Download citation
Download citation
link to html
Mixtures of 4-carb­oxy­pyridinium perchlorate or 4-carb­oxy­pyridinium tetra­fluoro­borate and 18-crown-6 (1,4,7,10,13,16-hexa­oxacyclo­octa­decane) in ethanol and water solution yielded the title supra­molecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supra­molecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether mol­ecule, which together give a [(C6H6NO2)(18-crown-6)]+ supra­molecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4-carb­oxy­pyridinium cations `perching' on the 18-crown-6 mol­ecules. Further hydrogen-bonding inter­actions involving the supra­molecular cation and both water mol­ecules form a one-dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water mol­ecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112024912/ky3014sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112024912/ky3014Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112024912/ky3014IIsup3.hkl
Contains datablock II

CCDC references: 893496; 893497

Comment top

Crown ethers have attracted much attention because of their ability to form noncovalent and hydrogen-bonded complexes with ammonium cations in both solid and solution states (Fender et al., 2002; Rieger & Muclring, 2005). 18-Crown-6 and its derivatives exhibit the highest affinity with organic ammonium cations (RNH3+) and commonly have a 1:1 stoichiometry (Doxsee et al., 2000; Buschmann et al., 2001; Johnson et al., 2000; Zhao & Qu, 2010). Meanwhile, pyridinecarboxylic acid is an interesting material with which to construct hydrogen-bonded structures with a variety of inorganic anions. The reported crystal structures of pyridinecarboxylate salts involve a variety of hydrogen-bond modes and interest has also been shown in their phase transition structures and in physical property investigations (Jebas et al., 2006; Chen et al., 2009). In the light of these interesting hydrogen-bonding interactions in crown ether adducts and pyridinecarboxylate salt systems, we synthesized and present herein the structures of the title compounds 4-carboxypyridinium perchlorate 18-crown-6 dihydrate clathrate, (I), and 4-carboxypyridinium tetrafluoroborate 18-crown-6 dihydrate clathrate, (II). Both contain an adduct of 18-crown-6 and the isonicotinic acid cation. The results provide a new type of interaction in the supramolecular chemistry of crown ethers, different from the hydrogen-bond interactions seen previously between the 4-carboxypyridinium cation and crown ethers (Lamsa et al., 1998).

The asymmetric unit of (I) contains one 4-carboxypyridinium cation, one 18-crown-6 molecule, one perchlorate anion and two water molecules (Fig. 1). As the pyridine ring of the isonicotinic acid cation is too large to fit into the cavity of 18-crown-6, no electron density is found inside the crown ether ring in (I). The crown ether and protonated isonicotinic acid components form a `perching' complex, where the pyridine ring rests above the mean plane defined by the O atoms of the crown ether. The dihedral angle between the plane of the pyridine ring and the mean plane of the crown O atoms is 53.61 (8)°. The N atom of the pyridine ring from the isonicotinic acid cation links to only one O atom of the crown ether molecule through a short N—H···O hydrogen bond (Table 1). The 18-crown-6 rings do not have the normal ideal crown conformation. That is, the O atoms of the 18-crown-6 molecule are not displaced alternately above and below the median plane of the ring. The distances (Å) of the ether O atoms from their mean plane are: O1 -0.223 (2), O2 0.247 (2), O3 0.025 (2), O4 -0.332 (2), O5 0.376 (2) and O6 -0.094 (2). Thus, atoms O3, O4, O5 and O6 are in the usual alternating pattern of crown ether O atoms, but atom O2, which should sit below the mean plane, now sits above it. The formation of only one short hydrogen bond (N1—H1···O2) may result in the deviation of atom O2 from the plane and contribute to the adoption of the observed non-ideal crown conformation.

In (I), two solvent water molecules are found per formula unit. Whilst each crown ether molecule is coordinated by an isonicotinic acid cation on one side, the other side of the crown is occupied by one of the solvent water molecules. Water atom O9 resides only 1.770 (3) Å from the centre of the crown ether and forms two hydrogen bonds with O atoms of the crown ring (Table 1). It also accepts a hydrogen bond from atom O10 of the second water molecule. The second water molecule is also involved as a hydrogen-bond acceptor with the isonicotinic acid cation as the O—H donor. As a result, a novel one-dimensional zigzag chain, which contains protonated isonicotinic acid cations and 18-crown-6 and solvent water molecules, is formed and extends along the crystallographic c direction (Fig. 2).

The asymmetric unit of (II) is composed of a 4-carboxypyridinium cation, one crown ether molecule, a tetrafluoroborate anion and two water molecules (Fig. 3). It shows essentially the same structural features as described above for (I). The N atom of the isonicotinic acid cation is again in the perching position, lying 2.046 (3) Å from the mean plane of the crown ring, rather than in the nesting position. The adduct in the complex is arranged in such a way that the dihedral angle between the mean plane of the crown ether O atoms and the pyridine ring is 53.13 (8)°, a similar value to that found in (I). Hydrogen-bonding details are given in Table 2. A subtle difference is that, in complex (II), one of the water molecules which contains atom O10 could be described as forming four contacts with the crown O atoms, where each water H atom makes a very asymmetric bifurcated bond with two short and two very long contacts (Table 2), whilst in (I) the equivalent long contacts are even longer and so lie outside the range normally considered. What is more, the zigzag chain extending along the crystallographic c direction is similar to that in complex (I) (Fig. 4).

The perchlorate and tetrafluoroborate anions are present as counterions to the supramolecular [(C6H6NO2)(18-crown-6)]+ cations. Both anions were modelled as being disordered over two sites. The anions are pendant from the zigzag hydrogen-bonded chain and each forms O—H···O/F hydrogen bonds to this chain.

Pyridinium salt complexes with crown ethers have been structurally elucidated by Lamsa et al. (1998). These benzene-substituted crown ethers differ from (I) and (II) in the nature of their bond formation. The benzene-substituted complexes are mainly dependent on ππ stacking and cation–π interactions, which play significant roles in the complexation between benzene-substituted crown ethers and electron-deficient aromatic carbenium ions. In the absence of such interactions in (I) and (II), hydrogen bonding amongst the crown ethers, 4-carboxypyridinium cations and water molecules has the most obvious role in organizing the structures of the complexes. Sulfur-substituted pyridinium salts of 18-crown-6 have been structurally characterized by Fonari et al. (2007). There is a similarity with this work in that the solvent water molecules again play important roles in binding neighbouring molecules into a corrugated chain. However, a difference is that the N atom of the pyridine ring in thionicotinamide has no connection with 18-crown-6, whilst the N atom of a thioamide group interacts with two crown ether O atoms, rather than the one interaction seen here.

Finally, this study is also relevant to our systematic investigation of dielectric, ferroelectric and phase-transition materials (Ye et al., 2010; Zhang et al., 2010), including organic compounds, metal–organic coordination compounds and organic–inorganic hybrids. The measurement of the dielectric constant of (I) as a function of temperature showed that the permittivity is basically temperature independent (dielectric constant of 2–4) below room temperature. Such a dielectric response suggests that this compound might not undergo a distinct structural phase transition in the lower-temperature range. Similarly, in the range from room temperature to near its melting point (m.p. > 470 K), the dielectric constant increases smoothly from 4 to 11 as a function of temperature, and no dielectric anomaly was observed.

Related literature top

For related literature, see: Buschmann et al. (2001); Chen et al. (2009); Doxsee et al. (2000); Fender et al. (2002); Fonari et al. (2007); Jebas et al. (2006); Johnson et al. (2000); Lamsa et al. (1998); Rieger & Muclring (2005); Ye et al. (2010); Zhang et al. (2010); Zhao & Qu (2010).

Experimental top

Isonicotinic acid (2 mmol, 0.246 g) and perchloric acid (75%, 2 mmol, 0.267 g) or tetrafluoroboric acid (50%, 2 mmol, 0.328 g) were dissolved in water (20 ml). An ethanol solution (20 ml) containing 18-crown-6 (2 mmol, 0.528 g) was then added to the solution. Single crystals of (I) and (II) suitable for X-ray diffraction analysis were obtained via slow evaporation of the ethanol–water solution at room temperature over a period of two weeks. All crystals were colourless and of prismatic habit. Caution! Please note that perchlorate salts are shock sensitive and should be handled with care.

Refinement top

Both the perchlorate and tetrafluoroborate anions were modelled as disordered over two sites. The site-occupancy factors of the majority component refined to 0.675 (4) and 0.656 (4) for (I) and (II), respectively. All bond lengths in the anions were restrained to reasonable distances [1.42 (1) and 1.38 (1) Å for Cl—O and B—F, respectively], and rigid-bond and similarity restraints were also applied to all atoms of the anions to ensure reasonable displacement parameters were obtained. Constraints were added to give equivalent displacement parameters for the corresponding atoms of the minor and major disorder components. Rigid-bond restraints were also applied to the displacement parameters of atoms C1 and C2 in (I), and C5 and C6 in (II).

Please report the Flack parameter for (II) in the CIF, even if it is essentially meaningless, and add a comment here on how the absolute structure of (II) was chosen (e.g. randomly).

All H atoms bound to C atoms were placed in calculated positions and refined in riding mode, with C—H = 0.93 and 0.97 Å for aromatic and methylene C atoms, respectively, and with Uiso(H) = 1.2Ueq(C). All the N- and O-bound H atoms were discernible in the difference electron-density maps. These atoms were placed as found and allowed to refine with the O—H distances restrained to 0.85 (2) Å, and N—H distances restrained to 0.86 (2) and 0.87 (2) Å in (I) and (II), respectively. Additionally, H···H distance restraints of 1.33 (3) and 1.40 (3) Å were applied for the water molecules in (I) and (II), respectively. For water H atoms, Uiso(H) = 1.5Ueq(O), and for others Uiso(H) = 1.2Ueq(parent). In total, each structure had 86 restraints imposed.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and the disordered anion. Displacement ellipsoids are drawn at the 30% probability level. [Please revise with all labelling the same size]
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms which are not involved in hydrogen bonds have been omitted.
[Figure 3] Fig. 3. The molecular structure of compound (II), showing the atom-labelling scheme and the disordered anion. Displacement ellipsoids are drawn at the 30% probability level. [Please revise with all labelling the same size]
[Figure 4] Fig. 4. The packing of (II), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms which are not involved in hydrogen bonds have been omitted.
(I) 4-Carboxypyridinium perchlorate 18-crown-6 dihydrate clathrate top
Crystal data top
C6H6NO2+·ClO4·C12H24O6·2H2OF(000) = 1112
Mr = 523.91Dx = 1.347 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 20523 reflections
a = 14.668 (3) Åθ = 3.0–27.5°
b = 10.242 (2) ŵ = 0.21 mm1
c = 17.191 (3) ÅT = 293 K
V = 2582.7 (9) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
5913 independent reflections
Radiation source: fine-focus sealed tube3940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.958, Tmax = 0.958l = 2222
25360 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3025P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5913 reflectionsΔρmax = 0.26 e Å3
341 parametersΔρmin = 0.22 e Å3
86 restraintsAbsolute structure: Flack (1983), with 2856 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C6H6NO2+·ClO4·C12H24O6·2H2OV = 2582.7 (9) Å3
Mr = 523.91Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.668 (3) ŵ = 0.21 mm1
b = 10.242 (2) ÅT = 293 K
c = 17.191 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
5913 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3940 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.958Rint = 0.068
25360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148Δρmax = 0.26 e Å3
S = 1.03Δρmin = 0.22 e Å3
5913 reflectionsAbsolute structure: Flack (1983), with 2856 Friedel pairs
341 parametersAbsolute structure parameter: 0.03 (8)
86 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.67441 (16)0.8131 (3)0.93376 (17)0.0732 (8)
N10.17397 (19)0.8423 (3)0.80658 (17)0.0548 (7)
H1A0.166 (2)0.794 (3)0.8463 (17)0.066*
C170.19121 (17)1.0380 (3)0.70225 (17)0.0421 (6)
C180.1977 (2)1.1524 (3)0.6472 (2)0.0554 (8)
O40.4708 (2)0.9027 (3)0.70453 (16)0.0808 (8)
O10.55387 (18)0.6027 (3)0.93773 (14)0.0694 (7)
C150.1343 (2)0.9330 (3)0.68718 (18)0.0492 (7)
H15A0.10140.92880.64100.059*
O60.43690 (19)0.5007 (3)0.82712 (18)0.0806 (8)
C130.2298 (2)0.9409 (4)0.8230 (2)0.0606 (9)
H13A0.26240.94170.86940.073*
O80.1399 (2)1.1455 (3)0.59110 (18)0.0902 (10)
H8C0.148 (4)1.213 (3)0.564 (3)0.108*
C140.2389 (2)1.0409 (3)0.77092 (19)0.0552 (8)
H14A0.27731.11070.78200.066*
O50.41844 (16)0.6386 (3)0.68586 (17)0.0794 (8)
O70.2502 (2)1.2393 (3)0.65744 (19)0.1049 (12)
O30.6157 (2)0.9755 (3)0.8090 (2)0.0848 (8)
C160.1271 (2)0.8352 (3)0.7415 (2)0.0558 (8)
H16A0.08920.76410.73220.067*
C20.6086 (3)0.7995 (5)0.9934 (3)0.0857 (13)
H2A0.55270.84330.97840.103*
H2B0.63080.83951.04090.103*
C10.5902 (3)0.6578 (5)1.0070 (2)0.0853 (12)
H1B0.64620.61351.02110.102*
H1C0.54710.64751.04930.102*
C110.4954 (3)0.4200 (4)0.8719 (3)0.0892 (14)
H11A0.55220.40690.84420.107*
H11B0.46710.33540.87940.107*
C80.3735 (3)0.7447 (7)0.6490 (3)0.1042 (19)
H8A0.32600.77840.68270.125*
H8B0.34530.71530.60100.125*
C120.5142 (3)0.4790 (4)0.9477 (3)0.0834 (13)
H12A0.45790.48740.97690.100*
H12B0.55520.42340.97700.100*
C100.4085 (4)0.4422 (5)0.7558 (3)0.1030 (18)
H10A0.37020.36720.76660.124*
H10B0.46140.41260.72690.124*
C40.6375 (4)1.0283 (5)0.8833 (4)0.1128 (18)
H4A0.58321.03180.91540.135*
H4B0.66091.11640.87750.135*
C70.4384 (4)0.8457 (6)0.6325 (3)0.1005 (17)
H7A0.41020.91270.60070.121*
H7B0.48940.80960.60370.121*
C30.7065 (3)0.9451 (5)0.9201 (4)0.1033 (17)
H3A0.76010.94190.88710.124*
H3B0.72430.98370.96940.124*
C50.5573 (4)1.0632 (5)0.7697 (4)0.1104 (18)
H5A0.58791.14630.76260.133*
H5B0.50291.07800.80060.133*
C60.5319 (4)1.0088 (5)0.6938 (3)0.1129 (18)
H6A0.50311.07580.66230.136*
H6B0.58610.97900.66670.136*
C90.3574 (3)0.5384 (6)0.7094 (3)0.1018 (17)
H9A0.33110.49650.66410.122*
H9B0.30840.57530.74020.122*
O90.4119 (2)0.7797 (3)0.85185 (17)0.0831 (8)
H9D0.423 (4)0.813 (4)0.8092 (19)0.125*
H9C0.425 (4)0.700 (2)0.849 (3)0.125*
O100.3751 (3)0.8381 (3)1.00170 (16)0.0868 (10)
H10D0.382 (4)0.825 (5)0.9536 (14)0.130*
H10C0.341 (3)0.906 (4)1.003 (3)0.130*
Cl10.6838 (4)0.8203 (7)0.4845 (3)0.0610 (4)0.675 (4)
O110.6719 (5)0.6969 (6)0.5168 (4)0.1159 (19)0.675 (4)
O120.6986 (5)0.9221 (7)0.5398 (4)0.109 (2)0.675 (4)
O130.6269 (4)0.8669 (5)0.4227 (3)0.0952 (15)0.675 (4)
O140.7724 (4)0.8082 (7)0.4504 (4)0.1271 (18)0.675 (4)
Cl1A0.6797 (8)0.8193 (14)0.4803 (8)0.0610 (4)0.325 (4)
O11A0.6342 (11)0.7462 (13)0.5359 (10)0.1159 (19)0.325 (4)
O12A0.7337 (11)0.9254 (15)0.5039 (9)0.109 (2)0.325 (4)
O13A0.5902 (8)0.8656 (12)0.4637 (7)0.0952 (15)0.325 (4)
O14A0.7045 (9)0.7600 (15)0.4097 (8)0.1271 (18)0.325 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0648 (16)0.0837 (18)0.0711 (17)0.0084 (13)0.0002 (14)0.0321 (14)
N10.0630 (16)0.0556 (17)0.0459 (16)0.0104 (14)0.0099 (14)0.0135 (13)
C170.0426 (14)0.0476 (15)0.0362 (14)0.0013 (12)0.0045 (13)0.0014 (12)
C180.069 (2)0.0519 (19)0.0450 (18)0.0113 (16)0.0043 (17)0.0055 (15)
O40.1000 (18)0.0827 (19)0.0596 (16)0.0179 (16)0.0013 (15)0.0127 (14)
O10.0816 (16)0.0739 (17)0.0526 (14)0.0020 (13)0.0036 (13)0.0116 (13)
C150.0535 (16)0.0501 (18)0.0440 (17)0.0093 (13)0.0062 (14)0.0040 (14)
O60.0847 (17)0.0647 (17)0.092 (2)0.0121 (14)0.0094 (16)0.0161 (15)
C130.063 (2)0.071 (2)0.0474 (18)0.0092 (18)0.0086 (16)0.0043 (17)
O80.119 (2)0.0719 (17)0.080 (2)0.0371 (17)0.0454 (19)0.0353 (15)
C140.0576 (19)0.060 (2)0.0479 (18)0.0069 (16)0.0077 (15)0.0038 (16)
O50.0556 (13)0.106 (2)0.0768 (17)0.0013 (14)0.0059 (13)0.0237 (16)
O70.134 (2)0.094 (2)0.087 (2)0.070 (2)0.034 (2)0.0342 (18)
O30.0976 (19)0.0564 (15)0.100 (2)0.0160 (15)0.0060 (18)0.0126 (16)
C160.0584 (19)0.0465 (18)0.063 (2)0.0071 (15)0.0010 (17)0.0012 (16)
C20.067 (2)0.116 (3)0.074 (3)0.006 (2)0.006 (2)0.040 (3)
C10.067 (2)0.147 (3)0.0426 (19)0.013 (2)0.0038 (18)0.010 (2)
C110.100 (3)0.046 (2)0.121 (4)0.009 (2)0.036 (3)0.005 (2)
C80.077 (3)0.159 (5)0.077 (3)0.038 (3)0.034 (3)0.033 (3)
C120.079 (3)0.080 (3)0.091 (3)0.010 (2)0.027 (2)0.037 (2)
C100.105 (4)0.083 (3)0.120 (4)0.045 (3)0.022 (3)0.049 (3)
C40.124 (4)0.070 (3)0.144 (5)0.018 (3)0.022 (4)0.043 (3)
C70.113 (4)0.133 (4)0.056 (3)0.040 (4)0.022 (3)0.013 (3)
C30.085 (3)0.087 (3)0.137 (5)0.020 (3)0.017 (3)0.048 (3)
C50.137 (5)0.053 (3)0.142 (5)0.005 (3)0.019 (4)0.015 (3)
C60.159 (5)0.078 (3)0.101 (4)0.012 (3)0.016 (4)0.044 (3)
C90.070 (3)0.142 (5)0.094 (3)0.034 (3)0.005 (3)0.052 (3)
O90.115 (2)0.0756 (19)0.0590 (16)0.0303 (17)0.0141 (16)0.0058 (15)
O100.138 (3)0.0602 (17)0.0621 (18)0.0224 (15)0.0279 (17)0.0175 (13)
Cl10.0777 (7)0.0490 (4)0.0563 (8)0.0045 (5)0.0018 (6)0.0033 (5)
O110.153 (6)0.066 (3)0.129 (4)0.003 (3)0.017 (3)0.030 (3)
O120.130 (5)0.080 (2)0.117 (6)0.019 (3)0.044 (4)0.025 (4)
O130.107 (4)0.100 (3)0.078 (4)0.017 (3)0.026 (3)0.017 (3)
O140.108 (4)0.147 (4)0.127 (4)0.015 (3)0.029 (3)0.004 (3)
Cl1A0.0777 (7)0.0490 (4)0.0563 (8)0.0045 (5)0.0018 (6)0.0033 (5)
O11A0.153 (6)0.066 (3)0.129 (4)0.003 (3)0.017 (3)0.030 (3)
O12A0.130 (5)0.080 (2)0.117 (6)0.019 (3)0.044 (4)0.025 (4)
O13A0.107 (4)0.100 (3)0.078 (4)0.017 (3)0.026 (3)0.017 (3)
O14A0.108 (4)0.147 (4)0.127 (4)0.015 (3)0.029 (3)0.004 (3)
Geometric parameters (Å, º) top
O2—C21.415 (5)C8—C71.435 (8)
O2—C31.451 (6)C8—H8A0.9700
N1—C161.316 (5)C8—H8B0.9700
N1—C131.331 (5)C12—H12A0.9700
N1—H1A0.853 (19)C12—H12B0.9700
C17—C141.372 (4)C10—C91.473 (8)
C17—C151.387 (4)C10—H10A0.9700
C17—C181.509 (4)C10—H10B0.9700
C18—O71.190 (4)C4—C31.467 (7)
C18—O81.286 (4)C4—H4A0.9700
O4—C61.422 (6)C4—H4B0.9700
O4—C71.449 (6)C7—H7A0.9700
O1—C121.405 (5)C7—H7B0.9700
O1—C11.421 (5)C3—H3A0.9700
C15—C161.373 (5)C3—H3B0.9700
C15—H15A0.9300C5—C61.468 (8)
O6—C111.419 (6)C5—H5A0.9700
O6—C101.426 (6)C5—H5B0.9700
C13—C141.367 (5)C6—H6A0.9700
C13—H13A0.9300C6—H6B0.9700
O8—H8C0.84 (2)C9—H9A0.9700
C14—H14A0.9300C9—H9B0.9700
O5—C91.420 (6)O9—H9D0.83 (2)
O5—C81.421 (6)O9—H9C0.84 (2)
O3—C51.413 (6)O10—H10D0.84 (2)
O3—C41.424 (6)O10—H10C0.85 (2)
C16—H16A0.9300Cl1—O111.392 (6)
C2—C11.494 (6)Cl1—O121.428 (6)
C2—H2A0.9700Cl1—O141.430 (7)
C2—H2B0.9700Cl1—O131.432 (6)
C1—H1B0.9700Cl1A—O11A1.386 (9)
C1—H1C0.9700Cl1A—O12A1.404 (9)
C11—C121.462 (7)Cl1A—O14A1.405 (10)
C11—H11A0.9700Cl1A—O13A1.425 (10)
C11—H11B0.9700
C2—O2—C3115.5 (3)H12A—C12—H12B108.2
C16—N1—C13122.9 (3)O6—C10—C9109.5 (4)
C16—N1—H1A125 (3)O6—C10—H10A109.8
C13—N1—H1A111 (3)C9—C10—H10A109.8
C14—C17—C15118.9 (3)O6—C10—H10B109.8
C14—C17—C18119.4 (3)C9—C10—H10B109.8
C15—C17—C18121.6 (3)H10A—C10—H10B108.2
O7—C18—O8125.4 (3)O3—C4—C3108.7 (4)
O7—C18—C17121.9 (3)O3—C4—H4A109.9
O8—C18—C17112.7 (3)C3—C4—H4A109.9
C6—O4—C7113.8 (4)O3—C4—H4B109.9
C12—O1—C1114.3 (3)C3—C4—H4B109.9
C16—C15—C17119.0 (3)H4A—C4—H4B108.3
C16—C15—H15A120.5C8—C7—O4109.8 (4)
C17—C15—H15A120.5C8—C7—H7A109.7
C11—O6—C10113.5 (4)O4—C7—H7A109.7
N1—C13—C14119.3 (3)C8—C7—H7B109.7
N1—C13—H13A120.3O4—C7—H7B109.7
C14—C13—H13A120.3H7A—C7—H7B108.2
C18—O8—H8C106 (4)O2—C3—C4112.8 (4)
C13—C14—C17119.9 (3)O2—C3—H3A109.0
C13—C14—H14A120.1C4—C3—H3A109.0
C17—C14—H14A120.1O2—C3—H3B109.0
C9—O5—C8112.8 (4)C4—C3—H3B109.0
C5—O3—C4108.8 (4)H3A—C3—H3B107.8
N1—C16—C15119.9 (3)O3—C5—C6109.7 (4)
N1—C16—H16A120.1O3—C5—H5A109.7
C15—C16—H16A120.1C6—C5—H5A109.7
O2—C2—C1109.4 (3)O3—C5—H5B109.7
O2—C2—H2A109.8C6—C5—H5B109.7
C1—C2—H2A109.8H5A—C5—H5B108.2
O2—C2—H2B109.8O4—C6—C5109.5 (4)
C1—C2—H2B109.8O4—C6—H6A109.8
H2A—C2—H2B108.2C5—C6—H6A109.8
O1—C1—C2108.8 (3)O4—C6—H6B109.8
O1—C1—H1B109.9C5—C6—H6B109.8
C2—C1—H1B109.9H6A—C6—H6B108.2
O1—C1—H1C109.9O5—C9—C10108.5 (3)
C2—C1—H1C109.9O5—C9—H9A110.0
H1B—C1—H1C108.3C10—C9—H9A110.0
O6—C11—C12110.9 (3)O5—C9—H9B110.0
O6—C11—H11A109.5C10—C9—H9B110.0
C12—C11—H11A109.5H9A—C9—H9B108.4
O6—C11—H11B109.5H9D—O9—H9C108 (4)
C12—C11—H11B109.5H10D—O10—H10C102 (3)
H11A—C11—H11B108.0O11—Cl1—O12114.6 (6)
O5—C8—C7109.4 (3)O11—Cl1—O14101.5 (6)
O5—C8—H8A109.8O12—Cl1—O14101.4 (5)
C7—C8—H8A109.8O11—Cl1—O13121.7 (6)
O5—C8—H8B109.8O12—Cl1—O13109.8 (6)
C7—C8—H8B109.8O14—Cl1—O13104.7 (5)
H8A—C8—H8B108.3O11A—Cl1A—O12A119.3 (14)
O1—C12—C11110.0 (3)O11A—Cl1A—O14A119.1 (13)
O1—C12—H12A109.7O12A—Cl1A—O14A116.0 (13)
C11—C12—H12A109.7O11A—Cl1A—O13A82.7 (11)
O1—C12—H12B109.7O12A—Cl1A—O13A108.7 (13)
C11—C12—H12B109.7O14A—Cl1A—O13A102.1 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.85 (2)1.86 (2)2.704 (4)168 (4)
N1—H1A···O1i0.85 (2)2.51 (4)2.916 (4)110 (3)
O8—H8C···O10ii0.84 (2)1.70 (3)2.510 (4)159 (5)
O9—H9D···O40.83 (2)2.14 (2)2.957 (4)172 (6)
O9—H9C···O60.84 (2)2.08 (2)2.913 (4)169 (6)
O9—H9C···O10.84 (2)2.62 (5)3.131 (4)120 (5)
O10—H10D···O90.84 (2)1.86 (2)2.699 (4)171 (5)
O10—H10C···O12iii0.85 (2)1.96 (3)2.762 (8)155 (5)
O10—H10C···O12Aiii0.85 (2)2.05 (3)2.901 (17)176 (5)
O10—H10C···O13Aiii0.85 (2)2.64 (5)3.146 (13)119 (4)
O10—H10C···Cl1iii0.85 (2)2.85 (3)3.616 (7)151 (5)
O10—H10C···Cl1Aiii0.85 (2)2.86 (4)3.618 (14)149 (5)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y+2, z+1/2.
(II) 4-Carboxypyridinium tetrafluoroborate 18-crown-6 dihydrate clathrate top
Crystal data top
C6H6NO2+·BF4·C12H24O6·2H2OF(000) = 1080
Mr = 511.27Dx = 1.332 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 19301 reflections
a = 14.634 (3) Åθ = 3.0–27.5°
b = 10.177 (2) ŵ = 0.12 mm1
c = 17.116 (3) ÅT = 293 K
V = 2549.0 (9) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
5828 independent reflections
Radiation source: fine-focus sealed tube3477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.976, Tmax = 0.976l = 2222
25207 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0934P)2 + 0.339P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5828 reflectionsΔρmax = 0.32 e Å3
342 parametersΔρmin = 0.24 e Å3
86 restraintsAbsolute structure: Flack (1983), with 2812 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (13)
Crystal data top
C6H6NO2+·BF4·C12H24O6·2H2OV = 2549.0 (9) Å3
Mr = 511.27Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.634 (3) ŵ = 0.12 mm1
b = 10.177 (2) ÅT = 293 K
c = 17.116 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
5828 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3477 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.976Rint = 0.073
25207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195Δρmax = 0.32 e Å3
S = 1.04Δρmin = 0.24 e Å3
5828 reflectionsAbsolute structure: Flack (1983), with 2812 Friedel pairs
342 parametersAbsolute structure parameter: 0.1 (13)
86 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4346 (2)0.5011 (3)0.4664 (2)0.0812 (9)
O20.41824 (18)0.6402 (3)0.60953 (18)0.0771 (8)
O30.4727 (2)0.9051 (3)0.58982 (17)0.0805 (8)
O40.6166 (2)0.9773 (3)0.4836 (2)0.0843 (9)
O50.67492 (19)0.8111 (3)0.35842 (19)0.0724 (8)
O60.5516 (2)0.6007 (3)0.35511 (16)0.0702 (7)
O70.7490 (3)0.2534 (3)0.6356 (2)0.1030 (12)
O80.6401 (2)0.3497 (3)0.70310 (19)0.0874 (11)
H8C0.636 (4)0.276 (3)0.725 (3)0.105*
O90.8747 (3)0.6550 (3)0.29266 (19)0.0880 (10)
H9C0.856 (4)0.580 (3)0.280 (3)0.132*
H9D0.881 (4)0.662 (6)0.3419 (14)0.132*
O100.5882 (3)0.2162 (3)0.94255 (18)0.0830 (9)
H10C0.575 (4)0.187 (5)0.9886 (19)0.125*
H10D0.561 (4)0.292 (3)0.940 (3)0.125*
N10.6742 (2)0.6547 (3)0.48667 (18)0.0561 (8)
H1C0.668 (3)0.706 (3)0.4468 (18)0.067*
C10.5343 (5)1.0123 (6)0.6002 (3)0.1098 (19)
H1A0.58860.98250.62740.132*
H1B0.50551.08020.63150.132*
C20.5597 (5)1.0660 (5)0.5228 (4)0.1057 (19)
H2A0.50491.08150.49220.127*
H2B0.59101.14920.52940.127*
C30.6383 (5)1.0300 (5)0.4088 (4)0.110 (2)
H3A0.66291.11800.41440.132*
H3B0.58361.03480.37690.132*
C40.7065 (4)0.9433 (5)0.3713 (4)0.0997 (18)
H4A0.72400.98120.32150.120*
H4B0.76070.94030.40390.120*
C50.6101 (3)0.7982 (6)0.2991 (3)0.0865 (14)
H5A0.63320.83730.25130.104*
H5B0.55450.84400.31370.104*
C60.5896 (3)0.6562 (6)0.2856 (2)0.0845 (13)
H6A0.54660.64720.24280.101*
H6B0.64520.61000.27180.101*
C70.5107 (4)0.4772 (5)0.3451 (3)0.0828 (14)
H7A0.55140.42030.31590.099*
H7B0.45440.48660.31570.099*
C80.4910 (4)0.4181 (4)0.4216 (3)0.0867 (15)
H8A0.46090.33410.41420.104*
H8B0.54780.40270.44930.104*
C90.4062 (4)0.4442 (6)0.5396 (4)0.0999 (18)
H9A0.45930.41410.56840.120*
H9B0.36690.36920.52990.120*
C100.3569 (3)0.5432 (6)0.5852 (3)0.0962 (17)
H10A0.30910.58230.55360.115*
H10B0.32860.50230.63040.115*
C110.3749 (4)0.7479 (7)0.6464 (3)0.1017 (19)
H11A0.34680.71900.69480.122*
H11B0.32730.78230.61270.122*
C120.4414 (4)0.8505 (6)0.6628 (3)0.0975 (18)
H12A0.41360.91880.69450.117*
H12B0.49260.81410.69160.117*
C130.6280 (2)0.6632 (4)0.5532 (2)0.0559 (9)
H13A0.59060.73530.56280.067*
C140.6357 (2)0.5652 (3)0.6072 (2)0.0520 (8)
H14A0.60440.57070.65430.062*
C150.6906 (2)0.4575 (3)0.59130 (18)0.0430 (7)
C160.7371 (2)0.4532 (4)0.5207 (2)0.0559 (9)
H16A0.77430.38190.50870.067*
C170.7277 (3)0.5544 (4)0.4691 (2)0.0610 (9)
H17A0.75880.55280.42170.073*
C180.6968 (3)0.3433 (3)0.6457 (2)0.0550 (9)
B10.8147 (6)0.3179 (7)0.3091 (5)0.0692 (12)0.656 (4)
F10.8668 (4)0.3632 (6)0.3710 (3)0.1069 (15)0.656 (4)
F20.8018 (5)0.4174 (6)0.2544 (4)0.1117 (19)0.656 (4)
F30.8247 (5)0.1966 (5)0.2762 (4)0.1196 (19)0.656 (4)
F40.7286 (5)0.3040 (7)0.3391 (4)0.1399 (19)0.656 (4)
B1A0.8189 (9)0.3195 (14)0.3124 (8)0.0692 (12)0.344 (4)
F2A0.7652 (9)0.4211 (13)0.2915 (9)0.1117 (19)0.344 (4)
F1A0.9052 (8)0.3660 (12)0.3307 (7)0.1069 (15)0.344 (4)
F4A0.7994 (9)0.2651 (14)0.3820 (7)0.1399 (19)0.344 (4)
F3A0.8639 (10)0.2458 (11)0.2601 (8)0.1196 (19)0.344 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.089 (2)0.0625 (16)0.092 (2)0.0114 (15)0.0050 (17)0.0153 (17)
O20.0544 (15)0.099 (2)0.078 (2)0.0007 (15)0.0069 (14)0.0165 (17)
O30.104 (2)0.0792 (19)0.0580 (16)0.0130 (17)0.0002 (16)0.0132 (15)
O40.101 (2)0.0604 (17)0.092 (2)0.0157 (16)0.0022 (18)0.0172 (17)
O50.0632 (16)0.0803 (19)0.0737 (18)0.0034 (14)0.0021 (15)0.0289 (15)
O60.0800 (18)0.0766 (18)0.0541 (15)0.0031 (15)0.0026 (13)0.0124 (15)
O70.135 (3)0.091 (2)0.083 (2)0.064 (2)0.031 (2)0.0294 (19)
O80.113 (3)0.0727 (18)0.076 (2)0.0334 (18)0.0372 (18)0.0339 (16)
O90.136 (3)0.0642 (18)0.0640 (18)0.0215 (18)0.0265 (19)0.0182 (16)
O100.114 (3)0.075 (2)0.0603 (18)0.0249 (18)0.0148 (16)0.0011 (15)
N10.0629 (18)0.0568 (18)0.0485 (17)0.0076 (15)0.0077 (15)0.0138 (14)
C10.165 (5)0.074 (3)0.091 (4)0.003 (3)0.009 (4)0.030 (3)
C20.139 (5)0.050 (2)0.127 (5)0.010 (3)0.011 (4)0.010 (3)
C30.123 (5)0.071 (3)0.136 (5)0.014 (3)0.012 (4)0.038 (3)
C40.086 (3)0.081 (3)0.132 (5)0.022 (3)0.006 (3)0.053 (3)
C50.066 (3)0.120 (3)0.074 (3)0.004 (3)0.003 (2)0.043 (3)
C60.067 (3)0.144 (4)0.042 (2)0.010 (3)0.0012 (19)0.008 (3)
C70.086 (3)0.078 (3)0.084 (3)0.013 (2)0.018 (3)0.034 (3)
C80.097 (3)0.045 (2)0.119 (4)0.005 (2)0.028 (3)0.004 (3)
C90.107 (4)0.081 (3)0.112 (4)0.040 (3)0.008 (3)0.035 (3)
C100.072 (3)0.133 (5)0.083 (3)0.033 (3)0.004 (3)0.040 (3)
C110.088 (4)0.143 (5)0.074 (3)0.037 (4)0.032 (3)0.022 (4)
C120.117 (4)0.118 (4)0.058 (3)0.039 (4)0.017 (3)0.011 (3)
C130.052 (2)0.0532 (19)0.062 (2)0.0082 (16)0.0035 (17)0.0007 (18)
C140.0558 (19)0.0475 (18)0.053 (2)0.0106 (15)0.0062 (15)0.0030 (16)
C150.0419 (15)0.0519 (17)0.0353 (15)0.0033 (13)0.0046 (12)0.0017 (14)
C160.057 (2)0.058 (2)0.053 (2)0.0042 (17)0.0076 (16)0.0034 (18)
C170.063 (2)0.076 (2)0.0439 (18)0.008 (2)0.0095 (16)0.0045 (19)
C180.061 (2)0.056 (2)0.0477 (19)0.0146 (17)0.0042 (17)0.0034 (17)
B10.086 (3)0.055 (2)0.066 (3)0.006 (2)0.002 (2)0.004 (2)
F10.117 (4)0.121 (3)0.083 (4)0.024 (3)0.022 (3)0.026 (3)
F20.129 (5)0.088 (2)0.119 (5)0.017 (3)0.041 (3)0.036 (3)
F30.174 (6)0.064 (3)0.121 (4)0.004 (3)0.017 (4)0.023 (3)
F40.126 (4)0.162 (4)0.132 (4)0.014 (3)0.037 (3)0.006 (3)
B1A0.086 (3)0.055 (2)0.066 (3)0.006 (2)0.002 (2)0.004 (2)
F2A0.129 (5)0.088 (2)0.119 (5)0.017 (3)0.041 (3)0.036 (3)
F1A0.117 (4)0.121 (3)0.083 (4)0.024 (3)0.022 (3)0.026 (3)
F4A0.126 (4)0.162 (4)0.132 (4)0.014 (3)0.037 (3)0.006 (3)
F3A0.174 (6)0.064 (3)0.121 (4)0.004 (3)0.017 (4)0.023 (3)
Geometric parameters (Å, º) top
O1—C81.409 (6)C6—H6A0.9700
O1—C91.441 (6)C6—H6B0.9700
O2—C101.398 (6)C7—C81.468 (8)
O2—C111.415 (7)C7—H7A0.9700
O3—C11.426 (7)C7—H7B0.9700
O3—C121.442 (6)C8—H8A0.9700
O4—C21.401 (7)C8—H8B0.9700
O4—C31.423 (7)C9—C101.466 (9)
O5—C51.396 (6)C9—H9A0.9700
O5—C41.439 (6)C9—H9B0.9700
O6—C71.403 (5)C10—H10A0.9700
O6—C61.429 (6)C10—H10B0.9700
O7—C181.203 (4)C11—C121.455 (9)
O8—C181.288 (5)C11—H11A0.9700
O8—H8C0.84 (2)C11—H11B0.9700
O9—H9C0.84 (2)C12—H12A0.9700
O9—H9D0.85 (2)C12—H12B0.9700
O10—H10C0.86 (2)C13—C141.365 (5)
O10—H10D0.87 (2)C13—H13A0.9300
N1—C171.321 (5)C14—C151.386 (4)
N1—C131.327 (5)C14—H14A0.9300
N1—H1C0.865 (19)C15—C161.386 (5)
C1—C21.480 (9)C15—C181.492 (5)
C1—H1A0.9700C16—C171.364 (5)
C1—H1B0.9700C16—H16A0.9300
C2—H2A0.9700C17—H17A0.9300
C2—H2B0.9700B1—F31.365 (7)
C3—C41.480 (8)B1—F41.368 (8)
C3—H3A0.9700B1—F11.384 (7)
C3—H3B0.9700B1—F21.391 (7)
C4—H4A0.9700B1A—F3A1.341 (9)
C4—H4B0.9700B1A—F4A1.344 (10)
C5—C61.493 (7)B1A—F2A1.347 (9)
C5—H5A0.9700B1A—F1A1.384 (10)
C5—H5B0.9700
C8—O1—C9113.7 (4)O1—C8—H8B109.5
C10—O2—C11113.1 (4)C7—C8—H8B109.5
C1—O3—C12112.8 (4)H8A—C8—H8B108.1
C2—O4—C3108.7 (4)O1—C9—C10109.2 (4)
C5—O5—C4114.7 (4)O1—C9—H9A109.8
C7—O6—C6114.8 (4)C10—C9—H9A109.8
C18—O8—H8C110 (4)O1—C9—H9B109.8
H9C—O9—H9D112 (4)C10—C9—H9B109.8
H10C—O10—H10D104 (3)H9A—C9—H9B108.3
C17—N1—C13123.2 (3)O2—C10—C9109.1 (4)
C17—N1—H1C111 (3)O2—C10—H10A109.9
C13—N1—H1C126 (3)C9—C10—H10A109.9
O3—C1—C2109.2 (4)O2—C10—H10B109.9
O3—C1—H1A109.8C9—C10—H10B109.9
C2—C1—H1A109.8H10A—C10—H10B108.3
O3—C1—H1B109.8O2—C11—C12110.0 (4)
C2—C1—H1B109.8O2—C11—H11A109.7
H1A—C1—H1B108.3C12—C11—H11A109.7
O4—C2—C1109.9 (4)O2—C11—H11B109.7
O4—C2—H2A109.7C12—C11—H11B109.7
C1—C2—H2A109.7H11A—C11—H11B108.2
O4—C2—H2B109.7O3—C12—C11108.7 (4)
C1—C2—H2B109.7O3—C12—H12A109.9
H2A—C2—H2B108.2C11—C12—H12A109.9
O4—C3—C4108.4 (4)O3—C12—H12B109.9
O4—C3—H3A110.0C11—C12—H12B109.9
C4—C3—H3A110.0H12A—C12—H12B108.3
O4—C3—H3B110.0N1—C13—C14119.4 (3)
C4—C3—H3B110.0N1—C13—H13A120.3
H3A—C3—H3B108.4C14—C13—H13A120.3
O5—C4—C3114.0 (4)C13—C14—C15119.6 (3)
O5—C4—H4A108.8C13—C14—H14A120.2
C3—C4—H4A108.8C15—C14—H14A120.2
O5—C4—H4B108.8C14—C15—C16118.7 (3)
C3—C4—H4B108.8C14—C15—C18122.0 (3)
H4A—C4—H4B107.6C16—C15—C18119.3 (3)
O5—C5—C6109.9 (4)C17—C16—C15119.4 (3)
O5—C5—H5A109.7C17—C16—H16A120.3
C6—C5—H5A109.7C15—C16—H16A120.3
O5—C5—H5B109.7N1—C17—C16119.8 (3)
C6—C5—H5B109.7N1—C17—H17A120.1
H5A—C5—H5B108.2C16—C17—H17A120.1
O6—C6—C5109.4 (4)O7—C18—O8123.8 (3)
O6—C6—H6A109.8O7—C18—C15122.8 (3)
C5—C6—H6A109.8O8—C18—C15113.4 (3)
O6—C6—H6B109.8F3—B1—F499.2 (7)
C5—C6—H6B109.8F3—B1—F1123.9 (7)
H6A—C6—H6B108.2F4—B1—F1104.7 (7)
O6—C7—C8110.0 (4)F3—B1—F2113.3 (7)
O6—C7—H7A109.7F4—B1—F2101.7 (6)
C8—C7—H7A109.7F1—B1—F2110.4 (7)
O6—C7—H7B109.7F3A—B1A—F4A117.7 (12)
C8—C7—H7B109.7F3A—B1A—F2A122.6 (14)
H7A—C7—H7B108.2F4A—B1A—F2A115.3 (12)
O1—C8—C7110.8 (4)F3A—B1A—F1A83.9 (10)
O1—C8—H8A109.5F4A—B1A—F1A97.7 (11)
C7—C8—H8A109.5F2A—B1A—F1A109.3 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8C···O9i0.84 (2)1.69 (3)2.514 (4)164 (6)
O9—H9C···F20.84 (2)1.89 (2)2.724 (8)173 (7)
O9—H9C···F2A0.84 (2)2.11 (4)2.871 (15)151 (6)
O9—H9C···F1A0.84 (2)2.45 (5)3.046 (13)128 (5)
O9—H9D···O10ii0.85 (2)1.86 (2)2.695 (5)165 (6)
O10—H10C···O3iii0.86 (2)2.09 (2)2.945 (4)170 (6)
O10—H10D···O1iii0.87 (2)2.15 (4)2.924 (4)148 (6)
O10—H10D···O6iii0.87 (2)2.46 (4)3.145 (5)137 (5)
N1—H1C···O50.87 (2)1.86 (2)2.711 (4)170 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z1/2; (iii) x+1, y+1, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H6NO2+·ClO4·C12H24O6·2H2OC6H6NO2+·BF4·C12H24O6·2H2O
Mr523.91511.27
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pna21
Temperature (K)293293
a, b, c (Å)14.668 (3), 10.242 (2), 17.191 (3)14.634 (3), 10.177 (2), 17.116 (3)
V3)2582.7 (9)2549.0 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.210.12
Crystal size (mm)0.20 × 0.20 × 0.200.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Rigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Multi-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.958, 0.9580.976, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
25360, 5913, 3940 25207, 5828, 3477
Rint0.0680.073
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.148, 1.03 0.064, 0.195, 1.04
No. of reflections59135828
No. of parameters341342
No. of restraints8686
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.220.32, 0.24
Absolute structureFlack (1983), with 2856 Friedel pairsFlack (1983), with 2812 Friedel pairs
Absolute structure parameter0.03 (8)0.1 (13)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.853 (19)1.86 (2)2.704 (4)168 (4)
N1—H1A···O1i0.853 (19)2.51 (4)2.916 (4)110 (3)
O8—H8C···O10ii0.84 (2)1.70 (3)2.510 (4)159 (5)
O9—H9D···O40.83 (2)2.14 (2)2.957 (4)172 (6)
O9—H9C···O60.84 (2)2.08 (2)2.913 (4)169 (6)
O9—H9C···O10.84 (2)2.62 (5)3.131 (4)120 (5)
O10—H10D···O90.84 (2)1.86 (2)2.699 (4)171 (5)
O10—H10C···O12iii0.85 (2)1.96 (3)2.762 (8)155 (5)
O10—H10C···O12Aiii0.85 (2)2.05 (3)2.901 (17)176 (5)
O10—H10C···O13Aiii0.85 (2)2.64 (5)3.146 (13)119 (4)
O10—H10C···Cl1iii0.85 (2)2.85 (3)3.616 (7)151 (5)
O10—H10C···Cl1Aiii0.85 (2)2.86 (4)3.618 (14)149 (5)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O8—H8C···O9i0.84 (2)1.69 (3)2.514 (4)164 (6)
O9—H9C···F20.84 (2)1.89 (2)2.724 (8)173 (7)
O9—H9C···F2A0.84 (2)2.11 (4)2.871 (15)151 (6)
O9—H9C···F1A0.84 (2)2.45 (5)3.046 (13)128 (5)
O9—H9D···O10ii0.85 (2)1.86 (2)2.695 (5)165 (6)
O10—H10C···O3iii0.86 (2)2.09 (2)2.945 (4)170 (6)
O10—H10D···O1iii0.87 (2)2.15 (4)2.924 (4)148 (6)
O10—H10D···O6iii0.87 (2)2.46 (4)3.145 (5)137 (5)
N1—H1C···O50.865 (19)1.86 (2)2.711 (4)170 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z1/2; (iii) x+1, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds