Download citation
Download citation
link to html
The crystal structure of the lanthanum titanium bis­muthide La3TiBi5 (Pearson code hP18, Wyckoff sequence b d g2) has been established from single-crystal X-ray diffraction data and analyzed in detail using first-principles calculations. There are no anomalies pertaining to the atomic displacement parameter of the Ti site, previously reported based on a powder X-ray diffraction analysis of this compound. The anionic substructure contains columns of face-sharing TiBi6 octa­hedra and linear Bi chains. Due to a significant La(5d) and Bi(6p) orbital mixing, a perfectly one-dimensional character of the Bi chains is not realised, while a three-dimensional electronic structure is established instead. The latter fact explains the stability of the polyanionic pnictide units against Peierls distortions. The hypervalent bonding in the Bi chains is reflected in a rather long Bi—Bi distance of 3.2264 (4) Å and a typical pattern of bonding and anti­bonding inter­actions, as revealed by electronic structure calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961800565X/ku3221sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961800565X/ku3221Isup2.hkl
Contains datablock I

CCDC reference: 1836277

Computing details top

Data collection: SMART (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Trilanthanum titanium pentabismuthide top
Crystal data top
La3TiBi5Dx = 9.560 Mg m3
Mr = 1509.53Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mcmCell parameters from 861 reflections
a = 9.6871 (13) Åθ = 4.9–26.9°
c = 6.4528 (8) ŵ = 96.13 mm1
V = 524.40 (16) Å3T = 200 K
Z = 2Block, black
F(000) = 12160.12 × 0.07 × 0.05 mm
Data collection top
CCD area detector
diffractometer
217 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.074
phi and ω scansθmax = 26.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1012
Tmin = 0.008, Tmax = 0.046k = 1211
4569 measured reflectionsl = 88
233 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0129P)2 + 1.9223P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.037Δρmax = 1.27 e Å3
S = 1.08Δρmin = 1.10 e Å3
233 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 parametersExtinction coefficient: 0.00126 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.61818 (9)0.00000.25000.0157 (2)
Ti10.00000.00000.00000.0169 (10)
Bi10.25353 (6)0.00000.25000.0152 (2)
Bi20.33330.66670.00000.0154 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0152 (4)0.0163 (5)0.0161 (4)0.0082 (3)0.0000.000
Ti10.0163 (15)0.0163 (15)0.018 (2)0.0082 (7)0.0000.000
Bi10.0144 (3)0.0153 (3)0.0163 (3)0.00764 (17)0.0000.000
Bi20.0152 (3)0.0152 (3)0.0158 (4)0.00758 (13)0.0000.000
Geometric parameters (Å, º) top
La1—Bi1i3.2602 (8)Ti1—Bi12.9384 (6)
La1—Bi1ii3.2602 (7)Ti1—Ti1xiv3.2264 (4)
La1—Bi2iii3.4253 (3)Ti1—Ti1xv3.2264 (4)
La1—Bi2iv3.4253 (3)Bi1—Ti1xiv2.9384 (6)
La1—Bi2v3.4254 (3)Bi1—La1xvi3.2601 (7)
La1—Bi2vi3.4254 (3)Bi1—La1xvii3.2601 (7)
La1—Bi1vii3.4575 (6)Bi1—La1vii3.4575 (6)
La1—Bi1viii3.4575 (6)Bi1—La1viii3.4575 (6)
La1—Bi13.5323 (11)Bi2—Bi2xviii3.2264 (4)
La1—La1viii3.9563 (11)Bi2—Bi2xix3.2264 (4)
La1—La1vii3.9563 (11)Bi2—La1xx3.4253 (4)
Ti1—Bi1ix2.9384 (5)Bi2—La1xxi3.4253 (3)
Ti1—Bi1x2.9384 (5)Bi2—La1x3.4253 (5)
Ti1—Bi1xi2.9384 (6)Bi2—La1vi3.4253 (3)
Ti1—Bi1xii2.9384 (5)Bi2—La1xvii3.4253 (3)
Ti1—Bi1xiii2.9384 (5)Bi2—La1xii3.4253 (4)
Bi1i—La1—Bi1ii81.45 (3)Bi1x—Ti1—Bi192.745 (10)
Bi1i—La1—Bi2iii141.80 (2)Bi1xi—Ti1—Bi1180.0
Bi1ii—La1—Bi2iii73.779 (12)Bi1xii—Ti1—Bi187.255 (13)
Bi1i—La1—Bi2iv141.80 (2)Bi1xiii—Ti1—Bi192.745 (13)
Bi1ii—La1—Bi2iv73.779 (12)Bi1ix—Ti1—Ti1xiv123.299 (7)
Bi2iii—La1—Bi2iv56.193 (8)Bi1x—Ti1—Ti1xiv56.701 (7)
Bi1i—La1—Bi2v73.780 (10)Bi1xi—Ti1—Ti1xiv123.299 (8)
Bi1ii—La1—Bi2v141.81 (2)Bi1xii—Ti1—Ti1xiv123.299 (8)
Bi2iii—La1—Bi2v140.95 (3)Bi1xiii—Ti1—Ti1xiv56.701 (8)
Bi2iv—La1—Bi2v109.451 (15)Bi1—Ti1—Ti1xiv56.701 (8)
Bi1i—La1—Bi2vi73.780 (10)Bi1ix—Ti1—Ti1xv56.701 (7)
Bi1ii—La1—Bi2vi141.81 (2)Bi1x—Ti1—Ti1xv123.299 (7)
Bi2iii—La1—Bi2vi109.451 (15)Bi1xi—Ti1—Ti1xv56.701 (8)
Bi2iv—La1—Bi2vi140.95 (3)Bi1xii—Ti1—Ti1xv56.701 (8)
Bi2v—La1—Bi2vi56.193 (8)Bi1xiii—Ti1—Ti1xv123.299 (8)
Bi1i—La1—Bi1vii74.192 (17)Bi1—Ti1—Ti1xv123.299 (8)
Bi1ii—La1—Bi1vii74.192 (17)Ti1xiv—Ti1—Ti1xv180.0
Bi2iii—La1—Bi1vii124.029 (4)Ti1—Bi1—Ti1xiv66.597 (16)
Bi2iv—La1—Bi1vii71.376 (8)Ti1—Bi1—La1xvi81.053 (15)
Bi2v—La1—Bi1vii71.377 (6)Ti1xiv—Bi1—La1xvi81.053 (15)
Bi2vi—La1—Bi1vii124.029 (3)Ti1—Bi1—La1xvii81.053 (14)
Bi1i—La1—Bi1viii74.192 (18)Ti1xiv—Bi1—La1xvii81.053 (14)
Bi1ii—La1—Bi1viii74.192 (17)La1xvi—Bi1—La1xvii158.55 (3)
Bi2iii—La1—Bi1viii71.376 (7)Ti1—Bi1—La1vii144.36 (2)
Bi2iv—La1—Bi1viii124.029 (3)Ti1xiv—Bi1—La1vii77.767 (17)
Bi2v—La1—Bi1viii124.029 (3)La1xvi—Bi1—La1vii93.835 (4)
Bi2vi—La1—Bi1viii71.377 (6)La1xvii—Bi1—La1vii93.835 (3)
Bi1vii—La1—Bi1viii137.87 (4)Ti1—Bi1—La1viii77.767 (17)
Bi1i—La1—Bi1139.276 (17)Ti1xiv—Bi1—La1viii144.36 (2)
Bi1ii—La1—Bi1139.276 (16)La1xvi—Bi1—La1viii93.835 (3)
Bi2iii—La1—Bi170.476 (15)La1xvii—Bi1—La1viii93.835 (3)
Bi2iv—La1—Bi170.476 (15)La1vii—Bi1—La1viii137.87 (4)
Bi2v—La1—Bi170.475 (14)Ti1—Bi1—La1146.701 (8)
Bi2vi—La1—Bi170.475 (14)Ti1xiv—Bi1—La1146.701 (8)
Bi1vii—La1—Bi1111.066 (18)La1xvi—Bi1—La1100.724 (17)
Bi1viii—La1—Bi1111.066 (18)La1xvii—Bi1—La1100.724 (16)
Bi1i—La1—La1viii116.015 (12)La1vii—Bi1—La168.934 (18)
Bi1ii—La1—La1viii116.015 (11)La1viii—Bi1—La168.935 (18)
Bi2iii—La1—La1viii54.726 (8)Bi2xviii—Bi2—Bi2xix180.0
Bi2iv—La1—La1viii100.99 (2)Bi2xviii—Bi2—La1xx118.097 (4)
Bi2v—La1—La1viii100.99 (2)Bi2xix—Bi2—La1xx61.904 (4)
Bi2vi—La1—La1viii54.725 (7)Bi2xviii—Bi2—La1xxi61.904 (4)
Bi1vii—La1—La1viii165.70 (4)Bi2xix—Bi2—La1xxi118.097 (4)
Bi1viii—La1—La1viii56.427 (14)La1xx—Bi2—La1xxi166.36 (3)
Bi1—La1—La1viii54.64 (2)Bi2xviii—Bi2—La1x61.904 (5)
Bi1i—La1—La1vii116.015 (12)Bi2xix—Bi2—La1x118.097 (5)
Bi1ii—La1—La1vii116.015 (11)La1xx—Bi2—La1x70.550 (16)
Bi2iii—La1—La1vii100.99 (2)La1xxi—Bi2—La1x99.631 (8)
Bi2iv—La1—La1vii54.726 (8)Bi2xviii—Bi2—La1vi118.097 (3)
Bi2v—La1—La1vii54.725 (8)Bi2xix—Bi2—La1vi61.904 (4)
Bi2vi—La1—La1vii100.99 (2)La1xx—Bi2—La1vi99.631 (5)
Bi1vii—La1—La1vii56.427 (14)La1xxi—Bi2—La1vi70.550 (15)
Bi1viii—La1—La1vii165.70 (4)La1x—Bi2—La1vi91.52 (3)
Bi1—La1—La1vii54.64 (2)Bi2xviii—Bi2—La1xvii61.903 (4)
La1viii—La1—La1vii109.28 (4)Bi2xix—Bi2—La1xvii118.096 (3)
Bi1ix—Ti1—Bi1x180.000 (13)La1xx—Bi2—La1xvii91.52 (3)
Bi1ix—Ti1—Bi1xi92.745 (10)La1xxi—Bi2—La1xvii99.631 (6)
Bi1x—Ti1—Bi1xi87.255 (10)La1x—Bi2—La1xvii99.631 (6)
Bi1ix—Ti1—Bi1xii92.745 (11)La1vi—Bi2—La1xvii166.36 (3)
Bi1x—Ti1—Bi1xii87.255 (11)Bi2xviii—Bi2—La1xii118.096 (4)
Bi1xi—Ti1—Bi1xii92.745 (12)Bi2xix—Bi2—La1xii61.903 (5)
Bi1ix—Ti1—Bi1xiii87.255 (11)La1xx—Bi2—La1xii99.631 (9)
Bi1x—Ti1—Bi1xiii92.745 (11)La1xxi—Bi2—La1xii91.52 (3)
Bi1xi—Ti1—Bi1xiii87.255 (12)La1x—Bi2—La1xii166.36 (3)
Bi1xii—Ti1—Bi1xiii180.00 (2)La1vi—Bi2—La1xii99.631 (5)
Bi1ix—Ti1—Bi187.255 (10)La1xvii—Bi2—La1xii70.550 (15)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x, z; (iii) x, y1, z; (iv) x, y1, z+1/2; (v) x+1, y+1, z+1/2; (vi) x+1, y+1, z; (vii) x+1, y, z+1; (viii) x+1, y, z; (ix) y, x+y, z; (x) y, xy, z; (xi) x, y, z; (xii) xy, x, z; (xiii) x+y, x, z; (xiv) x, y, z+1/2; (xv) x, y, z1/2; (xvi) y, xy1, z; (xvii) x+y+1, x+1, z; (xviii) x, y, z+1/2; (xix) x, y, z1/2; (xx) y, x+y+1, z; (xxi) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds