Download citation
Download citation
link to html
Magnesium alloys are the basis for the creation of light and ultra-light alloys. They have attracted attention as potential materials for the accumulation and storage of hydrogen, as well as electrode materials in metal-hydride and magnesium-ion batteries. The search for new metal hydrides has involved magnesium alloys with rare-earth transition metals and doped by p- or s-elements. The synthesis and characterization of a new quaternary carbide, namely dimagnesium lithium aluminium carbide, Mg1.52Li0.24Al0.24C0.86, belonging to the family of hexa­gonal close-packed (hcp) structures, are reported. The title compound crystallizes with hexa­gonal symmetry (space group P\overline{6}m2), where two sites with \overline{6}m2 symmetry and one site with 3m. symmetry are occupied by an Mg/Li statistical mixture (in Wyckoff position 1a), an Mg/Al statistical mixture (in position 1d) and C atoms (2i). The cubocta­hedral coordination is typical for Mg/Li and Mg/Al, and the C atom is enclosed in an octa­hedron. Electronic structure calculations were used for elucidation of the ability of lithium or aluminium to substitute magnesium, and evaluation of the nature of the bonding between atoms. The presence of carbon in the carbide phase improves the corrosion resistance of the Mg1.52Li0.24Al0.24C0.86 alloy compared to the ternary Mg1.52Li0.24Al0.24 alloy and Mg.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618002851/ku3217sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618002851/ku3217Isup2.hkl
Contains datablock I

CCDC reference: 1824502

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: WinCSD (Akselrud & Grin, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Dimagnesium lithium aluminium carbide top
Crystal data top
Mg1.52Li0.24Al0.24C0.86Dx = 2.002 Mg m3
Mr = 55.42Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6m2Cell parameters from 75 reflections
a = 3.1970 (5) Åθ = 3.9–29.7°
c = 5.1943 (10) ŵ = 0.69 mm1
V = 45.98 (2) Å3T = 293 K
Z = 1Plate, metallic grey
F(000) = 27.20.04 × 0.02 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
65 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
ω scansθmax = 29.7°, θmin = 3.9°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
h = 44
Tmin = 0.985, Tmax = 0.992k = 44
1654 measured reflectionsl = 77
75 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0125P)2 + 0.0327P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.001
wR(F2) = 0.077Δρmax = 0.18 e Å3
S = 1.37Δρmin = 0.20 e Å3
75 reflectionsAbsolute structure: Refined as an inversion twin
9 parametersAbsolute structure parameter: 0 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.33330.66670.50000.0545 (18)0.76 (4)
Al0.33330.66670.50000.0545 (18)0.24 (4)
Mg20.00000.00000.00000.0429 (16)0.76 (8)
Li0.00000.00000.00000.0429 (16)0.24 (8)
C0.66670.33330.243 (5)0.041 (3)0.430 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.053 (2)0.053 (2)0.057 (3)0.0267 (12)0.0000.000
Al0.053 (2)0.053 (2)0.057 (3)0.0267 (12)0.0000.000
Mg20.043 (2)0.043 (2)0.043 (3)0.0214 (12)0.0000.000
Li0.043 (2)0.043 (2)0.043 (3)0.0214 (12)0.0000.000
C0.039 (4)0.039 (4)0.045 (6)0.0196 (18)0.0000.000
Geometric parameters (Å, º) top
Mg1—Ci2.277 (14)Mg2—Ciii2.237 (13)
Mg1—C2.277 (14)Mg2—Mg1xii3.1862 (4)
Mg1—Cii2.277 (14)Mg2—Alxii3.1862 (4)
Mg1—Ciii2.277 (14)Mg2—Mg1xiii3.1862 (4)
Mg1—Civ2.277 (14)Mg2—Mg1x3.1862 (4)
Mg1—Cv2.277 (14)Mg2—Alx3.1862 (4)
Mg1—Mg23.1862 (4)Mg2—Alxiii3.1862 (4)
Mg1—Livi3.1862 (4)C—Lixiv2.237 (13)
Mg1—Mg2vi3.1862 (4)C—Mg2xiv2.237 (13)
Mg1—Livii3.1862 (4)C—Lixv2.237 (13)
Mg1—Liv3.1862 (4)C—Mg2xv2.237 (13)
Mg2—Cviii2.237 (13)C—Mg1xiv2.277 (14)
Mg2—Cix2.237 (13)C—Alxiv2.277 (14)
Mg2—Cx2.237 (13)C—Mg1xvi2.277 (14)
Mg2—C2.237 (13)C—Alxvi2.277 (14)
Mg2—Cxi2.237 (13)
Ci—Mg1—C71.7 (10)Cviii—Mg2—Mg1xiii91.0 (5)
Ci—Mg1—Cii89.2 (7)Cix—Mg2—Mg1xiii45.6 (4)
C—Mg1—Cii132.2 (3)Cx—Mg2—Mg1xiii159.8 (5)
Ci—Mg1—Ciii132.2 (3)C—Mg2—Mg1xiii102.8 (4)
C—Mg1—Ciii89.2 (7)Cxi—Mg2—Mg1xiii45.6 (4)
Cii—Mg1—Ciii132.2 (3)Ciii—Mg2—Mg1xiii102.8 (4)
Ci—Mg1—Civ89.2 (7)Mg1xii—Mg2—Mg1xiii60.224 (10)
C—Mg1—Civ132.2 (3)Alxii—Mg2—Mg1xiii60.2
Cii—Mg1—Civ89.2 (7)Cviii—Mg2—Mg1x102.8 (4)
Ciii—Mg1—Civ71.7 (10)Cix—Mg2—Mg1x159.8 (5)
Ci—Mg1—Cv132.2 (3)Cx—Mg2—Mg1x45.6 (4)
C—Mg1—Cv89.2 (7)C—Mg2—Mg1x91.0 (5)
Cii—Mg1—Cv71.7 (10)Cxi—Mg2—Mg1x102.8 (4)
Ciii—Mg1—Cv89.2 (7)Ciii—Mg2—Mg1x45.6 (4)
Civ—Mg1—Cv132.2 (3)Mg1xii—Mg2—Mg1x109.198 (14)
Ci—Mg1—Mg2104.0 (4)Alxii—Mg2—Mg1x109.2
C—Mg1—Mg244.6 (3)Mg1xiii—Mg2—Mg1x146.327 (6)
Cii—Mg1—Mg2161.3 (5)Cviii—Mg2—Alx102.8 (4)
Ciii—Mg1—Mg244.6 (3)Cix—Mg2—Alx159.8 (5)
Civ—Mg1—Mg2104.0 (4)Cx—Mg2—Alx45.6 (4)
Cv—Mg1—Mg289.5 (5)C—Mg2—Alx91.0 (5)
Ci—Mg1—Livi44.6 (3)Cxi—Mg2—Alx102.8 (4)
C—Mg1—Livi104.0 (4)Ciii—Mg2—Alx45.6 (4)
Cii—Mg1—Livi44.6 (3)Mg1xii—Mg2—Alx109.198 (14)
Ciii—Mg1—Livi161.3 (5)Alxii—Mg2—Alx109.198 (14)
Civ—Mg1—Livi89.5 (5)Mg1xiii—Mg2—Alx146.327 (6)
Cv—Mg1—Livi104.0 (4)Mg1x—Mg2—Alx0.0
Mg2—Mg1—Livi146.3Cviii—Mg2—Alxiii91.0 (5)
Ci—Mg1—Mg2vi44.6 (3)Cix—Mg2—Alxiii45.6 (4)
C—Mg1—Mg2vi104.0 (4)Cx—Mg2—Alxiii159.8 (5)
Cii—Mg1—Mg2vi44.6 (3)C—Mg2—Alxiii102.8 (4)
Ciii—Mg1—Mg2vi161.3 (5)Cxi—Mg2—Alxiii45.6 (4)
Civ—Mg1—Mg2vi89.5 (5)Ciii—Mg2—Alxiii102.8 (4)
Cv—Mg1—Mg2vi104.0 (4)Mg1xii—Mg2—Alxiii60.224 (10)
Mg2—Mg1—Mg2vi146.326 (6)Alxii—Mg2—Alxiii60.224 (10)
Livi—Mg1—Mg2vi0.0Mg1xiii—Mg2—Alxiii0.0
Ci—Mg1—Livii89.5 (5)Mg1x—Mg2—Alxiii146.327 (6)
C—Mg1—Livii161.3 (5)Alx—Mg2—Alxiii146.327 (6)
Cii—Mg1—Livii44.6 (3)Lixiv—C—Mg2xiv0.0
Ciii—Mg1—Livii104.0 (4)Lixiv—C—Mg291.2
Civ—Mg1—Livii44.6 (3)Mg2xiv—C—Mg291.2 (7)
Cv—Mg1—Livii104.0 (4)Lixiv—C—Lixv91.2 (7)
Mg2—Mg1—Livii146.3Mg2xiv—C—Lixv91.2 (7)
Livi—Mg1—Livii60.224 (11)Mg2—C—Lixv91.2
Mg2vi—Mg1—Livii60.224 (11)Lixiv—C—Mg2xv91.2
Ci—Mg1—Liv161.3 (5)Mg2xiv—C—Mg2xv91.2 (7)
C—Mg1—Liv89.5 (5)Mg2—C—Mg2xv91.2 (7)
Cii—Mg1—Liv104.0 (4)Lixv—C—Mg2xv0.0
Ciii—Mg1—Liv44.6 (3)Lixiv—C—Mg1xiv89.79 (2)
Civ—Mg1—Liv104.0 (4)Mg2xiv—C—Mg1xiv89.79 (2)
Cv—Mg1—Liv44.6 (3)Mg2—C—Mg1xiv178.5 (10)
Mg2—Mg1—Liv60.2Lixv—C—Mg1xiv89.79 (2)
Livi—Mg1—Liv146.326 (6)Mg2xv—C—Mg1xiv89.79 (2)
Mg2vi—Mg1—Liv146.326 (6)Lixiv—C—Alxiv89.79 (2)
Livii—Mg1—Liv109.197 (13)Mg2xiv—C—Alxiv89.79 (2)
Cviii—Mg2—Cix91.2 (7)Mg2—C—Alxiv178.5 (10)
Cviii—Mg2—Cx68.8 (10)Lixv—C—Alxiv89.79 (2)
Cix—Mg2—Cx131.3 (3)Mg2xv—C—Alxiv89.79 (2)
Cviii—Mg2—C131.3 (3)Mg1xiv—C—Alxiv0.0
Cix—Mg2—C68.8 (10)Lixiv—C—Mg1178.5 (10)
Cx—Mg2—C91.2 (7)Mg2xiv—C—Mg1178.5 (10)
Cviii—Mg2—Cxi91.2 (7)Mg2—C—Mg189.79 (2)
Cix—Mg2—Cxi91.2 (7)Lixv—C—Mg189.79 (2)
Cx—Mg2—Cxi131.3 (3)Mg2xv—C—Mg189.79 (2)
C—Mg2—Cxi131.3 (3)Mg1xiv—C—Mg189.2 (7)
Cviii—Mg2—Ciii131.3 (3)Alxiv—C—Mg189.2
Cix—Mg2—Ciii131.3 (3)Lixiv—C—Mg1xvi89.79 (2)
Cx—Mg2—Ciii91.2 (7)Mg2xiv—C—Mg1xvi89.79 (2)
C—Mg2—Ciii91.2 (7)Mg2—C—Mg1xvi89.79 (2)
Cxi—Mg2—Ciii68.8 (10)Lixv—C—Mg1xvi178.5 (10)
Cviii—Mg2—Mg1xii45.6 (4)Mg2xv—C—Mg1xvi178.5 (10)
Cix—Mg2—Mg1xii91.0 (5)Mg1xiv—C—Mg1xvi89.2 (7)
Cx—Mg2—Mg1xii102.8 (4)Alxiv—C—Mg1xvi89.2
C—Mg2—Mg1xii159.8 (5)Mg1—C—Mg1xvi89.2 (7)
Cxi—Mg2—Mg1xii45.6 (4)Lixiv—C—Alxvi89.79 (2)
Ciii—Mg2—Mg1xii102.8 (4)Mg2xiv—C—Alxvi89.79 (2)
Cviii—Mg2—Alxii45.6 (4)Mg2—C—Alxvi89.79 (2)
Cix—Mg2—Alxii91.0 (5)Lixv—C—Alxvi178.5 (10)
Cx—Mg2—Alxii102.8 (4)Mg2xv—C—Alxvi178.5 (10)
C—Mg2—Alxii159.8 (5)Mg1xiv—C—Alxvi89.2 (7)
Cxi—Mg2—Alxii45.6 (4)Alxiv—C—Alxvi89.2 (7)
Ciii—Mg2—Alxii102.8 (4)Mg1—C—Alxvi89.2
Mg1xii—Mg2—Alxii0.0Mg1xvi—C—Alxvi0.0
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x1, y, z+1; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x1, y1, z; (ix) x, y, z; (x) x1, y1, z; (xi) x1, y, z; (xii) x1, y1, z1; (xiii) x, y, z1; (xiv) x+1, y, z; (xv) x+1, y+1, z; (xvi) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds