Download citation
Download citation
link to html
A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carb­oxy­methyl-3-ethyl­imidazolium chloride, C7H11N2O2+·Cl, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H...Cl and C—H...O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further inter­connected through O—H...Cl and C—H...O hydrogen bonds to form a (10\overline{1}) layer. Finally, neighboring layers are joined together via C—H...Cl contacts to generate a three-dimensional supra­molecular architecture. Thermal analyses reveal that the compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phospho­rescence associated with spin-allowed (1π←1π*) and spin-forbidden (1π←3π*) transitions, respectively. The average luminescence lifetime was determined to be 1.40 ns for the short-lived (1π←1π*) transition and 105 ms for the long-lived (1π←3π*) transition.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618005272/ku3219sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618005272/ku3219Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618005272/ku3219sup3.pdf
TG/DSC curve, DSC thermogram, fluorescence spectrum, phosphorescence decay and chromaticity diagrams for (1)

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618005272/ku3219Isup4.cml
Supplementary material

CCDC reference: 1559416

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

1-Carboxymethyl-3-ethylimidazolium chloride top
Crystal data top
C7H11N2O2+·ClDx = 1.347 Mg m3
Mr = 190.63Melting point: 446.1 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2225 (16) ÅCell parameters from 4273 reflections
b = 9.6736 (16) Åθ = 3.0–26.2°
c = 10.2678 (17) ŵ = 0.37 mm1
β = 112.165 (8)°T = 294 K
V = 940.3 (3) Å3Parallelepiped, colourless
Z = 40.10 × 0.10 × 0.10 mm
F(000) = 400
Data collection top
Bruker APEX CCD
diffractometer
1844 independent reflections
Radiation source: fine-focus sealed tube1557 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.031
ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 1212
Tmin = 0.911, Tmax = 0.983k = 1111
12035 measured reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1633P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1844 reflectionsΔρmax = 0.23 e Å3
112 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13632 (17)0.67336 (15)0.00212 (17)0.0422 (4)
H10.07730.73900.01330.051*
C20.2695 (2)0.56244 (18)0.09152 (19)0.0528 (4)
H2A0.31720.53950.14980.063*
C30.2714 (2)0.49169 (18)0.0212 (2)0.0552 (5)
H30.32070.41040.05600.066*
C40.16677 (18)0.52539 (17)0.20420 (16)0.0448 (4)
H4B0.17260.42580.21620.054*
H4A0.07330.55430.19660.054*
C50.27599 (17)0.59300 (16)0.33095 (16)0.0425 (4)
C60.1495 (2)0.7779 (2)0.2195 (2)0.0571 (5)
H6A0.23620.81340.22450.069*
H6B0.09900.85480.19960.069*
C70.0606 (2)0.7146 (3)0.3581 (2)0.0749 (6)
H7A0.03970.78310.43080.112*
H7B0.11110.63940.37850.112*
H7C0.02590.68080.35370.112*
N10.18375 (14)0.67547 (12)0.10510 (14)0.0414 (3)
N20.18709 (14)0.56148 (13)0.07581 (13)0.0405 (3)
O10.35277 (13)0.68432 (12)0.32434 (13)0.0516 (3)
O20.27241 (16)0.54072 (15)0.44750 (13)0.0652 (4)
H20.338 (3)0.587 (3)0.528 (3)0.098*
Cl10.53307 (5)0.32422 (5)0.29617 (5)0.05769 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0474 (9)0.0362 (8)0.0458 (9)0.0023 (6)0.0206 (7)0.0022 (7)
C20.0682 (11)0.0491 (10)0.0482 (10)0.0122 (8)0.0299 (9)0.0008 (8)
C30.0733 (12)0.0441 (9)0.0516 (11)0.0180 (8)0.0276 (9)0.0050 (8)
C40.0548 (9)0.0410 (8)0.0400 (9)0.0083 (7)0.0195 (8)0.0006 (7)
C50.0521 (9)0.0390 (8)0.0384 (9)0.0022 (7)0.0192 (8)0.0015 (6)
C60.0629 (11)0.0543 (10)0.0619 (12)0.0082 (8)0.0322 (10)0.0213 (9)
C70.0759 (14)0.1035 (17)0.0478 (12)0.0119 (12)0.0260 (11)0.0248 (11)
N10.0469 (7)0.0385 (7)0.0402 (8)0.0017 (5)0.0179 (6)0.0032 (5)
N20.0487 (7)0.0365 (7)0.0349 (7)0.0013 (5)0.0142 (6)0.0012 (5)
O10.0616 (7)0.0491 (7)0.0443 (7)0.0149 (5)0.0201 (6)0.0002 (5)
O20.0866 (10)0.0714 (9)0.0375 (7)0.0274 (7)0.0232 (7)0.0024 (6)
Cl10.0604 (3)0.0721 (3)0.0408 (3)0.0079 (2)0.0194 (2)0.0024 (2)
Geometric parameters (Å, º) top
C1—N11.319 (2)C4—H4A0.9700
C1—N21.330 (2)C5—O11.2005 (19)
C1—H10.9300C5—O21.3124 (19)
C2—C31.339 (3)C6—N11.474 (2)
C2—N11.375 (2)C6—C71.501 (3)
C2—H2A0.9300C6—H6A0.9700
C3—N21.370 (2)C6—H6B0.9700
C3—H30.9300C7—H7A0.9600
C4—N21.4524 (19)C7—H7B0.9600
C4—C51.507 (2)C7—H7C0.9600
C4—H4B0.9700O2—H20.96 (3)
N1—C1—N2108.48 (13)N1—C6—H6A109.4
N1—C1—H1125.8C7—C6—H6A109.4
N2—C1—H1125.8N1—C6—H6B109.4
C3—C2—N1107.16 (15)C7—C6—H6B109.4
C3—C2—H2A126.4H6A—C6—H6B108.0
N1—C2—H2A126.4C6—C7—H7A109.5
C2—C3—N2107.19 (15)C6—C7—H7B109.5
C2—C3—H3126.4H7A—C7—H7B109.5
N2—C3—H3126.4C6—C7—H7C109.5
N2—C4—C5111.49 (13)H7A—C7—H7C109.5
N2—C4—H4B109.3H7B—C7—H7C109.5
C5—C4—H4B109.3C1—N1—C2108.62 (13)
N2—C4—H4A109.3C1—N1—C6126.88 (14)
C5—C4—H4A109.3C2—N1—C6124.47 (14)
H4B—C4—H4A108.0C1—N2—C3108.54 (14)
O1—C5—O2125.37 (16)C1—N2—C4125.80 (13)
O1—C5—C4123.90 (14)C3—N2—C4125.46 (14)
O2—C5—C4110.71 (14)C5—O2—H2111.1 (16)
N1—C6—C7110.98 (16)
N1—C2—C3—N20.0 (2)C7—C6—N1—C267.4 (2)
N2—C4—C5—O112.9 (2)N1—C1—N2—C30.97 (19)
N2—C4—C5—O2168.70 (14)N1—C1—N2—C4176.09 (14)
N2—C1—N1—C20.95 (19)C2—C3—N2—C10.6 (2)
N2—C1—N1—C6177.42 (15)C2—C3—N2—C4175.75 (15)
C3—C2—N1—C10.6 (2)C5—C4—N2—C185.89 (19)
C3—C2—N1—C6177.86 (17)C5—C4—N2—C388.4 (2)
C7—C6—N1—C1110.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl10.932.733.472 (2)137
C1—H1···Cl1i0.932.733.5161 (19)143
C4—H4B···O1ii0.972.373.312 (2)164
O2—H2···Cl1iii0.96 (3)1.98 (3)2.9393 (15)176 (2)
C1—H1···O1iv0.932.493.094 (2)122
C2—H2A···Cl1v0.932.843.590 (2)138
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z1/2; (v) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds