Download citation
Download citation
link to html
The new quaternary thio­silicate, Li2PbSiS4 (dilithium lead silicon tetra­sulfide), was prepared in an evacuated fused-silica tube via high-temperature, solid-state synthesis at 800 °C, followed by slow cooling. The crystal structure was solved and refined using single-crystal X-ray diffraction data. By strict definition, the title compound crystallizes in the stannite structure type; however, this type of structure can also be described as a compressed chalcopyrite-like structure. The Li+ cation lies on a crystallographic fourfold rotoinversion axis, while the Pb2+ and Si4+ cations reside at the inter­section of the fourfold rotoinversion axis with a twofold axis and a mirror plane. The Li+ and Si4+ cations in this structure are tetra­hedrally coordinated, while the larger Pb2+ cation adopts a distorted eight-coordinate dodeca­hedral coordination. These units join together via corner- and edge-sharing to create a dense, three-dimensional structure. Powder X-ray diffraction indicates that the title compound is the major phase of the reaction product. Electronic structure calculations, performed using the full potential linearized augmented plane wave method within density functional theory (DFT), indicate that Li2PbSiS4 is a semiconductor with an indirect bandgap of 2.22 eV, which compares well with the measured optical bandgap of 2.51 eV. The noncentrosymmetric crystal structure and relatively wide bandgap designate this compound to be of inter­est for IR nonlinear optics.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620015338/ku3266sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620015338/ku3266Isup2.hkl
Contains datablock I

CCDC reference: 2045042

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011) and CrystalMaker (Palmer, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Dilithium lead silicon tetrasulfide top
Crystal data top
Li2PbSiS4Dx = 3.882 Mg m3
Mr = 377.40Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42mCell parameters from 1002 reflections
a = 6.4618 (1) Åθ = 4.1–25.4°
c = 7.7333 (2) ŵ = 27.47 mm1
V = 322.90 (1) Å3T = 296 K
Z = 2Square plate, yellow
F(000) = 3320.06 × 0.06 × 0.02 mm
Data collection top
Bruker SMART APEXII
diffractometer
235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
φ and ω Scans scansθmax = 28.5°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.295, Tmax = 0.435k = 88
1559 measured reflectionsl = 1010
236 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.028(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.44 e Å3
236 reflectionsΔρmin = 0.46 e Å3
14 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.062 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

The following programs were utilized for single-crystal data collection, cell refinement; data reduction, absorption correction, structure solution, structure refinement and molecular graphics, respectively: APEXII (Bruker, 2012); SAINT; SAINT (Bruker, 2012); SADABS (Sheldrick, 1996); SHELXS97 (Sheldrick, 2015); SHELXL97 (Sheldrick, 2015); ShelXle (Hübschle, 2011). CrystalMaker (Palmer, 2014) was used to generate the figures of the cyrstal structure and publCIF (Westrip, 2010) was used to prepare the manuscript.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li0.0000000.5000000.2500000.024 (3)
Pb0.0000000.0000000.5000000.02611 (17)
Si0.0000000.0000000.0000000.0098 (6)
S0.19091 (19)0.19091 (19)0.1569 (2)0.0140 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li0.016 (4)0.016 (4)0.039 (8)0.0000.0000.000
Pb0.0247 (2)0.0247 (2)0.0290 (3)0.0000.0000.000
Si0.0086 (8)0.0086 (8)0.0121 (13)0.0000.0000.000
S0.0126 (5)0.0126 (5)0.0167 (9)0.0030 (7)0.0018 (5)0.0018 (5)
Geometric parameters (Å, º) top
Li—Si2.4554 (6)Pb—Six3.0743 (18)
Li—Sii2.4554 (6)Pb—Sii3.0743 (18)
Li—Siii2.4554 (6)Pb—Sx3.1752 (17)
Li—S2.4554 (6)Pb—Sxi3.1752 (17)
Li—Pbiv3.7652 (1)Pb—Sxii3.1752 (17)
Li—Pbv3.7652 (1)Pb—S3.1752 (17)
Li—Pb3.7652 (1)Si—S2.1252 (17)
Li—Pbvi3.7652 (1)Si—Sxiii2.1253 (17)
Pb—Svii3.0743 (18)Si—Sxiv2.1253 (17)
Pb—Sviii3.0743 (18)Si—Sx2.1253 (17)
Si—Li—Sii145.91 (8)Six—Pb—Sx70.74 (2)
Si—Li—Siii94.93 (2)Sii—Pb—Sx70.74 (2)
Sii—Li—Siii94.93 (2)Svii—Pb—Sxi70.74 (2)
Si—Li—S94.93 (2)Sviii—Pb—Sxi70.74 (2)
Sii—Li—S94.93 (2)Six—Pb—Sxi146.58 (6)
Siii—Li—S145.91 (8)Sii—Pb—Sxi79.924 (19)
Si—Li—Pbiv148.05 (4)Sx—Pb—Sxi134.28 (4)
Sii—Li—Pbiv56.80 (4)Svii—Pb—Sxii70.74 (2)
Siii—Li—Pbiv54.44 (4)Sviii—Pb—Sxii70.74 (2)
S—Li—Pbiv106.30 (4)Six—Pb—Sxii79.924 (19)
Si—Li—Pbv54.44 (4)Sii—Pb—Sxii146.58 (6)
Sii—Li—Pbv106.30 (4)Sx—Pb—Sxii134.28 (4)
Siii—Li—Pbv56.80 (4)Sxi—Pb—Sxii66.66 (6)
S—Li—Pbv148.05 (4)Svii—Pb—S79.924 (19)
Pbiv—Li—Pbv105.287 (1)Sviii—Pb—S146.58 (6)
Si—Li—Pb106.30 (4)Six—Pb—S70.74 (2)
Sii—Li—Pb54.44 (4)Sii—Pb—S70.74 (2)
Siii—Li—Pb148.05 (4)Sx—Pb—S66.66 (6)
S—Li—Pb56.80 (4)Sxi—Pb—S134.28 (4)
Pbiv—Li—Pb105.287 (1)Sxii—Pb—S134.28 (4)
Pbv—Li—Pb118.209 (2)S—Si—Sxiii109.03 (5)
Si—Li—Pbvi56.80 (4)S—Si—Sxiv109.03 (5)
Sii—Li—Pbvi148.05 (4)Sxiii—Si—Sxiv110.35 (9)
Siii—Li—Pbvi106.30 (4)S—Si—Sx110.35 (9)
S—Li—Pbvi54.44 (4)Sxiii—Si—Sx109.03 (5)
Pbiv—Li—Pbvi118.209 (1)Sxiv—Si—Sx109.03 (5)
Pbv—Li—Pbvi105.287 (1)Si—S—Lixv110.36 (4)
Pb—Li—Pbvi105.287 (1)Si—S—Li110.36 (4)
Svii—Pb—Sviii133.49 (6)Lixv—S—Li137.01 (7)
Svii—Pb—Six98.97 (2)Si—S—Pbvi121.92 (7)
Sviii—Pb—Six98.97 (2)Lixv—S—Pbvi85.05 (4)
Svii—Pb—Sii98.97 (2)Li—S—Pbvi85.05 (4)
Sviii—Pb—Sii98.97 (2)Si—S—Pb91.50 (6)
Six—Pb—Sii133.49 (6)Lixv—S—Pb82.87 (4)
Svii—Pb—Sx146.58 (6)Li—S—Pb82.87 (4)
Sviii—Pb—Sx79.923 (19)Pbvi—S—Pb146.58 (6)
Symmetry codes: (i) y+1/2, x+1/2, z+1/2; (ii) y1/2, x+1/2, z+1/2; (iii) x, y+1, z; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y1/2, z+1/2; (ix) y+1/2, x1/2, z+1/2; (x) x, y, z; (xi) y, x, z+1; (xii) y, x, z+1; (xiii) y, x, z; (xiv) y, x, z; (xv) x+1/2, y1/2, z+1/2.
PIEFACE ellisoid data for Li2PbSiS4 top
R1 (Å)R2 (Å)R3 (Å)<R> (Å)σ(R) (Å)SD (Å)Coordination number (CN)
Li2.8752.8751.2472.3330.768-0.5661.27 × 10-64
Pb3.2353.0483.0483.1100.0880.0584.27 × 10-68
S3.2152.4232.1852.6080.4400.1480.2395
Si2.1362.1362.1022.1240.016-0.0161.57 × 10-64
R1, R2, and R3 are ellipsoid radii, <R> is the average radius, σ(R) is the polyhedral distortion, S is the ellipsoid shape parameter, and the center displacement, D, shows the ion displacement relative to the ellipsoid center.
Lattice parameters and tetragonal distortion values (2 - c/a) of `compressed chalcopyrites' crystallizing in the space group I42d top
a (Å)c (Å)Tetragonal distortion (2 - c/a)Reference
I2–II–IV–VI4
Li2CaSiO45.047 (5)6.486 (6)0.715Gard & West (1973)
Li2CaGeO45.141 (2)6.595 (2)0.717Gard & West (1973)
Li2EuGeS46.5447 (4)7.6960 (6)0.824Aitken et al. (2001)
Li2SrSiS46.469 (3)7.689 (7)0.811Yang et al. (2020)
Li2SrGeS46.5420 (15)7.751 (3)0.815Wu et al. (2019)
Li2SrSnS46.659 (5)7.918 (12)0.811Wu et al. (2019)
LI2PbSiS46.4618 (1)7.7333 (2)0.803This work
Li2PbGeS46.5224 (5)7.7603 (8)0.810Aitken et al. (2001)
Li2BaGeS46.638 (4)8.033 (10)0.790Wu et al. (2017)
Li2BaSnS46.774 (7)8.185 (16)0.792Wu et al. (2017)
Li2BaGeSe46.979 (5)8.303 (4)0.810Wu et al. (2017)
Li2BaSnSe47.120 (1)8.45 (2)0.813Wu et al. (2017)
Ag2BaSiS46.75053 (2)7.99643 (3)0.815Sun et al. (2020)
Ag2BaSiSe47.066 (3)8.233 (7)0.835Nian et al. (2018)
Ag2BaGeS46.828.010.826Teske (1979)
Ag2BaGeS46.820 (9)8.021 (2)0.824Chen et al. (2018)
I–II2–V–VI4
KAg2PS46.6471 (7)8.1693 (11)1.229Wu & Bensch (2009)
KAg2AsO45.9033 (8)7.082 (1)1.200Curda et al. (2004)
KAg2AsS46.7504 (5)8.265 (1)0.776Schimek & Kolis (1997)
(NH4)Ag2AsS46.780 (1)8.277 (1)0.779Auernhammer et al. (1993)
KAg2SbS46.886 (1)8.438 (2)0.775Schimek et al. (1996)
Bandgap (Eg) values determined from first principles (calculated) and optical diffuse reflectance spectroscopy (experimental) for selected I2–II–IV–VI4 top
CompoundSpace groupCalculated Eg (eV)Experimental Eg (eV)Reference
Li2SrSiS4I42m2.753.94Yang et al. (2020)
Li2SrGeS4I42m2.213.75Wu et al. (2019)
Li2SrSnS4I42m2.843.1Wu et al. (2019)
Li2PbSiS4I42m2.222.51*This work
Li2PbGeS4I42m2.092.41Aitken et al. (2001)
Li2BaGeS4I42m2.373.07Wu et al. (2017)
Li2BaSnS4I42m2.863.66Wu et al. (2017)
Cu2SrSiS4P31212.323.04Yang et al. (2020)
Cu2PbSiS4P32210.911.69Nhalil et al. (2018)
Ag2PbSiS4Ama22.131.96*Sun et al. (2020)
Ag2PbGeS4Ama21.431.38, 1.68**Nhalil et al. (2018)
Ag2PbGeS4Ama21.927N/A(Vu et al. (2018)
Ag2BaSiS4I42m1.962.2Sun et al. (2020)
Ag2BaGeS4I42m0.622.02Wu et al. (2017)
Notes: (*) impurity phase noted; (**) two linear regions.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds