Download citation
Download citation
link to html
We have investigated the polymorphic phase transformations above ambient temperature for 3-chloro-trans-cinnamic acid (3-ClCA, C9H7ClO2) and a solid solution of 3-ClCA and 3-bromo-trans-cinnamic acid (3-BrCA, C9H7BrO2). At 413 K, the γ polymorph of 3-ClCA transforms to the β polymorph. Inter­estingly, the structure of the β polymorph of 3-ClCA obtained in this transformation is different from the structure of the β polymorph of 3-BrCA obtained in the corresponding polymorphic transformation from the γ polymorph of 3-BrCA, even though the γ polymorphs of 3-ClCA and 3-BrCA are isostructural. We also report a high-temperature phase transformation from a γ-type structure to a β-type structure for a solid solution of 3-ClCA and 3-BrCA (with a molar ratio close to 1:1). The γ polymorph of the solid solution is isostructural with the γ polymorphs of pure 3-ClCA and pure 3-BrCA, while the β-type structure produced in the phase transformation is structurally similar to the β polymorph of pure 3-BrCA.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618009269/ku3223sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618009269/ku3223Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618009269/ku3223IIsup3.hkl
Contains datablock II

CCDC references: 1828662; 1828663

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b).

3-(3-Chloro/bromophenyl)prop-2-enoic acid (I) top
Crystal data top
C9H7Br0.43Cl0.57O2F(000) = 405
Mr = 201.49Dx = 1.540 Mg m3
Monoclinic, P21/aCu Kα radiation, λ = 1.54184 Å
a = 12.3957 (8) ÅCell parameters from 1154 reflections
b = 4.9381 (2) Åθ = 6.2–72.3°
c = 14.2102 (12) ŵ = 4.63 mm1
β = 94.871 (6)°T = 296 K
V = 866.68 (10) Å3Needle, colourless
Z = 40.29 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1306 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 73.9°, θmin = 6.3°
Tmin = 0.893, Tmax = 0.969h = 1415
2874 measured reflectionsk = 45
1670 independent reflectionsl = 1715
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1670 reflectionsΔρmax = 0.26 e Å3
123 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.67233 (18)0.6465 (4)0.23649 (16)0.0493 (5)
C20.62396 (18)0.5315 (5)0.31173 (16)0.0528 (5)
H20.5558590.5894810.3259930.063*
C30.6770 (2)0.3315 (5)0.36513 (16)0.0557 (6)
C40.7783 (2)0.2403 (5)0.34630 (19)0.0610 (6)
H40.8132060.1058480.3832260.073*
C50.8267 (2)0.3534 (5)0.27113 (19)0.0629 (6)
H50.8949350.2945240.2575090.075*
C60.77456 (18)0.5532 (5)0.21618 (17)0.0552 (6)
H60.8075420.6259040.1654900.066*
C70.61382 (18)0.8594 (4)0.18165 (17)0.0510 (5)
H70.5462100.9062120.2004280.061*
C80.64617 (17)0.9925 (5)0.10857 (15)0.0513 (5)
H80.7120070.9465550.0859870.062*
C90.58153 (17)1.2110 (4)0.06175 (16)0.0471 (5)
O10.62133 (13)1.3381 (3)0.00454 (13)0.0589 (4)
O20.48893 (13)1.2659 (4)0.08900 (13)0.0594 (5)
Cl10.6164 (7)0.170 (2)0.4567 (5)0.0732 (12)0.575 (4)
Br10.6053 (4)0.1842 (12)0.4661 (2)0.0710 (7)0.425 (4)
H1O0.438 (4)1.450 (11)0.045 (3)0.145 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0526 (11)0.0412 (11)0.0539 (11)0.0002 (9)0.0041 (9)0.0001 (9)
C20.0543 (11)0.0489 (12)0.0557 (11)0.0021 (10)0.0071 (9)0.0010 (10)
C30.0681 (14)0.0493 (12)0.0498 (11)0.0088 (11)0.0064 (10)0.0025 (10)
C40.0654 (14)0.0528 (13)0.0634 (14)0.0014 (11)0.0032 (11)0.0090 (11)
C50.0553 (13)0.0618 (15)0.0716 (15)0.0067 (11)0.0056 (11)0.0064 (12)
C60.0534 (12)0.0523 (13)0.0608 (13)0.0004 (10)0.0096 (10)0.0089 (10)
C70.0493 (11)0.0453 (11)0.0588 (12)0.0021 (9)0.0071 (9)0.0022 (10)
C80.0486 (10)0.0474 (11)0.0587 (12)0.0053 (9)0.0090 (9)0.0025 (10)
C90.0470 (10)0.0435 (10)0.0512 (11)0.0015 (9)0.0071 (9)0.0011 (9)
O10.0573 (9)0.0563 (10)0.0656 (9)0.0072 (7)0.0193 (7)0.0138 (8)
O20.0530 (9)0.0614 (9)0.0657 (10)0.0096 (7)0.0167 (7)0.0126 (8)
Cl10.097 (2)0.0690 (15)0.0584 (15)0.0042 (11)0.0339 (11)0.0167 (14)
Br10.0888 (13)0.0720 (11)0.0543 (8)0.0109 (12)0.0182 (9)0.0098 (7)
Geometric parameters (Å, º) top
C1—C21.391 (3)C5—C61.384 (3)
C1—C61.401 (3)C5—H50.9300
C1—C71.464 (3)C6—H60.9300
C2—C31.378 (3)C7—C81.320 (3)
C2—H20.9300C7—H70.9300
C3—C41.381 (4)C8—C91.469 (3)
C3—Cl11.7504 (10)C8—H80.9300
C3—Br11.896 (4)C9—O11.266 (3)
C4—C51.387 (4)C9—O21.271 (3)
C4—H40.9300O2—H1O1.24 (5)
C2—C1—C6118.7 (2)C6—C5—H5119.7
C2—C1—C7118.4 (2)C4—C5—H5119.7
C6—C1—C7122.8 (2)C5—C6—C1120.4 (2)
C3—C2—C1120.0 (2)C5—C6—H6119.8
C3—C2—H2120.0C1—C6—H6119.8
C1—C2—H2120.0C8—C7—C1127.4 (2)
C2—C3—C4121.7 (2)C8—C7—H7116.3
C2—C3—Cl1121.5 (4)C1—C7—H7116.3
C4—C3—Cl1116.7 (4)C7—C8—C9122.11 (19)
C2—C3—Br1117.3 (3)C7—C8—H8118.9
C4—C3—Br1120.9 (3)C9—C8—H8118.9
Cl1—C3—Br14.9 (6)O1—C9—O2122.7 (2)
C3—C4—C5118.6 (2)O1—C9—C8117.97 (18)
C3—C4—H4120.7O2—C9—C8119.37 (19)
C5—C4—H4120.7C9—O2—H1O115.5 (19)
C6—C5—C4120.6 (2)
3-(3-Chloro/bromophenyl)prop-2-enoic acid (II) top
Crystal data top
C9H7Br0.49Cl0.51O2F(000) = 823
Mr = 204.38Dx = 1.578 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 19.054 (5) ÅCell parameters from 946 reflections
b = 3.9451 (7) Åθ = 3.9–71.3°
c = 24.661 (5) ŵ = 4.83 mm1
β = 111.81 (3)°T = 296 K
V = 1721.1 (7) Å3Needle, colourless
Z = 80.19 × 0.05 × 0.04 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1181 reflections with I > 2σ(I)
ω scansRint = 0.052
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 74.4°, θmin = 3.9°
Tmin = 0.961, Tmax = 0.987h = 1423
5012 measured reflectionsk = 44
1706 independent reflectionsl = 3026
Refinement top
Refinement on F222 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.074P)2 + 0.5938P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1706 reflectionsΔρmax = 0.40 e Å3
120 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5351 (2)0.6106 (11)0.61622 (17)0.0616 (10)
C20.5504 (2)0.5294 (10)0.67517 (15)0.0591 (9)
H20.5148050.5793750.6915540.071*
C30.6161 (2)0.3799 (10)0.70801 (16)0.0616 (9)
C40.6709 (2)0.2960 (10)0.6851 (2)0.0679 (10)
H40.7156080.1888660.7079070.081*
C50.6565 (3)0.3769 (13)0.6280 (2)0.0789 (13)
H50.6925300.3266090.6120530.095*
C60.5904 (2)0.5301 (13)0.59378 (19)0.0719 (11)
H60.5822050.5812250.5550830.086*
C70.4650 (2)0.7733 (10)0.57900 (17)0.0631 (10)
H70.4609760.8220570.5410640.076*
C80.4064 (2)0.8600 (11)0.59242 (17)0.0646 (10)
H80.4082650.8126650.6298700.078*
C90.3394 (2)1.0250 (12)0.55188 (16)0.0663 (10)
Cl10.6387 (4)0.293 (3)0.7821 (3)0.0674 (16)0.506 (7)
Br10.6347 (3)0.2667 (15)0.78648 (14)0.0824 (12)0.494 (7)
O10.28940 (18)1.1178 (10)0.57129 (13)0.0892 (11)
H10.2542471.2075870.5449810.134*0.5
O20.33317 (19)1.0789 (11)0.49960 (12)0.0858 (10)
H2A0.2931001.1762900.4820340.129*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (2)0.066 (2)0.057 (2)0.0153 (18)0.0263 (17)0.0109 (17)
C20.069 (2)0.060 (2)0.057 (2)0.0114 (17)0.0325 (18)0.0071 (17)
C30.071 (2)0.059 (2)0.058 (2)0.0061 (18)0.0291 (18)0.0015 (17)
C40.067 (2)0.060 (2)0.084 (3)0.0015 (18)0.035 (2)0.0032 (19)
C50.076 (3)0.091 (3)0.085 (3)0.004 (2)0.047 (2)0.012 (2)
C60.081 (3)0.081 (3)0.064 (2)0.014 (2)0.039 (2)0.009 (2)
C70.077 (2)0.064 (2)0.052 (2)0.0116 (19)0.0271 (18)0.0058 (17)
C80.076 (2)0.068 (2)0.051 (2)0.0069 (19)0.0248 (18)0.0009 (17)
C90.071 (2)0.076 (3)0.051 (2)0.011 (2)0.0219 (18)0.0059 (19)
Cl10.065 (2)0.073 (3)0.062 (3)0.0005 (17)0.020 (2)0.020 (2)
Br10.106 (2)0.086 (2)0.0679 (12)0.0151 (14)0.0463 (12)0.0122 (10)
O10.081 (2)0.128 (3)0.0655 (19)0.013 (2)0.0348 (16)0.0167 (18)
O20.088 (2)0.120 (3)0.0515 (15)0.0137 (19)0.0292 (14)0.0065 (16)
Geometric parameters (Å, º) top
C1—C61.396 (6)C5—H50.9300
C1—C21.410 (5)C6—H60.9300
C1—C71.459 (6)C7—C81.321 (6)
C2—C31.348 (6)C7—H70.9300
C2—H20.9300C8—C91.451 (6)
C3—C41.400 (6)C8—H80.9300
C3—Cl11.748 (6)C9—O21.268 (5)
C3—Br11.887 (5)C9—O11.269 (5)
C4—C51.369 (7)O1—H10.8200
C4—H40.9300O2—H2A0.8200
C5—C61.369 (7)
C6—C1—C2117.4 (4)C4—C5—H5119.2
C6—C1—C7120.0 (4)C6—C5—H5119.2
C2—C1—C7122.6 (4)C5—C6—C1120.9 (4)
C3—C2—C1120.6 (3)C5—C6—H6119.6
C3—C2—H2119.7C1—C6—H6119.6
C1—C2—H2119.7C8—C7—C1128.1 (4)
C2—C3—C4121.8 (4)C8—C7—H7115.9
C2—C3—Cl1121.8 (4)C1—C7—H7115.9
C4—C3—Cl1116.4 (4)C7—C8—C9123.5 (4)
C2—C3—Br1119.9 (3)C7—C8—H8118.2
C4—C3—Br1118.3 (4)C9—C8—H8118.2
Cl1—C3—Br13.8 (5)O2—C9—O1122.3 (4)
C5—C4—C3117.8 (4)O2—C9—C8120.2 (4)
C5—C4—H4121.1O1—C9—C8117.5 (3)
C3—C4—H4121.1C9—O1—H1109.5
C4—C5—C6121.6 (4)C9—O2—H2A109.5
Crystallographic data for the γ-type and β(Br)-type structures of the 3-(Cl/Br)CA solid solution determined before and after the phase transformation from the γ-type structure to the β(Br)-type structure top
Compound3-(Cl0.57/Br0.43)CA3-(Cl0.50/Br0.50)CA
Polymorphγβ(Br)
Mr200.99204.38
T (K)296 (1)150 (1)
Crystal systemMonoclinicMonoclinic
Space groupP21/aC2/c
a (Å)12.3957 (8)19.054 (5)
b (Å)4.9381 (2)3.9451 (7)
c (Å)14.2102 (12)24.661 (5)
α (°)9090
β (°)94.871 (6)111.81 (3)
γ (°)9090
V3)866.68 (10)1721.1 (7)
Z48
Wavelength (Å)1.541841.54184
σ(calc) (Mg m-3)1.5401.578
µ (mm-1)4.6274.828
Occupancies 3-ClCA/3-BrCA0.575 (4)/0.425 (4)0.506 (7)/0.494 (7)
Crystal size (mm)0.289 × 0.098 × 0.0480.185 × 0.052 × 0.043
Reflections collected28745012
Independent reflections16701706
Rint0.04400.0522
R1 [I > 2σ(I)]0.03720.0494
wR2 [I > 2σ(I)]0.09370.1308
R1 (all data)0.04840.0763
wR2 (all data)0.10150.1516
Crystallographic data for the β and γ polymorphs of pure 3-ClCA and pure 3-BrCA reported in previous publications top
Compound3-ClCA3-BrCA3-ClCA3-BrCA
Polymorphγγββ
ReferenceKariuki et al. (1996)Ahn et al. (2001)Kanao et al. (1990)Kanao et al. (1990)
T (K)293293295295
Space groupP21/aP21/aP1?C2/c
a (Å)12.400 (1)12.389 (2)8.618 (4)19.191 (6)
b (Å)4.9560 (4)4.933 (5)13.627 (5)3.9879 (3)
c (Å)13.943 (1)14.411 (2)3.909 (1)24.798 (7)
α (°)9090106.77 (3)90
β (°)94.265 (3)95.426 (5)96.26 (3)113.05 (2)
γ (°)909075.71 (3)90
V3)854.486876.781425.5861746.319
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds