Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO2 into the atmosphere when compared with ordinary Portland cement fabrication. However, their formation mechanism has not been studied in detail so far. Here, an in situ high-temperature high-resolution synchrotron X-ray powder diffraction study is reported. Two types of BSA clinkers have been characterized, both containing 50–60 wt% C2S and 20–30 wt% C4A3\underline{\rm S} as main phases. One type is iron-rich and a second type (with different phase assemblage) is aluminium-rich. Furthermore, the C2S phase reacts slowly with water, thus activation of this compound is desirable in order to enhance the mechanical strength development of the resulting cements. To do so, iron-rich BSA clinkers have been doped with minor amounts of B2O3 and Na2O to promote stabilization of α-forms of C2S, which are more reactive with water. The decarbonated raw materials were loaded into Pt tubes and heated to between 973 K and 1673 K, and patterns were collected using a high-energy synchrotron beam of wavelength λ = 0.30 Å. The thermal stability of Klein's salt in these clinkers has been clarified. Several reactions have been followed: formation and decomposition of Klein's salt, melting of aluminates and ferrite, and polymorphic transformations of dicalcium silicate: \alpha_{\rm{H}}^\prime-C2S → α-C2S. Changes in mineralogical phase assemblages at a given temperature owing to the addition of minor amounts of selected elements have also been determined.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds