Download citation
Download citation
link to html
The crystal structure and the results of theoretical calculations for the new organoarsenate salt o-anisidinium di­hydro­arsenate (systematic name: 2-meth­oxy­anilinium di­hydrogen arsenate), C7H10NO+·H2AsO4, are reported. The salt, crystallizing in the triclinic space group P\overline{1}, was synthesized using a solution method and was characterized by single-crystal X-ray diffraction analysis. It possesses a layered supra­molecular architecture in the crystal. The inter­molecular inter­actions were studied using Hirshfeld surface analysis which confirmed that hydrogen bonds and H...H contacts play dominant roles in the crystal structure of the investigated system. An analysis of the electronic structure and mol­ecular modelling using charge distribution confirms the good electrophilic reactivity of the title compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619000172/ku3230sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619000172/ku3230Isup2.hkl
Contains datablock I

CCDC reference: 1886678

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg & Putz, 2005) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

2-Methoxyanilinium dihydrogen arsenate top
Crystal data top
C7H10NO+·H2AsO4Z = 2
Mr = 265.10F(000) = 268
Triclinic, P1Dx = 1.767 Mg m3
a = 5.5235 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.4385 (4) ÅCell parameters from 5519 reflections
c = 10.4633 (5) Åθ = 4.9–71.6°
α = 70.769 (4)°µ = 4.67 mm1
β = 75.984 (4)°T = 100 K
γ = 89.624 (3)°Plate, light pink
V = 498.12 (4) Å30.54 × 0.21 × 0.12 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
1778 independent reflections
Radiation source: micro-focus sealed X-ray tube1769 reflections with I > 2σ(I)
Detector resolution: 5.2195 pixels mm-1Rint = 0.023
ω scansθmax = 67.0°, θmin = 5.0°
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
h = 56
Tmin = 0.118, Tmax = 0.444k = 1111
6075 measured reflectionsl = 1212
Refinement top
Refinement on F223 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0298P)2 + 1.5814P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1778 reflectionsΔρmax = 1.18 e Å3
153 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3599 (7)0.5900 (4)0.2151 (4)0.0272 (7)
C20.2284 (9)0.5662 (5)0.1281 (5)0.0469 (10)
H20.1042660.4874600.1612770.056*
C30.2821 (9)0.6611 (6)0.0107 (5)0.0535 (11)
H30.1922380.6469670.0707210.064*
C40.4672 (7)0.7749 (5)0.0584 (4)0.0380 (9)
H40.5025570.8379800.1512040.046*
C50.6034 (6)0.7983 (4)0.0289 (4)0.0260 (7)
H50.7295970.8760060.0051960.031*
C60.5503 (6)0.7050 (4)0.1676 (3)0.0213 (7)
C70.8484 (8)0.8389 (6)0.2247 (5)0.0449 (10)
H7A0.9785740.8368340.1458700.067*
H7B0.9192490.8323930.3015000.067*
H7C0.7686070.9311720.1998740.067*
N10.3018 (7)0.4979 (3)0.3626 (4)0.0403 (9)
H1A0.419 (6)0.438 (4)0.379 (5)0.048*
H1B0.164 (5)0.442 (5)0.384 (5)0.048*
H1C0.282 (9)0.555 (4)0.414 (4)0.048*
O10.6675 (5)0.7141 (3)0.2650 (2)0.0328 (6)
As10.24779 (6)0.81556 (4)0.54369 (3)0.02194 (15)
O2A0.211 (3)0.6330 (13)0.5512 (10)0.021 (3)0.53 (4)
H4A0.035 (7)0.913 (3)0.652 (4)0.032*
H5A0.577 (8)0.873 (3)0.591 (4)0.032*
O2B0.117 (3)0.6741 (13)0.5214 (11)0.016 (3)0.47 (4)
O30.2758 (4)0.9644 (3)0.4007 (2)0.0311 (6)
O40.0495 (4)0.8451 (3)0.6847 (2)0.0267 (5)
O50.5254 (5)0.7928 (3)0.5888 (3)0.0303 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (18)0.0207 (16)0.0264 (17)0.0031 (13)0.0074 (14)0.0106 (14)
C20.0470 (18)0.0529 (18)0.0444 (17)0.0151 (14)0.0005 (14)0.0288 (14)
C30.0517 (19)0.071 (2)0.0442 (17)0.0086 (15)0.0116 (14)0.0283 (15)
C40.0346 (16)0.0489 (17)0.0282 (15)0.0037 (13)0.0062 (12)0.0113 (13)
C50.0242 (17)0.0240 (16)0.0238 (17)0.0004 (13)0.0007 (13)0.0039 (14)
C60.0194 (15)0.0213 (16)0.0223 (16)0.0034 (12)0.0032 (13)0.0077 (13)
C70.028 (2)0.071 (3)0.041 (2)0.0123 (19)0.0043 (17)0.028 (2)
N10.049 (2)0.0179 (15)0.0332 (18)0.0066 (14)0.0189 (16)0.0030 (13)
O10.0234 (12)0.0477 (16)0.0243 (12)0.0029 (11)0.0071 (10)0.0074 (11)
As10.0240 (2)0.0226 (2)0.0183 (2)0.00798 (14)0.00011 (14)0.00942 (15)
O2A0.021 (5)0.022 (3)0.020 (3)0.002 (4)0.003 (3)0.007 (3)
O2B0.014 (5)0.015 (4)0.020 (3)0.000 (3)0.005 (3)0.007 (3)
O30.0211 (12)0.0489 (15)0.0163 (11)0.0016 (11)0.0047 (9)0.0020 (11)
O40.0239 (12)0.0377 (14)0.0166 (11)0.0090 (10)0.0050 (9)0.0070 (10)
O50.0267 (13)0.0264 (12)0.0317 (13)0.0129 (10)0.0067 (10)0.0027 (11)
Geometric parameters (Å, º) top
C1—C21.365 (6)C7—H7A0.9600
C1—C61.392 (5)C7—H7B0.9600
C1—N11.456 (5)C7—H7C0.9600
C2—C31.392 (7)N1—H1A0.864 (10)
C2—H20.9300N1—H1B0.869 (10)
C3—C41.365 (6)N1—H1C0.871 (10)
C3—H30.9300As1—O2B1.631 (6)
C4—C51.384 (5)As1—O31.656 (2)
C4—H40.9300As1—O51.703 (2)
C5—C61.387 (5)As1—O2A1.710 (8)
C5—H50.9300As1—O41.714 (2)
C6—O11.357 (4)O4—H4A0.819 (10)
C7—O11.431 (5)O5—H5A0.817 (10)
C2—C1—C6121.6 (3)O1—C7—H7C109.5
C2—C1—N1121.1 (4)H7A—C7—H7C109.5
C6—C1—N1117.3 (3)H7B—C7—H7C109.5
C1—C2—C3119.3 (4)C1—N1—H1A110 (3)
C1—C2—H2120.3C1—N1—H1B109 (3)
C3—C2—H2120.3H1A—N1—H1B107 (5)
C4—C3—C2119.7 (4)C1—N1—H1C110 (3)
C4—C3—H3120.2H1A—N1—H1C111 (5)
C2—C3—H3120.2H1B—N1—H1C109 (5)
C3—C4—C5121.3 (4)C6—O1—C7117.2 (3)
C3—C4—H4119.4O2B—As1—O3108.2 (6)
C5—C4—H4119.4O2B—As1—O5118.0 (8)
C4—C5—C6119.5 (3)O3—As1—O5110.12 (12)
C4—C5—H5120.2O3—As1—O2A124.7 (4)
C6—C5—H5120.2O5—As1—O2A93.7 (7)
O1—C6—C5126.1 (3)O2B—As1—O4106.3 (3)
O1—C6—C1115.2 (3)O3—As1—O4110.58 (12)
C5—C6—C1118.7 (3)O5—As1—O4103.41 (12)
O1—C7—H7A109.5O2A—As1—O4111.1 (2)
O1—C7—H7B109.5As1—O4—H4A106 (3)
H7A—C7—H7B109.5As1—O5—H5A109 (3)
C6—C1—C2—C31.4 (6)C2—C1—C6—O1179.1 (3)
N1—C1—C2—C3177.1 (4)N1—C1—C6—O12.4 (4)
C1—C2—C3—C40.9 (7)C2—C1—C6—C51.0 (5)
C2—C3—C4—C50.1 (7)N1—C1—C6—C5177.5 (3)
C3—C4—C5—C60.3 (6)C5—C6—O1—C75.6 (5)
C4—C5—C6—O1179.9 (3)C1—C6—O1—C7174.3 (3)
C4—C5—C6—C10.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2Ai0.87 (4)2.35 (4)3.159 (17)154 (4)
N1—H1A···O5i0.87 (4)2.12 (4)2.825 (4)137 (3)
N1—H1B···O2Aii0.87 (4)2.07 (4)2.905 (16)162 (4)
N1—H1C···O2A0.87 (4)1.78 (4)2.634 (6)167 (5)
O4—H4A···O3iii0.82 (4)1.82 (4)2.634 (3)168 (4)
O5—H5A···O3iviv0.82 (3)1.78 (3)2.594 (4)173 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+2, z+1; (iv) x+1, y+2, z+1.
The geometry of the C—H···π contact in the crystal of 1 top
D—HCgId(D···CgI) (Å)DX···CgI (°)
C7—H7A1v3.664 (5)141 1
Symmetry code: (v) x+1, y, z. Cg1 denotes the geometric centre of gravity of the aromatic rings delineated by the C1A–C6A and C1–C6 atoms (see Fig. 1).
Percentage contribution of intermolecular interactions to the Hirshfeld surface of the cation and the [H2AsO4]- anionic species containing the major (Anionmajor) and minor (Anionminor) components of disordered O atom top
CationH···HO···HC···HC···CO···OC···OAs···O
With Anionmajor42.232.520.22.520.40.2
With Anionminor41.833.720.22.51.20.40.2
AnionO···HH···HO···OAs···HAs···O
Anionmajor77.618.43.30.50.2
Anionminor78.118.53.100.3
Mulliken, PABOON, Loewdin and Natural charges for 1 top
AtomMULLIKEN chargesPABOON chargesLOEWDIN chargesNatural charges
As11.134551.45650.578362.47100
H20.341140.17650.360020.48528
H30.338030.17700.358250.48299
O4-0.59195-0.5229-0.46736-1.00727
O5-0.57098-0.5239-0.44135-1.02149
O6-0.56659-0.5026-0.44495-0.98668
O7-0.52259-0.6445-0.39272-1.01438
C80.107260.0852-0.009340.13660
C90.254650.18380.019060.30287
C10-0.22389-0.0380-0.22698-0.29069
H110.04251-0.00930.184830.22138
C12-0.037400.0145-0.18506-0.21867
H130.05275-0.00980.180550.21685
C14-0.055380.0100-0.18452-0.22300
H150.05380-0.00910.180960.21842
C16-0.145540.0160-0.20111-0.23715
H170.04624-0.00540.185590.22835
C18-0.072670.0202-0.37276-0.21672
H190.107040.02160.165430.17928
H200.118300.03320.182800.20066
H210.103430.01900.165440.17642
N22-0.44534-0.1766-0.44812-0.85203
H230.350650.19620.347510.51061
H240.264840.12290.287650.40643
H250.250470.11250.286140.39769
O26-0.33334-0.2032-0.10833-0.56673
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds