystallizes as a self-assembled tetramer (Amoureux et al., 1979). The present pattern can be rationalized in terms of the adaptibility of the hydrogen-bonding topology to the steric demands imposed by the alignment of the aliphatic scaffolds. Unlike the simple adamantyl units, the bulky biadamantanediyl carriers have an approximately cylindrical shape and afford solely hexagonal packing in the bc plane, with intermolecular separations r (defined as the distances between the centroids of the carbocyclic frames) in the range 6.486 (2)–7.053 (2) Å. The shortest intermolecular C···C contact is C3···C29(x, y + 1, z - 1) = 3.7960 (17) Å, while the closest C—H···O contact possibly indicates very weak hydrogen bonding [C2···O3 = 3.4270 (16) Å, H2A···O3 = 2.724 (13) Å and C2—H2A···O3 = 127.6 (9)°]. The hydrophobic layers (Fig. 4) have the same hexagonal packing as seen in 1,1'-biadamantane itself, with r = 6.531 (2)–6.577 (2) Å (Alden et al., 1968), and thus the presence of two hydroxy groups in (I) does not influence this specific substructure. In fact, the most appreciable difference is the increase in the interlayer separation, viz. 11.3855 (8) Å (parameter a of the unit cell) for (I) versus 10.4571 (6) Å for 1,1'-biadamantane. Within these noncovalent layers, the hydrogen bonding between three closest neighbours assembles the molecules into triads (Fig. 4), and two such triads from successive layers constitute the above centrosymmetric hexamers.

In brief, the present system is important in view of two major aspects. The hexameric clusters provide new insights into developing framework structures based upon oligomeric alcohol species as reliable supramolecular synthons. At the same time, the shape-complementary packing of biadamantane modules may find further applications, such as designing non-covalent layers or for the generation of hydrophobic molecular coatings.

Related literature top

For related literature, see: Alden et al. (1968); Allan & Clark (1999); Amoureux et al. (1979); Edelmann et al. (2004); Ferguson et al. (1995); McGregor et al. (2006); Penkert et al. (1998); Reinhardt (1962); Sarkar & Joarder (1993); Schwertfeger et al. (2008); Senchyk et al. (2010); Sharma et al. (2005); White & Bovill (1977); Yu et al. (2006).

Experimental top

The title compound was prepared from adamantane according to the four-stage synthesis of Reinhardt (1962). Large colourless prisms of the product, (I), were obtained by hydrothermal recrystallization from hot water in an autoclave (with cooling from 453 K to room temperature).

Refinement top

All the H atoms were found in intermediate difference Fourier maps and were refined without constraints and with isotropic displacement parameters [C—H = 0.992 (14)–1.033 (15) Å and O—H = 0.915 (19)–0.93 (2) Å].

Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (a) The two independent molecules of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. (b) The discrete hydrogen-bonded alcohol hexamer, illustrating the chair conformation of the (OH)6 core. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x + 1, -y + 1, -z; (iii) -x + 1, -y, -z; (iv) x + 1, y, z.]
[Figure 2] Fig. 2. The structure of (I), showing the flat hydrogen-bonded square grid network adopted (indicated by wide grey lines), with the alcohol hexamers as four-connected nodes. The carbocyclic linkage is represented by narrow grey lines and hydrogen bonds are shown as dashed lines. [Symmetry codes: (ii) x - 1, y, z; (iii) -x + 1, -y, -z; (iv) x + 1, y, z.]
[Figure 3] Fig. 3. A projection of the structure of (I) on the ac plane, showing the packing of successive hydrogen-bonded layers. Note the existence of hydrophobic biadamantane layers (orthogonal to the drawing plane), which are connected through the (OH)6 hexamers. [Symmetry codes: (iii) -x + 1, -y, -z; (iv) x + 1, y, z.]
[Figure 4] Fig. 4. A view of the hexagonal packing adopted by the cylindrical biadamantanediyl groups (C-bound H atoms have been omitted for clarity), showing how three closest neighbours assemble into hydrogen-bonded triads (dashed lines). Triads from two adjacent biadamantanediyl layers form the hexamer. [Symmetry code: (iii) -x + 1, -y, -z.]
1,1'-Biadamantane-3,3'-diol top
Crystal data top
C20H30O2Z = 3
Mr = 302.44F(000) = 498
Triclinic, P1Dx = 1.250 Mg m3
a = 11.3855 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3863 (9) ÅCell parameters from 11179 reflections
c = 11.5351 (8) Åθ = 2.0–26.8°
α = 62.220 (9)°µ = 0.08 mm1
β = 81.596 (11)°T = 173 K
γ = 65.878 (9)°Prism, colourless
V = 1205.7 (2) Å30.27 × 0.25 × 0.20 mm
Data collection top
Stoe IPDS
diffractometer
3549 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.8°, θmin = 2.0°
ϕ oscillation scansh = 1414
11179 measured reflectionsk = 1412
5076 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.086All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0446P)2]
where P = (Fo2 + 2Fc2)/3
5076 reflections(Δ/σ)max < 0.001
478 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C20H30O2γ = 65.878 (9)°
Mr = 302.44V = 1205.7 (2) Å3
Triclinic, P1Z = 3
a = 11.3855 (8) ÅMo Kα radiation
b = 11.3863 (9) ŵ = 0.08 mm1
c = 11.5351 (8) ÅT = 173 K
α = 62.220 (9)°0.27 × 0.25 × 0.20 mm
β = 81.596 (11)°
Data collection top
Stoe IPDS
diffractometer
3549 reflections with I > 2σ(I)
11179 measured reflectionsRint = 0.033
5076 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086All H-atom parameters refined
S = 1.02Δρmax = 0.23 e Å3
5076 reflectionsΔρmin = 0.15 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87118 (7)0.13492 (9)0.14497 (8)0.0276 (2)
O20.12926 (8)0.03489 (10)0.12623 (8)0.0342 (2)
O30.78814 (8)0.03220 (10)0.10116 (9)0.0347 (2)
C10.79906 (10)0.28003 (12)0.05002 (10)0.0234 (2)
C20.81465 (11)0.29274 (13)0.08880 (11)0.0258 (3)
C30.73802 (11)0.44906 (13)0.18681 (11)0.0269 (3)
C40.59479 (11)0.49151 (14)0.15682 (10)0.0254 (3)
C50.57370 (10)0.47910 (12)0.01620 (10)0.0212 (2)
C60.65623 (10)0.32193 (13)0.08006 (11)0.0229 (2)
C70.85054 (11)0.37840 (13)0.06133 (12)0.0271 (3)
C80.77332 (11)0.53453 (13)0.03675 (12)0.0288 (3)
C90.78907 (12)0.54901 (14)0.17631 (12)0.0310 (3)
C100.62995 (11)0.57705 (13)0.00647 (12)0.0261 (3)
C110.19495 (10)0.02020 (13)0.24891 (10)0.0236 (2)
C120.16260 (11)0.09988 (13)0.28765 (12)0.0274 (3)
C130.23917 (11)0.04039 (14)0.41492 (12)0.0286 (3)
C140.20265 (12)0.07983 (15)0.52408 (12)0.0333 (3)
C150.23359 (11)0.19935 (14)0.48485 (11)0.0298 (3)
C160.15772 (11)0.14033 (14)0.35681 (12)0.0282 (3)
C170.33916 (10)0.07973 (13)0.22883 (11)0.0235 (2)
C180.42116 (10)0.14258 (12)0.35549 (10)0.0208 (2)
C190.38443 (11)0.02047 (14)0.39555 (12)0.0273 (3)
C200.37888 (11)0.26111 (14)0.46444 (11)0.0281 (3)
C210.75703 (11)0.14857 (13)0.20228 (11)0.0253 (3)
C220.61221 (10)0.08828 (13)0.22281 (11)0.0239 (2)
C230.57020 (10)0.20497 (12)0.33450 (10)0.0212 (2)
C240.60747 (11)0.32962 (13)0.29805 (12)0.0259 (3)
C250.75255 (11)0.38952 (13)0.27761 (12)0.0287 (3)
C260.78852 (11)0.26989 (14)0.16586 (12)0.0280 (3)
C270.83380 (11)0.20478 (15)0.32837 (12)0.0299 (3)
C280.79697 (11)0.32366 (14)0.43962 (11)0.0300 (3)
C290.65202 (11)0.26309 (14)0.45975 (11)0.0267 (3)
C300.82945 (12)0.44675 (14)0.40446 (13)0.0341 (3)
H2A0.7836 (11)0.2250 (14)0.0944 (12)0.029 (3)*
H2B0.9089 (13)0.2616 (14)0.1076 (12)0.033 (3)*
H30.7475 (11)0.4582 (14)0.2788 (13)0.030 (3)*
H4A0.5608 (12)0.4285 (15)0.1697 (12)0.033 (4)*
H4B0.5459 (12)0.5923 (15)0.2230 (13)0.031 (3)*
H6A0.6495 (12)0.3083 (14)0.1736 (13)0.033 (3)*
H6B0.6248 (12)0.2520 (15)0.0746 (12)0.032 (3)*
H7A0.9440 (13)0.3489 (14)0.0455 (12)0.032 (3)*
H7B0.8401 (12)0.3660 (14)0.1549 (13)0.034 (3)*
H80.8071 (12)0.6003 (15)0.0269 (12)0.030 (3)*
H9A0.7397 (12)0.6522 (16)0.2430 (13)0.035 (4)*
H9B0.8829 (13)0.5230 (15)0.1981 (13)0.040 (4)*
H10A0.5823 (13)0.6807 (16)0.0713 (14)0.039 (4)*
H10B0.6191 (12)0.5707 (15)0.0843 (13)0.033 (3)*
H12A0.0673 (12)0.1417 (14)0.2986 (12)0.031 (3)*
H12B0.1864 (12)0.1789 (15)0.2154 (13)0.032 (3)*
H130.2177 (12)0.1201 (15)0.4406 (13)0.034 (3)*
H14A0.2509 (13)0.1176 (16)0.6098 (14)0.044 (4)*
H14B0.1067 (14)0.0405 (16)0.5402 (14)0.045 (4)*
H150.2102 (12)0.2818 (15)0.5573 (13)0.038 (4)*
H16A0.1786 (12)0.2184 (15)0.3288 (13)0.035 (4)*
H16B0.0611 (13)0.0985 (14)0.3657 (12)0.033 (3)*
H17A0.3600 (12)0.0008 (15)0.1542 (13)0.035 (4)*
H17B0.3587 (12)0.1572 (15)0.1998 (13)0.035 (4)*
H19A0.4325 (13)0.0577 (15)0.4790 (14)0.037 (4)*
H19B0.4098 (12)0.0578 (14)0.3253 (13)0.029 (3)*
H20A0.3998 (13)0.3438 (17)0.4408 (14)0.043 (4)*
H20B0.4273 (12)0.3041 (15)0.5491 (13)0.033 (3)*
H22A0.5650 (12)0.0475 (14)0.1374 (13)0.028 (3)*
H22B0.5932 (12)0.0053 (15)0.2423 (13)0.032 (3)*
H24A0.5849 (12)0.4103 (15)0.3698 (13)0.031 (3)*
H24B0.5581 (12)0.2948 (15)0.2148 (13)0.035 (4)*
H250.7725 (12)0.4694 (15)0.2533 (12)0.030 (3)*
H26A0.8820 (14)0.3051 (16)0.1489 (14)0.043 (4)*
H26B0.7382 (12)0.2313 (14)0.0803 (13)0.032 (3)*
H27A0.8125 (13)0.1194 (16)0.3490 (13)0.041 (4)*
H27B0.9274 (14)0.2447 (15)0.3155 (13)0.040 (4)*
H280.8458 (12)0.3602 (15)0.5242 (14)0.038 (4)*
H29A0.6319 (12)0.1833 (15)0.4851 (13)0.033 (4)*
H29B0.6281 (12)0.3405 (15)0.5354 (13)0.032 (3)*
H30A0.8063 (13)0.5269 (16)0.4777 (14)0.040 (4)*
H30B0.9267 (14)0.4901 (15)0.3917 (13)0.042 (4)*
H1H0.8408 (19)0.076 (2)0.1336 (19)0.083 (7)*
H2H0.0423 (19)0.067 (2)0.1360 (18)0.076 (6)*
H3H0.8122 (17)0.043 (2)0.0264 (19)0.074 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (4)0.0220 (4)0.0263 (4)0.0037 (3)0.0038 (3)0.0072 (3)
O20.0257 (4)0.0481 (6)0.0255 (4)0.0089 (4)0.0031 (3)0.0173 (4)
O30.0425 (5)0.0381 (5)0.0326 (5)0.0262 (4)0.0153 (4)0.0176 (4)
C10.0231 (5)0.0199 (6)0.0226 (5)0.0054 (4)0.0022 (4)0.0076 (4)
C20.0236 (6)0.0263 (7)0.0264 (6)0.0077 (5)0.0020 (4)0.0131 (5)
C30.0295 (6)0.0275 (7)0.0201 (5)0.0096 (5)0.0028 (4)0.0096 (5)
C40.0258 (6)0.0264 (7)0.0197 (5)0.0077 (5)0.0008 (4)0.0085 (5)
C50.0223 (5)0.0204 (6)0.0200 (5)0.0068 (4)0.0007 (4)0.0091 (4)
C60.0232 (5)0.0217 (6)0.0207 (5)0.0070 (5)0.0002 (4)0.0082 (5)
C70.0239 (6)0.0297 (7)0.0295 (6)0.0093 (5)0.0009 (5)0.0149 (5)
C80.0269 (6)0.0254 (7)0.0370 (6)0.0118 (5)0.0013 (5)0.0147 (5)
C90.0286 (6)0.0263 (7)0.0312 (6)0.0111 (5)0.0046 (5)0.0081 (5)
C100.0254 (6)0.0241 (6)0.0308 (6)0.0090 (5)0.0009 (5)0.0144 (5)
C110.0224 (5)0.0280 (6)0.0193 (5)0.0085 (5)0.0006 (4)0.0104 (5)
C120.0244 (6)0.0259 (7)0.0296 (6)0.0077 (5)0.0011 (5)0.0124 (5)
C130.0266 (6)0.0339 (7)0.0329 (6)0.0096 (5)0.0022 (5)0.0229 (6)
C140.0274 (6)0.0481 (8)0.0235 (6)0.0125 (6)0.0040 (5)0.0179 (6)
C150.0275 (6)0.0316 (7)0.0245 (6)0.0143 (5)0.0049 (5)0.0068 (5)
C160.0244 (6)0.0326 (7)0.0318 (6)0.0141 (5)0.0045 (5)0.0160 (5)
C170.0239 (5)0.0268 (6)0.0197 (5)0.0101 (5)0.0013 (4)0.0101 (5)
C180.0214 (5)0.0217 (6)0.0195 (5)0.0091 (4)0.0006 (4)0.0085 (4)
C190.0252 (6)0.0317 (7)0.0312 (6)0.0108 (5)0.0017 (5)0.0192 (5)
C200.0271 (6)0.0269 (7)0.0239 (6)0.0115 (5)0.0013 (5)0.0055 (5)
C210.0275 (6)0.0286 (6)0.0240 (5)0.0156 (5)0.0056 (4)0.0123 (5)
C220.0259 (6)0.0242 (6)0.0224 (5)0.0107 (5)0.0025 (4)0.0107 (5)
C230.0222 (5)0.0217 (6)0.0200 (5)0.0093 (4)0.0006 (4)0.0087 (4)
C240.0259 (6)0.0235 (6)0.0300 (6)0.0102 (5)0.0022 (5)0.0131 (5)
C250.0275 (6)0.0244 (7)0.0355 (6)0.0076 (5)0.0027 (5)0.0170 (5)
C260.0256 (6)0.0335 (7)0.0294 (6)0.0118 (5)0.0058 (5)0.0187 (5)
C270.0245 (6)0.0399 (8)0.0312 (6)0.0150 (5)0.0034 (5)0.0191 (6)
C280.0240 (6)0.0368 (7)0.0251 (6)0.0091 (5)0.0024 (4)0.0120 (5)
C290.0253 (6)0.0313 (7)0.0215 (6)0.0105 (5)0.0004 (4)0.0103 (5)
C300.0269 (6)0.0292 (7)0.0344 (7)0.0048 (5)0.0011 (5)0.0096 (6)
Geometric parameters (Å, º) top
O1—C11.4391 (13)C14—H14A1.017 (15)
O1—H1H0.93 (2)C14—H14B1.023 (14)
O2—C111.4332 (13)C15—C161.5337 (17)
O2—H2H0.915 (19)C15—C201.5414 (16)
O3—C211.4366 (14)C15—H151.029 (14)
O3—H3H0.917 (19)C16—H16A1.012 (15)
C1—C71.5201 (17)C16—H16B1.016 (13)
C1—C21.5292 (16)C17—C181.5480 (15)
C1—C61.5321 (15)C17—H17A1.010 (14)
C2—C31.5332 (17)C17—H17B1.017 (15)
C2—H2A1.000 (14)C18—C191.5455 (17)
C2—H2B1.008 (13)C18—C201.5510 (15)
C3—C91.5288 (18)C18—C231.5804 (14)
C3—C41.5360 (16)C19—H19A0.994 (14)
C3—H31.011 (13)C19—H19B1.002 (13)
C4—C51.5521 (15)C20—H20A1.028 (16)
C4—H4A1.015 (14)C20—H20B0.994 (14)
C4—H4B0.998 (14)C21—C261.5183 (17)
C5—C101.5454 (17)C21—C271.5283 (16)
C5—C61.5481 (15)C21—C221.5357 (15)
C5—C5i1.585 (2)C22—C231.5484 (15)
C6—H6A1.012 (14)C22—H22A1.000 (13)
C6—H6B1.025 (14)C22—H22B1.004 (14)
C7—C81.5335 (17)C23—C241.5437 (17)
C7—H7A0.994 (13)C23—C291.5465 (15)
C7—H7B1.017 (14)C24—C251.5378 (16)
C8—C91.5308 (18)C24—H24A1.009 (13)
C8—C101.5381 (16)C24—H24B1.008 (14)
C8—H81.024 (14)C25—C261.5329 (17)
C9—H9A1.016 (14)C25—C301.5335 (18)
C9—H9B1.012 (13)C25—H251.003 (14)
C10—H10A1.009 (14)C26—H26A0.997 (14)
C10—H10B1.008 (14)C26—H26B1.026 (13)
C11—C121.5213 (17)C27—C281.5304 (17)
C11—C161.5273 (16)C27—H27A1.033 (15)
C11—C171.5279 (15)C27—H27B0.992 (14)
C12—C131.5293 (16)C28—C301.5257 (19)
C12—H12A1.007 (13)C28—C291.5363 (16)
C12—H12B1.006 (13)C28—H281.012 (14)
C13—C141.5289 (18)C29—H29A1.011 (15)
C13—C191.5379 (16)C29—H29B1.011 (13)
C13—H131.010 (15)C30—H30A1.014 (14)
C14—C151.5220 (19)C30—H30B1.031 (14)
C1—O1—H1H106.3 (12)C20—C15—H15108.2 (7)
C11—O2—H2H109.2 (12)C11—C16—C15108.91 (10)
C21—O3—H3H112.8 (12)C11—C16—H16A108.4 (7)
O1—C1—C7107.71 (9)C15—C16—H16A110.9 (7)
O1—C1—C2110.63 (9)C11—C16—H16B108.0 (7)
C7—C1—C2109.81 (10)C15—C16—H16B111.7 (7)
O1—C1—C6109.28 (9)H16A—C16—H16B108.8 (10)
C7—C1—C6109.96 (10)C11—C17—C18111.72 (9)
C2—C1—C6109.43 (9)C11—C17—H17A107.9 (7)
C1—C2—C3108.93 (10)C18—C17—H17A111.2 (8)
C1—C2—H2A109.2 (7)C11—C17—H17B108.8 (7)
C3—C2—H2A111.2 (7)C18—C17—H17B110.1 (7)
C1—C2—H2B109.6 (7)H17A—C17—H17B106.9 (11)
C3—C2—H2B111.1 (7)C19—C18—C17107.24 (9)
H2A—C2—H2B106.7 (10)C19—C18—C20107.55 (9)
C9—C3—C2109.64 (10)C17—C18—C20107.17 (9)
C9—C3—C4109.61 (10)C19—C18—C23111.72 (9)
C2—C3—C4109.63 (10)C17—C18—C23111.53 (9)
C9—C3—H3109.6 (7)C20—C18—C23111.38 (9)
C2—C3—H3109.4 (7)C13—C19—C18111.44 (10)
C4—C3—H3109.0 (7)C13—C19—H19A108.7 (8)
C3—C4—C5111.53 (9)C18—C19—H19A109.8 (8)
C3—C4—H4A108.8 (7)C13—C19—H19B109.9 (7)
C5—C4—H4A111.4 (7)C18—C19—H19B108.5 (8)
C3—C4—H4B108.6 (7)H19A—C19—H19B108.4 (11)
C5—C4—H4B110.2 (8)C15—C20—C18111.10 (10)
H4A—C4—H4B106.2 (11)C15—C20—H20A109.7 (8)
C10—C5—C6107.18 (9)C18—C20—H20A110.2 (8)
C10—C5—C4107.16 (9)C15—C20—H20B108.6 (7)
C6—C5—C4107.12 (9)C18—C20—H20B110.8 (8)
C10—C5—C5i111.96 (12)H20A—C20—H20B106.4 (11)
C6—C5—C5i111.27 (11)O3—C21—C26111.81 (9)
C4—C5—C5i111.87 (11)O3—C21—C27108.09 (9)
C1—C6—C5111.86 (9)C26—C21—C27109.89 (10)
C1—C6—H6A107.5 (7)O3—C21—C22107.89 (10)
C5—C6—H6A110.8 (8)C26—C21—C22109.56 (10)
C1—C6—H6B108.3 (7)C27—C21—C22109.54 (9)
C5—C6—H6B110.2 (7)C21—C22—C23111.76 (9)
H6A—C6—H6B108.0 (10)C21—C22—H22A107.5 (7)
C1—C7—C8108.90 (10)C23—C22—H22A111.7 (7)
C1—C7—H7A110.1 (8)C21—C22—H22B108.0 (7)
C8—C7—H7A111.5 (7)C23—C22—H22B111.1 (7)
C1—C7—H7B107.7 (8)H22A—C22—H22B106.6 (10)
C8—C7—H7B110.8 (8)C24—C23—C29107.60 (9)
H7A—C7—H7B107.7 (10)C24—C23—C22107.17 (9)
C9—C8—C7109.52 (10)C29—C23—C22107.02 (9)
C9—C8—C10109.68 (10)C24—C23—C18111.71 (9)
C7—C8—C10109.82 (10)C29—C23—C18111.44 (9)
C9—C8—H8110.6 (7)C22—C23—C18111.64 (9)
C7—C8—H8108.4 (7)C25—C24—C23111.37 (10)
C10—C8—H8108.8 (7)C25—C24—H24A108.6 (7)
C3—C9—C8108.92 (10)C23—C24—H24A110.1 (8)
C3—C9—H9A109.5 (8)C25—C24—H24B108.8 (7)
C8—C9—H9A110.8 (8)C23—C24—H24B109.9 (8)
C3—C9—H9B109.9 (8)H24A—C24—H24B108.0 (11)
C8—C9—H9B110.5 (8)C26—C25—C30109.74 (10)
H9A—C9—H9B107.2 (11)C26—C25—C24109.62 (10)
C8—C10—C5111.49 (10)C30—C25—C24109.61 (10)
C8—C10—H10A107.8 (7)C26—C25—H25109.0 (7)
C5—C10—H10A110.3 (8)C30—C25—H25110.0 (7)
C8—C10—H10B109.8 (7)C24—C25—H25108.8 (7)
C5—C10—H10B109.5 (8)C21—C26—C25108.92 (10)
H10A—C10—H10B107.9 (11)C21—C26—H26A108.8 (9)
O2—C11—C12110.27 (9)C25—C26—H26A112.0 (8)
O2—C11—C16110.75 (9)C21—C26—H26B109.7 (8)
C12—C11—C16109.49 (10)C25—C26—H26B110.4 (7)
O2—C11—C17106.78 (9)H26A—C26—H26B107.1 (11)
C12—C11—C17109.73 (10)C21—C27—C28109.14 (10)
C16—C11—C17109.79 (10)C21—C27—H27A108.1 (8)
C11—C12—C13109.34 (10)C28—C27—H27A111.1 (8)
C11—C12—H12A110.3 (8)C21—C27—H27B109.6 (8)
C13—C12—H12A110.7 (7)C28—C27—H27B109.3 (8)
C11—C12—H12B108.8 (8)H27A—C27—H27B109.5 (11)
C13—C12—H12B109.8 (7)C30—C28—C27109.23 (10)
H12A—C12—H12B107.9 (10)C30—C28—C29109.78 (11)
C14—C13—C12109.43 (10)C27—C28—C29109.73 (10)
C14—C13—C19109.22 (11)C30—C28—H28109.9 (8)
C12—C13—C19109.92 (10)C27—C28—H28109.9 (8)
C14—C13—H13109.1 (7)C29—C28—H28108.3 (7)
C12—C13—H13109.3 (7)C28—C29—C23111.57 (9)
C19—C13—H13109.9 (7)C28—C29—H29A109.1 (7)
C15—C14—C13109.14 (10)C23—C29—H29A109.8 (7)
C15—C14—H14A111.1 (9)C28—C29—H29B109.9 (7)
C13—C14—H14A109.9 (8)C23—C29—H29B109.7 (7)
C15—C14—H14B110.2 (9)H29A—C29—H29B106.7 (11)
C13—C14—H14B110.3 (8)C28—C30—C25109.00 (10)
H14A—C14—H14B106.2 (11)C28—C30—H30A110.2 (8)
C14—C15—C16110.12 (10)C25—C30—H30A109.4 (8)
C14—C15—C20109.97 (11)C28—C30—H30B111.2 (8)
C16—C15—C20108.96 (10)C25—C30—H30B109.5 (8)
C14—C15—H15110.5 (8)H30A—C30—H30B107.5 (11)
C16—C15—H15109.1 (8)
O1—C1—C2—C3179.22 (9)C14—C13—C19—C1860.65 (13)
C7—C1—C2—C360.46 (12)C12—C13—C19—C1859.42 (13)
C6—C1—C2—C360.33 (13)C17—C18—C19—C1357.13 (12)
C1—C2—C3—C960.10 (12)C20—C18—C19—C1357.85 (12)
C1—C2—C3—C460.27 (13)C23—C18—C19—C13179.63 (9)
C9—C3—C4—C560.33 (13)C14—C15—C20—C1859.65 (13)
C2—C3—C4—C560.06 (14)C16—C15—C20—C1861.13 (14)
C3—C4—C5—C1057.62 (12)C19—C18—C20—C1556.99 (13)
C3—C4—C5—C657.12 (13)C17—C18—C20—C1558.04 (13)
C3—C4—C5—C5i179.31 (12)C23—C18—C20—C15179.72 (10)
O1—C1—C6—C5178.16 (9)O3—C21—C22—C23177.69 (9)
C7—C1—C6—C560.12 (12)C26—C21—C22—C2360.36 (12)
C2—C1—C6—C560.57 (13)C27—C21—C22—C2360.25 (13)
C10—C5—C6—C157.23 (12)C21—C22—C23—C2457.42 (12)
C4—C5—C6—C157.51 (13)C21—C22—C23—C2957.76 (13)
C5i—C5—C6—C1179.93 (11)C21—C22—C23—C18179.95 (10)
O1—C1—C7—C8178.74 (9)C19—C18—C23—C24178.50 (9)
C2—C1—C7—C860.72 (12)C17—C18—C23—C2461.49 (12)
C6—C1—C7—C859.74 (12)C20—C18—C23—C2458.19 (12)
C1—C7—C8—C960.70 (12)C19—C18—C23—C2958.10 (12)
C1—C7—C8—C1059.81 (13)C17—C18—C23—C29178.11 (10)
C2—C3—C9—C860.25 (12)C20—C18—C23—C2962.20 (13)
C4—C3—C9—C860.14 (12)C19—C18—C23—C2261.51 (12)
C7—C8—C9—C360.46 (13)C17—C18—C23—C2258.50 (13)
C10—C8—C9—C360.14 (13)C20—C18—C23—C22178.19 (10)
C9—C8—C10—C560.37 (13)C29—C23—C24—C2557.47 (12)
C7—C8—C10—C560.04 (13)C22—C23—C24—C2557.33 (12)
C6—C5—C10—C857.15 (12)C18—C23—C24—C25179.92 (9)
C4—C5—C10—C857.55 (12)C23—C24—C25—C2660.31 (13)
C5i—C5—C10—C8179.43 (11)C23—C24—C25—C3060.19 (13)
O2—C11—C12—C13177.03 (9)O3—C21—C26—C25179.82 (9)
C16—C11—C12—C1360.88 (12)C27—C21—C26—C2560.15 (12)
C17—C11—C12—C1359.68 (12)C22—C21—C26—C2560.25 (12)
C11—C12—C13—C1460.60 (13)C30—C25—C26—C2159.99 (13)
C11—C12—C13—C1959.34 (13)C24—C25—C26—C2160.43 (13)
C12—C13—C14—C1559.83 (13)O3—C21—C27—C28177.02 (10)
C19—C13—C14—C1560.54 (13)C26—C21—C27—C2860.72 (13)
C13—C14—C15—C1659.74 (12)C22—C21—C27—C2859.70 (13)
C13—C14—C15—C2060.35 (12)C21—C27—C28—C3060.60 (13)
O2—C11—C16—C15178.09 (10)C21—C27—C28—C2959.79 (14)
C12—C11—C16—C1560.10 (12)C30—C28—C29—C2359.86 (13)
C17—C11—C16—C1560.42 (13)C27—C28—C29—C2360.19 (14)
C14—C15—C16—C1159.82 (13)C24—C23—C29—C2857.28 (13)
C20—C15—C16—C1160.86 (14)C22—C23—C29—C2857.62 (13)
O2—C11—C17—C18179.87 (10)C18—C23—C29—C28179.93 (10)
C12—C11—C17—C1860.36 (12)C27—C28—C30—C2560.45 (13)
C16—C11—C17—C1860.02 (13)C29—C28—C30—C2559.90 (13)
C11—C17—C18—C1957.77 (12)C26—C25—C30—C2860.33 (13)
C11—C17—C18—C2057.46 (13)C24—C25—C30—C2860.10 (13)
C11—C17—C18—C23179.61 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O30.93 (2)1.77 (2)2.6976 (14)175.9 (18)
O2—H2H···O1ii0.915 (19)1.79 (2)2.6993 (12)176.6 (18)
O3—H3H···O2iii0.917 (19)1.762 (19)2.6637 (12)167.5 (18)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H30O2
Mr302.44
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.3855 (8), 11.3863 (9), 11.5351 (8)
α, β, γ (°)62.220 (9), 81.596 (11), 65.878 (9)
V3)1205.7 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.25 × 0.20
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11179, 5076, 3549
Rint0.033
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.02
No. of reflections5076
No. of parameters478
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.15

Computer programs: IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O30.93 (2)1.77 (2)2.6976 (14)175.9 (18)
O2—H2H···O1i0.915 (19)1.79 (2)2.6993 (12)176.6 (18)
O3—H3H···O2ii0.917 (19)1.762 (19)2.6637 (12)167.5 (18)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds