Download citation
Download citation
link to html
A potentially penta­dentate hydrazone ligand, N′-[1-(pyrazin-2-yl)ethyl­idene]nicotino­hydrazide (HL), was prepared from the condensation reaction of nicotino­hydrazide and acetyl­pyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely di­chlorido­{N′-[1-(pyrazin-2-yl-κN1)ethyl­idene]nicotinohydrazide-κ2N′,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis­{N′-[1-(pyrazin-2-yl-κN1)ethyl­idene]nicotino­hydrazidato-κ2N′,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato-κ2O,O′){μ3-N′-[1-(pyrazin-2-yl-κ2N1:N4)ethyl­idene]nicotino­hydrazidato-κ3N′,O:N1}cadmium(II)] chloro­form di­solvate], {[Cd(C12H10N5O)(CH3COO)]·2CHCl3}n, (III), respectively. Complex (I) has a mono­nuclear structure, the MnII centre adopting a distorted square-pyramidal coordination. Complex (II) also has a mono­nuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octa­hedral coordination environment, which is defined by two O atoms and four N atoms from two N′-[1-(pyrazin-2-yl)ethyl­idene]nicotino­hydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three-dimensional network with rectangular channels, and the L ligand also serves as a counter-anion. The coordination geometry of the CdII centre is penta­gonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono-anionic ligand, is useful in the construction of inter­esting metal–organic compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615000698/ku3143sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615000698/ku3143Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615000698/ku3143IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615000698/ku3143IIIsup4.hkl
Contains datablock III

CCDC references: 1043374; 1043373; 1043372

Introduction top

It is an intriguing and challenging task to construct coordination compounds deliberately, because the self-assembly process is influenced by many factors, such as the organic ligands (Rowsell & Yaghi, 2005), the metal coordination geometry (Qin et al., 2012), the inorganic counter-ions (Kato et al., 2008), the reaction temperature (Dong et al., 2007), the pH value (Hilbert et al., 2014), the solvent system (Bu et al., 2002) etc. Among these factors, the choice of the organic spacer has the greatest influence on determining the type and topology of the product (Bai et al., 2012; Vrdoljak et al., 2010). Metal complexes based on Schiff base derivatives have received increasing attention recently due to their remarkable features: (a) Schiff base ligands are easily prepared by one-pot condensation of active carbonyl groups and primary amines in alcohol solvent, and are also easily purified by recrystallization (Mohamed et al., 2010); (b) complexes of Schiff bases show excellent potential applications in catalysis (Tsuchida, 2003), optoelectronics (Kuo et al., 2008), magnetism (Yao et al., 2012) and bioinorganic chemistry (Kalinowski et al., 2008; Lee et al., 2013).

Hydrazones derived from the condensation of aldehydes (or ketones) and hydrazide constitute an important class of Schiff base ligands. These ligands feature keto–enol tautomerism and can present a neutral or a mono-anionic form (Scheme 1) (Samanta et al., 2007). Hydrazones can coordinate with metal ions through the protonated/deprotonated amide O atom and the imine N atom of the hydrazone group (Mondal et al., 2013); meanwhile, additional donor sites can be provided by the aldehyde (or ketone) group. The most often used aldehydes (or ketones) for the synthesis of hydrazone are pyridine-2-carbaldehyde or 2-acetyl­pyridine (Mondal et al., 2013; Samanta et al., 2007), and the most often used hydrazides in previous studies have been 3-hy­droxy-2-naphtho­ylhydrazide (Lee et al., 2013) or 2-(di­phenyl­phosphanyl)benzaldehyde (Đorđević et al., 2014). Therefore, hydrazones usually act as planar N,N',O-, O,N,O'- or P,N,O-tridentate pincer ligands. However, as far as we know, hydrazones with additional terminal donor atoms, except for the pincer-coordinating group, have not been explored as much.

We have thus expanded the range of hydrazone ligands with the new multidentate ligand N'-[1-(pyrazin-2-yl)ethyl­idene]nicotinohydrazide (HL), which possesses terminal pyrazine and pyridine N-atom donors (Scheme 1). In this study, we have investigated the self-assembly reaction of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 at room temperature. Three coordination compounds, [MnCl2(HL)], (I), [Mn(L)2], (II), and {[Cd(L)(CH3COO)]·2CHCl3}n, (III), were isolated (see Scheme 2).

Experimental top

Synthesis and crystallization top

All solvents and reagents were commercially available and were used as received. N'-[1-(Pyrazin-2-yl)ethyl­idene]nicotinohydrazide (HL) was synthesized according to the literature method of Dong et al. (2004). HL was obtained by mixing nicotinohydrazide (0.42 g, 3.00 mmol) and acetyl­pyrazine (0.36 g, 3.00 mmol) in distilled ethanol (30 ml) under reflux. After stirring for 3 h, a white precipitate was filtered off, washed with cold ethanol and dried under vacuum, affording HL in 86% yield. IR (KBr pellet, ν, cm-1) for HL: 3419, 3194, 2974, 1665, 1615, 1373, 1176, 1049, 859, 735, 706, 645. Elemental analysis (%), calculated for C12H11N5O: C 59.74, H 4.59, N 29.03%; found: C 59.98, H 4.57, N 29.14%.

A solution of MnCl2·4H2O (15.8 mg, 0.08 mmol) in MeOH (5 ml) was layered onto a solution of HL (9.6 mg, 0.04 mmol) in CHCl3 (5 ml). The system was left for about one week at room temperature, after which time crystals of (I) were obtained (yield 53%). Complexes (II) and (III) were synthesized in an analogous manner, but using Mn(CH3COO)2·4H2O and Cd(CH3COO)2.3H2O, respectively, instead of MnCl2·4H2O.

Spectroscopic analysis: IR (KBr pellet, ν, cm-1) for complex (I): 3385, 3073, 1704, 1600, 1514, 1480, 1467, 1424, 1410, 1369, 1274, 1175, 1160, 1123, 1059, 1031, 852, 734, 694, 640, 426; for complex (II): 2971, 1615, 1498, 1457, 1377, 1310, 1153, 1068, 1038, 848, 759, 709, 695, 422; for complex (III): 3236, 1539, 1459, 1421, 1359, 1299, 1190, 1154, 1059, 1030, 994, 911, 856, 745, 697, 625, 455.

Elemental analysis (%), calculated for C12H11Cl2MnN5O, (I): C 39.26, H 3.02, N 19.08%; found: C 39.38, H 3.01, N 19.16%; for C24H20MnN10O2, (II): C 58.84, H 3.76, N 26.16%; found: C 59.07, H 3.74, N 26.26%; for C16H15CdCl6N5O3, (III): C 29.54, H 2.32, N 10.77%; found: C 29.63, H 2.31, N 10.80%. [AUTHORS: The CIF data blocks for (I) and (III) are each missing all information regarding bonds or angles involving H atoms. Please supply these details for addition to the CIF.]

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The imine H atom was found initially in a difference Fourier map and then refined with N—H = 0.83 (2) Å and Uiso(H) = 1.5Ueq(N). Other H atoms were placed in geometrically idealized positions and treated as riding atoms, with methyl C—H = 0.96 Å, chloro­form C—H = 0.98 Å or aromatic C—H = 0.93 Å, and with Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) otherwise.

Comment top

The MnII centre in (I) possesses a square-pyramidal coordination environment (Fig. 1). HL serves as tridentate N,N',O-tridentate pincer-type ligand, occupying three of the four equatorial coordination sites through pyrazine atom N1, azomethine atom N3 and carbonyl atom O1, with the remaining site occupied by the Cl2 chloride anion. The central MnII cation deviates from the mean plane defined by atoms N1/N3/O1/Cl2 by 0.257 (1) Å. The axial position is occupied by the other chloride anion.

The distortion of a square-pyramidal geometry can be evidenced from the sum of its four cis angles, which amounts to 345.13° in (I) compared with the ideal value of 360° for a planar geometry. In (I), the HL ligand is slightly twisted, with the dihedral angle between the pyridine and pyrazine ring planes being 9.45 (1)°. The dihedral angles between these two heterocyclic ring planes and the MnII mean coordination plane (Mn/N1/C4/C5/N3/N4/C7/O1) are 15.10 (1) and 6.85 (2)°, respectively.

In complex (I), the pyridine N5 and pyrazine N2 atoms are involved in neither complexation nor hydrogen bonds. The latter inter­actions exist between the amide group of HL and the Cl2 chloride ligand and an inter­molecular N4—H4A···Cl2i hydrogen bond is formed [symmetry code: (i) x, -y + 2, z - 1/2], leading to the construction of a one-dimensional chain structure along the c axis (Fig. 2 and Table 2).

To investigate the effect of the counter-ion [chloride ligand?] on the structural motif, we reacted Mn(CH3COO)2 and HL in the same solvent system as (I), affording complex (II). The crystal structure presented in Fig. 3 shows the composition of (II) as [Mn(L)2]. The MnII centre in (II) occupies a special position on a crystallographic twofold axis and possesses an o­cta­hedral coordination environment formed by two C2-related ligands chelating the MnII centre. Pyrazine atom N1, azomethine atom N3 and enolate atom O1 from the same ligand, and azomethine atom N3ii [symmetry code: (ii) -x, -y + 1, z] of another ligand, compose the equatorial plane. The remaining pyrazine N- and enolate O-donor atoms occupy the axial positions. The deviation from 90° of the cis-metal–ligand angles and the axial N1ii—Mn1—O1ii angle of 143.22 (8)° suggest a distorted o­cta­hedral coordination core. In complex (II), the metal–ligand bond distances follow the order Mn—O [2.124 (2) Å] < Mn—Nazomethine [2.183 (2) Å] < Mn—Npyrazine [2.277 (3) Å], which is different from what was observed in structurally similar metal complexes based on pyridine-2-carbaldehyde hydrazone derivatives, which usually follow the order M—Nazomethine < M—O < M—Npyridine (M = Ni or Cu; Mondal et al., 2013; Samanta et al., 2007). This variation may be ascribed to the effect of the metal ions.

In complex (II), the two ligands are equivalent and related by a C2 axis passing through the N3—Mn—N3ii vector. The MnII mean coordination plane (Mn/N1/C4/C5/N3/N4/C7/O1) forms a dihedral angle of 89.00 (1)° with the symmetry-related coordination plane. Unlike (I), the ligand is deprotonated during coordination with MnII and hence the ligand HL acts as a counter-anion, denoted L-. The C7—O1 bond length is elongated from 1.233 (3) Å in (I) to 1.265 (3) Å in (II) due to the loss of its full double-bond character. The C7—N4 bond length is shortened from 1.352 (3) Å in (I) to 1.334 (4) Å in (II) as a result of the increased π-bond order. These structural changes are accompanied by a shrinking of the C7—N4—N3 angle from 114.60 (19)° in (I) to 108.4 (2)° in (II). These variations indicate delocalization over the deprotonated hydrazone backbone, leading to the planarity of L- in (II). The dihedral angle between the pyridine and pyrazine ring planes is 6.79 (3)°, and the dihedral angle between the two five-membered chelate rings formed by the same ligand is only 4.68 (1)°.

Non-classical hydrogen-bonding inter­actions are found in (II) (Table 3). In the solid state, each mononuclear unit is connected to four adjacent units, forming a two-dimensional sheet extending in the crystallographic ac plane via a C3—H3···O1iii hydrogen bond [symmetry code: (iii) x + 1/2, -y + 1, z - 1/2], as shown in Fig. 4(a). These two-dimensional supra­molecular layers are stacked in an ···AA··· fashion along the crystallographic b axis. The uncoordinated pyrazine groups act as hydrogen-bond acceptors and link these sheets into a three-dimensional microporous supra­molecular network through a C11—H11···N2iv inter­action [symmetry code: (iv) -x + 1/2, y - 1/2, z + 1] (Fig. 4b).

When Cd(CH3COO)2 was used instead of Mn(CH3COO)2 in the reaction, complex (III) was obtained. The asymmetric unit of (III) contains one crystallographically independent CdII centre, one L- ligand, one acetate ligand and two chloro­form solvent molecules. As shown in Fig. 5, the coordination geometry around the CdII centre is distorted penta­gonal bipyramidal. The pincer ligand occupies the equatorial coordination sites in an N,N',O-fashion, which is the same as in complexes (I) and (II). The remaining two sites are occupied by acetate O atoms. The axial positions are occupied by pyridine N5vi and pyrazine N2v donors [symmetry codes: (v) x + 1/2, -y + 1/2, -z + 2; (vi) -x + 1, y - 1/2, -z + 3/2]. The sum of the equatorial angles [359.51 (35)°] is very close to the ideal value (360°), which ensures the planarity of the equatorial plane. The axial N2v—Cd1—N5vi bond angle of 172.41 (8)° indicates deviation from a linear configuration. The Cd—O and Cd—N bond lengths are comparable with those reported for [Cd(pah)2]·CH3CN [pah = pyridine-2-carbaldehyde (2-amino­sulfonyl­benzoyl)­hydrazone] (Sousa-Pedrares et al., 2008).

Given the requirement for charge balance of the whole complex, the ligand in (III) is also monoanionic. Evidence for the deprotonated form is provided by the bond lengths C7—O1 = 1.264 (3) Å and C7—N4 = 1.329 (3) Å, as well as by the C7—N4—N3 bond angle of 110.7 (2)°. It is inter­esting to note that L- acts as a penta­dentate ligand in (III), with both of the two terminal pyridine and pyrazine N-atom donors participating in coordination, which is different from the tridentate coordination mode in (I) and (II). The dihedral angle between the pyridine and pyrazine ring planes in (III) is the largest among these three complexes, at 18.68 (1)°, as a result of this penta­dentate coordination mode.

In the extended structure of (III), neighbouring CdII centres are bridged by the pyridine N-atom donors to form an infinite zigzag chain structure extending along the crystallographic b axis (Fig. 6). The intra­chain Cd···Cd separation is 8.63 (1) Å. These one-dimensional chains are aligned in an ···AB··· fashion in the crystallographic ac plane, and are strung together by bridging pyrazine groups via Cd1—N2v linkages to form a three-dimensional network with re­cta­ngular channels along the crystallographic b axis. The uncoordinated chloro­form guest molecules are located in the re­cta­ngular channels (Fig. 7). There are three sets of non-classical hydrogen bonds between the guest molecules and the host framework, C15—H15···O1, C15—H15···O2 and C16—H16···O2vii [symmetry code: (vii) x - 1/2, -y + 1/2, -z + 1] (Table 4).

In summary, the introduction of both pyrazine and pyridine donor groups in the hydrazone ligand N'-[1-(pyrazin-2-yl)ethyl­idene]nicotinohydrazide (HL) leads to three diverse metal complexes. The ligand is present in its neutral form in complex (I) and in its mono-anionic form in (II) and (III). HL in (I) and L- in (II) both serve as a tridentate pincer ligand, and the two complexes are both mononuclear structures. The L- ligand in (III) acts as a bridging penta­dentate ligand and the complex features a three-dimensional network with re­cta­ngular channels. We expect ligands of this type to be viable for the creation of more new complexes with inter­esting topologies and physical properties.

Computing details top

For all compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen-bond-driven one-dimensional chain in (I), extending along the crystallographic c axis. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) x, -y, z + 1/2.]
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (ii) -x, -y + 1, z.]
[Figure 4] Fig. 4. (a) The hydrogen-bond-driven two-dimensional sheet and (b) the three-dimensional network in (II). Dashed lines indicate hydrogen bonds.
[Figure 5] Fig. 5. The CdII coordination environment of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (v) x + 1/2, -y + 1/2, -z + 2; (vi) -x + 1, y - 1/2, -z + 3/2.]
[Figure 6] Fig. 6. The one-dimensional chain structure in (III).
[Figure 7] Fig. 7. The three-dimensional network of complex (III), with the chloroform solvent molecules shown in space-filling format.
(I) Dichlorido{N'-[1-(pyrazin-2-yl-κN1)ethylidene]nicotinohydrazide-κ2N',O}manganese(II) top
Crystal data top
[MnCl2(C12H11N5O)]F(000) = 740
Mr = 367.10Dx = 1.654 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 14.1037 (7) ÅCell parameters from 5089 reflections
b = 7.4955 (4) Åθ = 2.9–25.7°
c = 14.5827 (8) ŵ = 1.26 mm1
β = 107.053 (2)°T = 273 K
V = 1473.82 (13) Å3Block, yellow
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2749 independent reflections
Radiation source: fine-focus sealed tube2593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.7°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1717
Tmin = 0.786, Tmax = 0.833k = 98
6817 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2749 reflectionsΔρmax = 0.32 e Å3
191 parametersΔρmin = 0.17 e Å3
3 restraintsAbsolute structure: Flack (1983), with 1347 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.053 (15)
Crystal data top
[MnCl2(C12H11N5O)]V = 1473.82 (13) Å3
Mr = 367.10Z = 4
Monoclinic, CcMo Kα radiation
a = 14.1037 (7) ŵ = 1.26 mm1
b = 7.4955 (4) ÅT = 273 K
c = 14.5827 (8) Å0.20 × 0.18 × 0.15 mm
β = 107.053 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2749 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2593 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.833Rint = 0.025
6817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.17 e Å3
2749 reflectionsAbsolute structure: Flack (1983), with 1347 Friedel pairs
191 parametersAbsolute structure parameter: 0.053 (15)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

TITL I in Cc CELL 0.71073 14.1037 7.4955 14.5827 90.000 107.053 90.000 ZERR 4.00 0.0007 0.0004 0.0008 0.000 0.002 0.000 LATT -7 SYMM X, -Y, 0.5+Z SFAC C H N O Cl Mn UNIT 48 44 20 4 8 4 L.S. 20 ACTA BOND FMAP 2 PLAN 20 size 0.2 0.18 0.15 DELU 0.01 N5 C10 CONF HTAB htab N4 Cl2_$1 eqiv $1 x, -y+2, z-1/2 FREE C7 H4A WGHT 0.037000 0.000000 FVAR 0.171780 TEMP 0.000 MOLE 1 C4 1 0.488529 0.765857 0.715422 11.000000 0.026340 0.040070 = 0.029030 0.005380 0.009720 0.002900 C3 1 0.387688 0.741179 0.677046 11.000000 0.029890 0.079130 = 0.029160 0.001730 0.004390 -0.002410 AFIX 43 H3 2 0.362681 0.714095 0.612172 11.000000 -1.200000 AFIX 0 C2 1 0.363880 0.792316 0.821197 11.000000 0.034770 0.103400 = 0.043620 0.009130 0.021740 0.003770 AFIX 43 H2 2 0.322562 0.801585 0.860320 11.000000 -1.200000 AFIX 0 C1 1 0.463982 0.818329 0.860994 11.000000 0.037930 0.079840 = 0.030140 0.001710 0.016650 0.004660 AFIX 43 H1 2 0.488439 0.845695 0.925878 11.000000 -1.200000 AFIX 0 C5 1 0.561125 0.748507 0.659665 11.000000 0.026110 0.040970 = 0.026220 0.000360 0.007640 0.003600 C6 1 0.527242 0.714956 0.554612 11.000000 0.037120 0.084780 = 0.029760 -0.008390 0.008230 0.001240 AFIX 137 H6A 2 0.557800 0.608106 0.540494 11.000000 -1.500000 H6B 2 0.545579 0.813925 0.521622 11.000000 -1.500000 H6C 2 0.456462 0.701166 0.533866 11.000000 -1.500000 AFIX 0 C7 1 0.820217 0.765078 0.742051 11.000000 0.030710 0.043090 = 0.026080 0.002070 0.010910 0.000420 C8 1 0.909862 0.753735 0.708806 11.000000 0.027040 0.038940 = 0.027690 0.003030 0.007240 0.002220 C9 1 0.909119 0.688110 0.620230 11.000000 0.029880 0.063730 = 0.033150 -0.005990 0.008950 -0.000990 AFIX 43 H9 2 0.848734 0.651498 0.578698 11.000000 -1.200000 AFIX 0 N5 3 0.988978 0.674033 0.590709 11.000000 0.036950 0.091260 = 0.036060 -0.009610 0.015650 0.003530 C11 1 1.083486 0.790827 0.742243 11.000000 0.025460 0.070120 = 0.047830 -0.003130 0.005410 -0.004490 AFIX 43 H11 2 1.144835 0.825126 0.782852 11.000000 -1.200000 AFIX 0 C12 1 1.000380 0.804238 0.771402 11.000000 0.032980 0.061500 = 0.031290 -0.007310 0.009090 -0.002400 AFIX 43 H12 2 1.004312 0.846611 0.832347 11.000000 -1.200000 AFIX 0 Cl1 5 0.703003 0.543458 0.964095 11.000000 0.061380 0.047660 = 0.049920 0.013530 0.007150 0.002770 Cl2 5 0.723834 1.049801 0.971746 11.000000 0.078110 0.049820 = 0.047340 -0.016620 0.017800 -0.005410 Mn1 6 0.692521 0.800666 0.872665 11.000000 0.028380 0.042960 = 0.022890 -0.001440 0.007710 0.000970 N1 3 0.526324 0.805251 0.808905 11.000000 0.027060 0.050770 = 0.026800 0.000260 0.009890 0.003860 N2 3 0.324233 0.754714 0.729641 11.000000 0.028380 0.111390 = 0.051060 0.005030 0.017030 -0.002140 N3 3 0.651580 0.763473 0.712918 11.000000 0.026500 0.045080 = 0.024370 0.001670 0.009910 0.001560 N4 3 0.730272 0.751423 0.676186 11.000000 0.025900 0.064990 = 0.022190 -0.001700 0.009690 0.003280 C10 1 1.075574 0.725725 0.651706 11.000000 0.031210 0.074350 = 0.042890 0.002110 0.021020 0.001240 AFIX 43 H10 2 1.132620 0.717427 0.632294 11.000000 -1.200000 AFIX 0 O1 4 0.826933 0.787089 0.827498 11.000000 0.029600 0.084840 = 0.026810 -0.009690 0.008590 -0.002920 AFIX 3 H4A 2 0.725159 0.727338 0.620153 11.000000 -1.500000 AFIX 0 HKLF 4

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.48853 (19)0.7659 (3)0.71542 (18)0.0315 (5)
C30.3877 (2)0.7412 (5)0.6770 (2)0.0470 (7)
H30.36270.71410.61220.056*
C20.3639 (2)0.7923 (5)0.8212 (3)0.0584 (9)
H20.32260.80160.86030.070*
C10.4640 (2)0.8183 (4)0.8610 (2)0.0479 (7)
H10.48840.84570.92590.057*
C50.56112 (18)0.7485 (3)0.65967 (18)0.0311 (5)
C60.5272 (2)0.7150 (5)0.5546 (2)0.0509 (8)
H6A0.55780.60810.54050.076*
H6B0.54560.81390.52160.076*
H6C0.45650.70120.53390.076*
C70.82022 (19)0.7651 (3)0.74205 (18)0.0327 (5)
C80.90986 (19)0.7537 (4)0.70881 (19)0.0314 (5)
C90.9091 (2)0.6881 (4)0.6202 (2)0.0423 (6)
H90.84870.65150.57870.051*
N50.98898 (18)0.6740 (4)0.59071 (18)0.0537 (7)
C111.0835 (2)0.7908 (4)0.7422 (2)0.0489 (7)
H111.14480.82510.78290.059*
C121.0004 (2)0.8042 (4)0.7714 (2)0.0420 (7)
H121.00430.84660.83230.050*
Cl10.70300 (5)0.54346 (10)0.96410 (5)0.0549 (2)
Cl20.72383 (6)1.04980 (10)0.97175 (5)0.0586 (2)
Mn10.69252 (2)0.80067 (4)0.87266 (2)0.03137 (11)
N10.52632 (15)0.8053 (3)0.80891 (16)0.0345 (5)
N20.32423 (19)0.7547 (4)0.7296 (2)0.0625 (7)
N30.65158 (15)0.7635 (3)0.71292 (15)0.0315 (4)
N40.73027 (16)0.7514 (3)0.67619 (15)0.0371 (5)
C101.0756 (2)0.7257 (4)0.6517 (2)0.0473 (7)
H101.13260.71740.63230.057*
O10.82693 (14)0.7871 (3)0.82750 (14)0.0470 (5)
H4A0.72520.72730.62020.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0263 (12)0.0401 (13)0.0290 (13)0.0029 (10)0.0097 (10)0.0054 (10)
C30.0299 (17)0.079 (2)0.0292 (16)0.0024 (14)0.0044 (12)0.0017 (13)
C20.0348 (18)0.103 (3)0.0436 (18)0.0038 (15)0.0217 (15)0.0091 (16)
C10.0379 (16)0.080 (2)0.0301 (14)0.0047 (13)0.0166 (12)0.0017 (13)
C50.0261 (13)0.0410 (12)0.0262 (12)0.0036 (10)0.0076 (10)0.0004 (10)
C60.0371 (18)0.085 (3)0.0298 (16)0.0012 (14)0.0082 (13)0.0084 (13)
C70.0307 (14)0.0431 (13)0.0261 (13)0.0004 (11)0.0109 (11)0.0021 (10)
C80.0270 (13)0.0389 (12)0.0277 (12)0.0022 (10)0.0072 (10)0.0030 (10)
C90.0299 (14)0.0637 (18)0.0332 (14)0.0010 (12)0.0089 (11)0.0060 (12)
N50.0369 (14)0.091 (2)0.0361 (14)0.0035 (12)0.0157 (11)0.0096 (12)
C110.0255 (14)0.070 (2)0.0478 (18)0.0045 (12)0.0054 (12)0.0031 (14)
C120.0330 (14)0.0615 (19)0.0313 (15)0.0024 (12)0.0091 (12)0.0073 (11)
Cl10.0614 (4)0.0477 (4)0.0499 (4)0.0028 (3)0.0072 (4)0.0135 (3)
Cl20.0781 (6)0.0498 (4)0.0473 (4)0.0054 (4)0.0178 (4)0.0166 (3)
Mn10.02838 (18)0.0430 (2)0.02289 (18)0.00097 (19)0.00771 (13)0.00144 (17)
N10.0271 (11)0.0508 (13)0.0268 (11)0.0039 (9)0.0099 (9)0.0003 (9)
N20.0284 (14)0.111 (2)0.0511 (17)0.0021 (13)0.0170 (12)0.0050 (15)
N30.0265 (11)0.0451 (12)0.0244 (10)0.0016 (9)0.0099 (9)0.0017 (9)
N40.0259 (11)0.0650 (13)0.0222 (11)0.0033 (10)0.0097 (9)0.0017 (10)
C100.0312 (15)0.074 (2)0.0429 (16)0.0012 (13)0.0210 (13)0.0021 (14)
O10.0296 (10)0.0848 (15)0.0268 (10)0.0029 (9)0.0086 (8)0.0097 (9)
Geometric parameters (Å, º) top
C4—N11.343 (3)C8—C91.379 (4)
C4—C31.380 (4)C8—C121.387 (4)
C4—C51.488 (3)C9—N51.323 (4)
C3—N21.342 (4)C9—H90.9300
C3—H30.9300N5—C101.340 (4)
C2—N21.318 (5)C11—C121.363 (4)
C2—C11.374 (4)C11—C101.381 (4)
C2—H20.9300C11—H110.9300
C1—N11.323 (4)C12—H120.9300
C1—H10.9300Cl1—Mn12.3239 (8)
C5—N31.289 (3)Cl2—Mn12.3228 (7)
C5—C61.486 (4)Mn1—O12.1841 (19)
C6—H6A0.9600Mn1—N32.247 (2)
C6—H6B0.9600Mn1—N12.254 (2)
C6—H6C0.9600N3—N41.370 (3)
C7—O11.233 (3)N4—H4A0.8191
C7—N41.352 (3)C10—H100.9300
C7—C81.483 (4)
N1—C4—C3119.8 (3)C12—C11—C10119.2 (3)
N1—C4—C5116.2 (2)C12—C11—H11120.4
C3—C4—C5124.0 (2)C10—C11—H11120.4
N2—C3—C4122.6 (3)C11—C12—C8119.0 (3)
N2—C3—H3118.7C11—C12—H12120.5
C4—C3—H3118.7C8—C12—H12120.5
N2—C2—C1122.5 (3)O1—Mn1—N370.33 (7)
N2—C2—H2118.8O1—Mn1—N1139.98 (7)
C1—C2—H2118.8N3—Mn1—N169.77 (8)
N1—C1—C2121.4 (3)O1—Mn1—Cl2101.63 (6)
N1—C1—H1119.3N3—Mn1—Cl2133.53 (6)
C2—C1—H1119.3N1—Mn1—Cl2103.26 (6)
N3—C5—C6126.7 (2)O1—Mn1—Cl1102.68 (6)
N3—C5—C4112.4 (2)N3—Mn1—Cl1116.47 (6)
C6—C5—C4120.9 (2)N1—Mn1—Cl197.63 (6)
C5—C6—H6A109.5Cl2—Mn1—Cl1109.97 (3)
C5—C6—H6B109.5C1—N1—C4117.8 (2)
H6A—C6—H6B109.5C1—N1—Mn1123.36 (19)
C5—C6—H6C109.5C4—N1—Mn1118.07 (17)
H6A—C6—H6C109.5C2—N2—C3116.0 (3)
H6B—C6—H6C109.5C5—N3—N4122.1 (2)
O1—C7—N4120.4 (2)C5—N3—Mn1122.92 (17)
O1—C7—C8121.2 (2)N4—N3—Mn1114.98 (15)
N4—C7—C8118.4 (2)C7—N4—N3114.60 (19)
C9—C8—C12117.8 (2)C7—N4—H4A121.0
C9—C8—C7123.6 (2)N3—N4—H4A124.1
C12—C8—C7118.5 (2)N5—C10—C11122.6 (3)
N5—C9—C8124.0 (3)N5—C10—H10118.7
N5—C9—H9118.0C11—C10—H10118.7
C8—C9—H9118.0C7—O1—Mn1119.66 (17)
C9—N5—C10117.3 (2)
N1—C4—C3—N20.1 (5)Cl2—Mn1—N1—C4138.86 (17)
C5—C4—C3—N2178.8 (3)Cl1—Mn1—N1—C4108.46 (17)
N2—C2—C1—N10.6 (5)C1—C2—N2—C30.7 (5)
N1—C4—C5—N34.2 (3)C4—C3—N2—C20.4 (5)
C3—C4—C5—N3174.7 (3)C6—C5—N3—N40.8 (4)
N1—C4—C5—C6176.6 (3)C4—C5—N3—N4179.9 (2)
C3—C4—C5—C64.4 (4)C6—C5—N3—Mn1176.8 (2)
O1—C7—C8—C9164.0 (3)C4—C5—N3—Mn12.3 (3)
N4—C7—C8—C916.3 (4)O1—Mn1—N3—C5178.4 (2)
O1—C7—C8—C1213.0 (4)N1—Mn1—N3—C54.93 (19)
N4—C7—C8—C12166.7 (2)Cl2—Mn1—N3—C594.2 (2)
C12—C8—C9—N51.5 (4)Cl1—Mn1—N3—C583.6 (2)
C7—C8—C9—N5178.5 (3)O1—Mn1—N3—N40.57 (15)
C8—C9—N5—C100.6 (4)N1—Mn1—N3—N4177.28 (18)
C10—C11—C12—C80.7 (4)Cl2—Mn1—N3—N488.03 (17)
C9—C8—C12—C111.5 (4)Cl1—Mn1—N3—N494.17 (16)
C7—C8—C12—C11178.7 (3)O1—C7—N4—N30.2 (4)
C2—C1—N1—C40.1 (4)C8—C7—N4—N3179.9 (2)
C2—C1—N1—Mn1169.5 (2)C5—N3—N4—C7178.2 (2)
C3—C4—N1—C10.2 (4)Mn1—N3—N4—C70.4 (3)
C5—C4—N1—C1178.8 (2)C9—N5—C10—C110.3 (4)
C3—C4—N1—Mn1170.4 (2)C12—C11—C10—N50.2 (5)
C5—C4—N1—Mn18.6 (3)N4—C7—O1—Mn10.8 (3)
O1—Mn1—N1—C1178.6 (2)C8—C7—O1—Mn1179.50 (18)
N3—Mn1—N1—C1176.6 (2)N3—Mn1—O1—C70.71 (19)
Cl2—Mn1—N1—C151.6 (2)N1—Mn1—O1—C75.5 (3)
Cl1—Mn1—N1—C161.1 (2)Cl2—Mn1—O1—C7133.03 (19)
O1—Mn1—N1—C411.8 (2)Cl1—Mn1—O1—C7113.16 (19)
N3—Mn1—N1—C46.99 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl2i0.822.733.310 (2)129
Symmetry code: (i) x, y+2, z1/2.
(II) Bis{N'-[1-(pyrazin-2-yl-κN1)ethylidene]nicotinohydrazidato-κ2N',O]manganese(II) top
Crystal data top
[Mn(C12H10N5O)2]Dx = 1.508 Mg m3
Mr = 535.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aba2Cell parameters from 3587 reflections
a = 12.3790 (7) Åθ = 2.8–22.4°
b = 19.2445 (13) ŵ = 0.61 mm1
c = 9.8987 (6) ÅT = 273 K
V = 2358.1 (3) Å3Bar, yellow
Z = 40.24 × 0.13 × 0.12 mm
F(000) = 1100
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2251 independent reflections
Radiation source: fine-focus sealed tube1696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1513
Tmin = 0.868, Tmax = 0.931k = 2323
11335 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0499P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2251 reflectionsΔρmax = 0.39 e Å3
169 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), with 1050 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Mn(C12H10N5O)2]V = 2358.1 (3) Å3
Mr = 535.44Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 12.3790 (7) ŵ = 0.61 mm1
b = 19.2445 (13) ÅT = 273 K
c = 9.8987 (6) Å0.24 × 0.13 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2251 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1696 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.931Rint = 0.052
11335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.39 e Å3
S = 1.04Δρmin = 0.21 e Å3
2251 reflectionsAbsolute structure: Flack (1983), with 1050 Friedel pairs
169 parametersAbsolute structure parameter: 0.00 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

TITL 1 in Aba2 CELL 0.71073 12.3790 19.2445 9.8987 90.000 90.000 90.000 ZERR 4.00 0.0007 0.0013 0.0006 0.000 0.000 0.000 LATT -5 SYMM -X, -Y, Z SYMM 0.5+X, 0.5-Y, Z SYMM 0.5-X, 0.5+Y, Z SFAC C H N O Mn UNIT 96 80 40 8 4 L.S. 50 ACTA BOND $H FMAP 2 PLAN 10 HTAB eqiv $1 x+1/2, -y+1, z-1/2 eqiv $2 -x+1/2, y-1/2, z+1 htab C3 O1_$1 htab C11 N2_$2 CONF SIZE 0.24 0.13 0.12 WGHT 0.049900 0.000000 FVAR 0.146150 TEMP 0.000 MOLE 1 Mn1 5 0.000000 0.500000 0.045969 10.500000 0.021440 0.049090 = 0.039090 0.000000 0.000000 0.003890 C1 1 0.053079 0.607268 -0.198981 11.000000 0.050880 0.048100 = 0.055290 0.006370 0.002910 0.002050 AFIX 43 H1 2 -0.020879 0.615760 -0.199138 11.000000 -1.200000 AFIX 0 C2 1 0.117064 0.643026 -0.287289 11.000000 0.074210 0.057210 = 0.053570 0.005920 0.003040 0.002420 AFIX 43 H2 2 0.085961 0.676040 -0.343809 11.000000 -1.200000 AFIX 0 C3 1 0.263643 0.585432 -0.207088 11.000000 0.042110 0.057960 = 0.059990 -0.016120 0.018920 -0.013600 AFIX 43 H3 2 0.337538 0.576740 -0.208399 11.000000 -1.200000 AFIX 0 C4 1 0.199482 0.549708 -0.114211 11.000000 0.033170 0.042780 = 0.038180 -0.012980 0.009470 -0.005240 C5 1 0.241944 0.497842 -0.017314 11.000000 0.027160 0.044800 = 0.041480 -0.013600 0.005040 -0.000590 C6 1 0.360551 0.487229 0.000875 11.000000 0.024630 0.075010 = 0.065430 -0.017790 0.001120 0.001390 AFIX 137 H6A 2 0.372661 0.448480 0.060045 11.000000 -1.500000 H6B 2 0.391936 0.528295 0.039490 11.000000 -1.500000 H6C 2 0.393308 0.478090 -0.085217 11.000000 -1.500000 AFIX 0 C7 1 0.107564 0.393034 0.202816 11.000000 0.038770 0.041860 = 0.035250 -0.001930 -0.001720 0.005000 C8 1 0.122956 0.338114 0.306355 11.000000 0.046760 0.044180 = 0.042730 -0.003700 -0.001770 0.012630 C9 1 0.222602 0.314788 0.349311 11.000000 0.054660 0.058370 = 0.062030 0.000300 -0.012100 0.011880 AFIX 43 H9 2 0.285768 0.331193 0.309693 11.000000 -1.200000 AFIX 0 C10 1 0.226414 0.266625 0.452261 11.000000 0.080150 0.061370 = 0.065690 -0.000680 -0.025470 0.024130 AFIX 43 H10 2 0.292625 0.250629 0.483945 11.000000 -1.200000 AFIX 0 C11 1 0.133123 0.242638 0.507211 11.000000 0.110040 0.067500 = 0.058660 0.009730 -0.006900 0.030300 AFIX 43 H11 2 0.137804 0.210351 0.576871 11.000000 -1.200000 AFIX 0 C12 1 0.033430 0.309336 0.368009 11.000000 0.064920 0.066770 = 0.067250 0.024210 0.009750 0.025060 AFIX 43 H12 2 -0.033969 0.323850 0.337572 11.000000 -1.200000 AFIX 0 N1 3 0.092184 0.561222 -0.113638 11.000000 0.035900 0.047020 = 0.042440 0.001450 0.004760 -0.002950 N2 3 0.223067 0.631642 -0.294221 11.000000 0.075710 0.056840 = 0.058750 0.004630 0.015670 -0.013040 N3 3 0.168490 0.466503 0.050198 11.000000 0.027250 0.043170 = 0.040360 -0.003720 0.000870 0.003000 N4 3 0.197258 0.416837 0.144238 11.000000 0.032640 0.048940 = 0.046460 -0.000820 -0.002500 0.006850 N5 3 0.035183 0.262705 0.467056 11.000000 0.094530 0.073650 = 0.076120 0.029810 0.016970 0.025740 O1 4 0.012759 0.415117 0.182140 11.000000 0.028770 0.066560 = 0.055140 0.017930 0.001770 0.008260 HKLF 4

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.04597 (7)0.0365 (2)
C10.0531 (3)0.60727 (17)0.1990 (4)0.0514 (9)
H10.02090.61580.19910.062*
C20.1171 (3)0.6430 (2)0.2873 (4)0.0617 (10)
H20.08600.67600.34380.074*
C30.2636 (3)0.58543 (18)0.2071 (4)0.0534 (9)
H30.33750.57670.20840.064*
C40.1995 (2)0.54971 (16)0.1142 (4)0.0380 (8)
C50.2419 (3)0.49784 (16)0.0173 (3)0.0378 (8)
C60.3606 (2)0.4872 (2)0.0009 (4)0.0550 (11)
H6A0.37270.44850.06000.083*
H6B0.39190.52830.03950.083*
H6C0.39330.47810.08520.083*
C70.1076 (3)0.39303 (16)0.2028 (3)0.0386 (7)
C80.1230 (3)0.33811 (17)0.3064 (3)0.0446 (9)
C90.2226 (3)0.31479 (19)0.3493 (4)0.0584 (10)
H90.28580.33120.30970.070*
C100.2264 (4)0.2666 (2)0.4523 (5)0.0691 (12)
H100.29260.25060.48390.083*
C110.1331 (4)0.2426 (2)0.5072 (5)0.0787 (13)
H110.13780.21040.57690.094*
C120.0334 (3)0.3093 (2)0.3680 (4)0.0663 (11)
H120.03400.32380.33760.080*
N10.0922 (2)0.56122 (13)0.1136 (3)0.0418 (6)
N20.2231 (3)0.63164 (16)0.2942 (3)0.0638 (9)
N30.16849 (17)0.46650 (12)0.0502 (3)0.0369 (5)
N40.19726 (19)0.41684 (14)0.1442 (3)0.0427 (7)
N50.0352 (3)0.26270 (19)0.4671 (4)0.0814 (11)
O10.01276 (16)0.41512 (13)0.1821 (3)0.0502 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0214 (3)0.0491 (4)0.0391 (3)0.0039 (3)0.0000.000
C10.051 (2)0.048 (2)0.055 (2)0.0021 (18)0.0029 (19)0.006 (2)
C20.074 (3)0.057 (2)0.054 (2)0.002 (2)0.003 (2)0.006 (2)
C30.042 (2)0.058 (2)0.060 (2)0.0136 (19)0.0189 (19)0.016 (2)
C40.0332 (18)0.043 (2)0.0382 (18)0.0052 (13)0.0095 (14)0.0130 (16)
C50.0272 (17)0.0448 (18)0.0415 (17)0.0006 (16)0.0050 (13)0.0136 (17)
C60.0246 (18)0.075 (3)0.065 (3)0.0014 (15)0.0011 (15)0.0178 (19)
C70.0388 (19)0.0419 (19)0.0352 (17)0.0050 (15)0.0017 (15)0.0019 (16)
C80.047 (2)0.044 (2)0.043 (2)0.0126 (15)0.0018 (16)0.0037 (16)
C90.055 (2)0.058 (2)0.062 (3)0.0119 (18)0.0121 (18)0.000 (2)
C100.080 (3)0.061 (3)0.066 (3)0.024 (2)0.025 (2)0.001 (2)
C110.110 (4)0.067 (3)0.059 (3)0.030 (3)0.007 (2)0.010 (2)
C120.065 (2)0.067 (3)0.067 (3)0.025 (2)0.010 (2)0.024 (3)
N10.0359 (16)0.0470 (16)0.0424 (15)0.0030 (12)0.0048 (12)0.0015 (15)
N20.076 (2)0.057 (2)0.059 (2)0.0130 (17)0.0157 (18)0.0046 (19)
N30.0273 (12)0.0432 (13)0.0404 (13)0.0030 (10)0.0009 (15)0.0037 (19)
N40.0326 (15)0.0489 (18)0.0465 (17)0.0069 (12)0.0025 (12)0.0008 (15)
N50.095 (3)0.074 (2)0.076 (3)0.026 (2)0.017 (2)0.030 (2)
O10.0288 (13)0.0666 (16)0.0551 (15)0.0083 (10)0.0018 (11)0.0179 (13)
Geometric parameters (Å, º) top
Mn1—O12.124 (2)C6—H6A0.9600
Mn1—O1i2.124 (2)C6—H6B0.9600
Mn1—N3i2.183 (2)C6—H6C0.9600
Mn1—N32.183 (2)C7—O11.265 (3)
Mn1—N1i2.277 (3)C7—N41.334 (4)
Mn1—N12.277 (3)C7—C81.485 (5)
C1—N11.317 (4)C8—C91.380 (5)
C1—C21.366 (5)C8—C121.381 (5)
C1—H10.9300C9—C101.378 (6)
C2—N21.332 (5)C9—H90.9300
C2—H20.9300C10—C111.357 (6)
C3—N21.337 (5)C10—H100.9300
C3—C41.396 (5)C11—N51.333 (5)
C3—H30.9300C11—H110.9300
C4—N11.347 (4)C12—N51.329 (5)
C4—C51.481 (5)C12—H120.9300
C5—N31.280 (4)N3—N41.381 (4)
C5—C61.493 (4)
O1—Mn1—O1i101.21 (14)H6A—C6—H6B109.5
O1—Mn1—N3i106.62 (9)C5—C6—H6C109.5
O1i—Mn1—N3i71.92 (9)H6A—C6—H6C109.5
O1—Mn1—N371.92 (9)H6B—C6—H6C109.5
O1i—Mn1—N3106.62 (9)O1—C7—N4125.9 (3)
N3i—Mn1—N3177.80 (19)O1—C7—C8118.0 (3)
O1—Mn1—N1i94.57 (10)N4—C7—C8116.0 (3)
O1i—Mn1—N1i143.22 (8)C9—C8—C12116.8 (4)
N3i—Mn1—N1i71.78 (10)C9—C8—C7124.0 (3)
N3—Mn1—N1i109.83 (11)C12—C8—C7119.2 (3)
O1—Mn1—N1143.22 (8)C10—C9—C8118.5 (4)
O1i—Mn1—N194.57 (10)C10—C9—H9120.7
N3i—Mn1—N1109.83 (11)C8—C9—H9120.7
N3—Mn1—N171.78 (10)C11—C10—C9119.7 (4)
N1i—Mn1—N192.15 (14)C11—C10—H10120.1
N1—C1—C2122.5 (3)C9—C10—H10120.1
N1—C1—H1118.8N5—C11—C10123.8 (4)
C2—C1—H1118.8N5—C11—H11118.1
N2—C2—C1121.4 (4)C10—C11—H11118.1
N2—C2—H2119.3N5—C12—C8125.7 (4)
C1—C2—H2119.3N5—C12—H12117.1
N2—C3—C4122.6 (4)C8—C12—H12117.1
N2—C3—H3118.7C1—N1—C4118.1 (3)
C4—C3—H3118.7C1—N1—Mn1127.5 (2)
N1—C4—C3118.9 (3)C4—N1—Mn1114.3 (2)
N1—C4—C5117.3 (3)C2—N2—C3116.5 (3)
C3—C4—C5123.8 (3)C5—N3—N4119.7 (2)
N3—C5—C4113.8 (3)C5—N3—Mn1122.0 (2)
N3—C5—C6124.8 (3)N4—N3—Mn1117.62 (18)
C4—C5—C6121.3 (3)C7—N4—N3108.4 (2)
C5—C6—H6A109.5C12—N5—C11115.5 (4)
C5—C6—H6B109.5C7—O1—Mn1115.5 (2)
N1—C1—C2—N21.9 (6)N3—Mn1—N1—C45.2 (2)
N2—C3—C4—N11.2 (5)N1i—Mn1—N1—C4115.4 (2)
N2—C3—C4—C5179.5 (3)C1—C2—N2—C32.4 (5)
N1—C4—C5—N34.4 (4)C4—C3—N2—C20.9 (5)
C3—C4—C5—N3173.9 (3)C4—C5—N3—N4179.9 (3)
N1—C4—C5—C6173.0 (3)C6—C5—N3—N42.7 (5)
C3—C4—C5—C68.7 (5)C4—C5—N3—Mn19.9 (4)
O1—C7—C8—C9172.7 (3)C6—C5—N3—Mn1167.4 (2)
N4—C7—C8—C94.3 (5)O1—Mn1—N3—C5177.5 (3)
O1—C7—C8—C125.2 (5)O1i—Mn1—N3—C580.8 (3)
N4—C7—C8—C12177.8 (3)N3i—Mn1—N3—C5128.9 (3)
C12—C8—C9—C102.0 (5)N1i—Mn1—N3—C594.2 (3)
C7—C8—C9—C10176.0 (3)N1—Mn1—N3—C58.6 (3)
C8—C9—C10—C111.0 (6)O1—Mn1—N3—N47.3 (2)
C9—C10—C11—N50.3 (7)O1i—Mn1—N3—N489.4 (2)
C9—C8—C12—N51.9 (6)N3i—Mn1—N3—N441.3 (2)
C7—C8—C12—N5176.1 (4)N1i—Mn1—N3—N495.6 (2)
C2—C1—N1—C40.3 (5)N1—Mn1—N3—N4178.8 (2)
C2—C1—N1—Mn1177.3 (3)O1—C7—N4—N34.1 (5)
C3—C4—N1—C11.7 (5)C8—C7—N4—N3179.2 (3)
C5—C4—N1—C1179.9 (3)C5—N3—N4—C7178.6 (3)
C3—C4—N1—Mn1179.2 (2)Mn1—N3—N4—C78.2 (3)
C5—C4—N1—Mn12.4 (3)C8—C12—N5—C110.6 (7)
O1—Mn1—N1—C1168.0 (3)C10—C11—N5—C120.5 (7)
O1i—Mn1—N1—C176.4 (3)N4—C7—O1—Mn12.1 (4)
N3i—Mn1—N1—C14.0 (3)C8—C7—O1—Mn1174.5 (2)
N3—Mn1—N1—C1177.6 (3)O1i—Mn1—O1—C799.2 (2)
N1i—Mn1—N1—C167.4 (3)N3i—Mn1—O1—C7173.4 (2)
O1—Mn1—N1—C414.9 (3)N3—Mn1—O1—C74.8 (2)
O1i—Mn1—N1—C4100.8 (2)N1i—Mn1—O1—C7114.2 (2)
N3i—Mn1—N1—C4173.2 (2)N1—Mn1—O1—C714.4 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.433.273 (4)151
C11—H11···N2iii0.932.623.405 (5)142
Symmetry codes: (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y1/2, z+1.
(III) Poly[[(acetato-κ2O,O'){µ3-N'-[1-(pyrazin-2-yl-κ2N1:N4)ethylidene]nicotinohydrazidato-κ3N',O:N1}cadmium(II)] chloroform disolvate] top
Crystal data top
[Cd(C12H10N5O)(C2H3O2)]·2CHCl3Dx = 1.769 Mg m3
Mr = 650.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9979 reflections
a = 10.4215 (4) Åθ = 2.7–30.1°
b = 10.5323 (4) ŵ = 1.58 mm1
c = 22.2477 (10) ÅT = 273 K
V = 2441.96 (17) Å3Block, yellow
Z = 40.26 × 0.25 × 0.25 mm
F(000) = 1280
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4778 independent reflections
Radiation source: fine-focus sealed tube4608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.684, Tmax = 0.694k = 1210
24532 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0236P)2 + 1.4602P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
4778 reflectionsΔρmax = 0.53 e Å3
282 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Flack (1983), with 2061 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.028 (19)
Crystal data top
[Cd(C12H10N5O)(C2H3O2)]·2CHCl3V = 2441.96 (17) Å3
Mr = 650.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.4215 (4) ŵ = 1.58 mm1
b = 10.5323 (4) ÅT = 273 K
c = 22.2477 (10) Å0.26 × 0.25 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4608 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.694Rint = 0.029
24532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.53 e Å3
S = 1.07Δρmin = 0.40 e Å3
4778 reflectionsAbsolute structure: Flack (1983), with 2061 Friedel pairs
282 parametersAbsolute structure parameter: 0.028 (19)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

TITL mo_QJ_68_0m in P2(1)2(1)2(1) CELL 0.71073 10.4215 10.5323 22.2477 90.000 90.000 90.000 ZERR 4.00 0.0004 0.0004 0.0010 0.000 0.000 0.000 LATT -1 SYMM 0.5-X, -Y, 0.5+Z SYMM -X, 0.5+Y, 0.5-Z SYMM 0.5+X, 0.5-Y, -Z SFAC C H N O Cl Cd UNIT 64 60 20 12 24 4 OMIT -1.00 52.00 L.S. 50 ACTA BOND FMAP 2 PLAN 20 delu 0.0.01 0.005 Cd1 O3 size 0.26 0.25 0.25 CONF HTAB C15 O2 HTAB C15 O1 HTAB C16 O2_$1 EQIV $1 X-1/2, -Y+1/2, -Z+1 HTAB FREE C4 C1 FREE Cd1 C14 WGHT 0.023600 1.474500 FVAR 0.146690 TEMP 0.000 MOLE 1 N5 3 0.628994 0.436175 0.657542 11.000000 0.032910 0.033810 = 0.023360 0.004400 0.004250 -0.000130 C12 1 0.571817 0.393432 0.707219 11.000000 0.027000 0.032510 = 0.026310 0.003590 0.003160 0.003740 C8 1 0.621603 0.295632 0.741880 11.000000 0.027750 0.026740 = 0.021530 0.001140 0.000630 -0.001250 Cd1 6 0.479411 0.080513 0.903263 11.000000 0.029110 0.024120 = 0.020070 0.000780 0.000570 0.000230 C1 1 0.248893 0.111841 1.011243 11.000000 0.039200 0.031090 = 0.030840 0.007000 0.009050 0.004210 AFIX 43 H1 2 0.278015 0.032893 1.024067 11.000000 -1.200000 AFIX 0 C2 1 0.161353 0.176493 1.045890 11.000000 0.041670 0.040050 = 0.028810 0.006170 0.011010 -0.000550 AFIX 43 H2 2 0.133790 0.140915 1.081904 11.000000 -1.200000 AFIX 0 C3 1 0.157911 0.335046 0.976978 11.000000 0.038460 0.031070 = 0.031390 0.003940 0.007450 0.007180 AFIX 43 H3 2 0.125537 0.412118 0.963333 11.000000 -1.200000 AFIX 0 C4 1 0.249162 0.272335 0.942237 11.000000 0.028660 0.028790 = 0.025310 0.001620 0.003710 0.002140 C5 1 0.302241 0.328108 0.886751 11.000000 0.037480 0.032340 = 0.030910 0.005880 0.007520 0.008250 C6 1 0.248328 0.448319 0.861193 11.000000 0.076780 0.058610 = 0.064170 0.032310 0.037430 0.038940 AFIX 137 H6A 2 0.282033 0.519661 0.882918 11.000000 -1.500000 H6B 2 0.156518 0.447239 0.864674 11.000000 -1.500000 H6C 2 0.271868 0.455130 0.819600 11.000000 -1.500000 AFIX 0 C7 1 0.556212 0.249454 0.797486 11.000000 0.028580 0.029440 = 0.020770 0.001400 0.000310 -0.001180 C9 1 0.736472 0.240680 0.723313 11.000000 0.038470 0.034620 = 0.032880 0.007910 0.003270 0.009370 AFIX 43 H9 2 0.772543 0.173952 0.744853 11.000000 -1.200000 AFIX 0 C10 1 0.795751 0.286889 0.672474 11.000000 0.036620 0.050040 = 0.042870 0.010320 0.015970 0.011770 AFIX 43 H10 2 0.873105 0.252376 0.659533 11.000000 -1.200000 AFIX 0 C11 1 0.739910 0.383734 0.641306 11.000000 0.037680 0.045010 = 0.031600 0.009780 0.013240 0.001890 AFIX 43 H11 2 0.781138 0.414485 0.607211 11.000000 -1.200000 H12 2 0.495002 0.430784 0.719121 11.000000 -1.200000 AFIX 0 C13 1 0.631126 -0.239060 0.993704 11.000000 0.131620 0.068830 = 0.066540 0.033900 0.024750 0.056570 AFIX 137 H13A 2 0.592466 -0.243388 1.032817 11.000000 -1.500000 H13B 2 0.722528 -0.231828 0.997840 11.000000 -1.500000 H13C 2 0.610855 -0.314680 0.971564 11.000000 -1.500000 AFIX 0 C14 1 0.580054 -0.124682 0.960504 11.000000 0.054280 0.033230 = 0.034630 0.006180 -0.004060 0.005920 C15 1 0.878010 0.088435 0.877451 11.000000 0.035810 0.073780 = 0.062570 -0.008380 -0.003100 0.006430 AFIX 13 H15 2 0.784280 0.087667 0.880984 11.000000 -1.200000 AFIX 0 C16 1 0.259916 0.817672 0.169235 11.000000 0.054940 0.053530 = 0.053200 0.003070 -0.002940 0.003760 AFIX 13 H16 2 0.233867 0.730343 0.160166 11.000000 -1.200000 AFIX 0 Cl1 5 0.942635 0.037382 0.945285 11.000000 0.076200 0.160780 = 0.069890 0.016090 -0.018700 0.002220 Cl2 5 0.921708 -0.013493 0.818790 11.000000 0.092950 0.067850 = 0.080810 -0.009470 0.010420 0.018980 Cl3 5 0.926748 0.243341 0.861635 11.000000 0.086480 0.076530 = 0.104260 -0.016230 -0.007070 -0.016400 Cl4 5 0.326552 0.819883 0.241170 11.000000 0.134280 0.132370 = 0.055460 0.002790 -0.019550 0.004420 Cl5 5 0.372756 0.864623 0.115618 11.000000 0.060390 0.100920 = 0.081930 0.031750 0.009510 0.010840 Cl6 5 0.123673 0.914053 0.165954 11.000000 0.072610 0.074650 = 0.090040 0.006680 0.016010 0.020790 N1 3 0.293102 0.159479 0.959710 11.000000 0.032390 0.030000 = 0.025610 0.000450 0.003650 0.001660 N2 3 0.115124 0.288855 1.029079 11.000000 0.036260 0.033630 = 0.026790 0.000560 0.008030 0.003010 N3 3 0.398978 0.269338 0.863985 11.000000 0.028850 0.030880 = 0.021180 0.002660 0.003960 0.001510 N4 3 0.454971 0.318346 0.813513 11.000000 0.037980 0.034190 = 0.025120 0.008920 0.009690 0.004280 O1 4 0.602447 0.153102 0.823520 11.000000 0.031860 0.036750 = 0.030720 0.010330 0.005510 0.007440 O2 4 0.636401 -0.087223 0.914242 11.000000 0.047520 0.045530 = 0.047570 0.012130 0.005630 0.008130 O3 4 0.484459 -0.068993 0.981507 11.000000 0.057790 0.034710 = 0.035210 0.007360 0.005580 0.009430 HKLF 4

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N50.6290 (2)0.4362 (2)0.65754 (10)0.0300 (5)
C120.5718 (3)0.3934 (3)0.70722 (12)0.0286 (6)
C80.6216 (3)0.2956 (3)0.74188 (11)0.0253 (5)
Cd10.479411 (17)0.080513 (17)0.903263 (7)0.02443 (6)
C10.2489 (3)0.1118 (3)1.01124 (13)0.0337 (7)
H10.27800.03291.02410.040*
C20.1614 (3)0.1765 (3)1.04589 (14)0.0368 (7)
H20.13380.14091.08190.044*
C30.1579 (3)0.3350 (3)0.97698 (13)0.0336 (6)
H30.12550.41210.96330.040*
C40.2492 (3)0.2723 (3)0.94224 (12)0.0276 (6)
C50.3022 (3)0.3281 (3)0.88675 (12)0.0336 (6)
C60.2483 (4)0.4483 (4)0.86119 (18)0.0665 (13)
H6A0.28200.51970.88290.100*
H6B0.15650.44720.86470.100*
H6C0.27190.45510.81960.100*
C70.5562 (2)0.2495 (3)0.79749 (11)0.0263 (5)
C90.7365 (3)0.2407 (3)0.72331 (13)0.0353 (7)
H90.77250.17400.74490.042*
C100.7958 (3)0.2869 (3)0.67247 (15)0.0432 (8)
H100.87310.25240.65950.052*
C110.7399 (3)0.3837 (3)0.64131 (14)0.0381 (7)
H110.78110.41450.60720.046*
H120.49500.43080.71910.046*
C130.6311 (6)0.2391 (5)0.9937 (2)0.0890 (18)
H13A0.59250.24341.03280.133*
H13B0.72250.23180.99780.133*
H13C0.61090.31470.97160.133*
C140.5801 (4)0.1247 (3)0.96050 (14)0.0407 (8)
C150.8780 (3)0.0884 (5)0.87745 (17)0.0574 (9)
H150.78430.08770.88100.069*
C160.2599 (4)0.8177 (4)0.16924 (17)0.0539 (9)
H160.23390.73030.16020.065*
Cl10.94263 (13)0.03738 (17)0.94528 (6)0.1023 (5)
Cl20.92171 (13)0.01349 (12)0.81879 (6)0.0805 (3)
Cl30.92675 (14)0.24334 (13)0.86164 (7)0.0891 (4)
Cl40.32655 (18)0.81988 (17)0.24117 (6)0.1074 (5)
Cl50.37276 (11)0.86462 (13)0.11562 (6)0.0811 (4)
Cl60.12367 (11)0.91405 (13)0.16595 (6)0.0791 (3)
N10.2931 (2)0.1595 (2)0.95971 (10)0.0293 (5)
N20.1151 (2)0.2889 (2)1.02908 (10)0.0322 (5)
N30.3990 (2)0.2693 (2)0.86398 (9)0.0270 (5)
N40.4550 (2)0.3183 (2)0.81351 (10)0.0324 (5)
O10.60245 (19)0.15310 (19)0.82352 (9)0.0331 (5)
O20.6364 (2)0.0872 (2)0.91424 (10)0.0469 (5)
O30.4845 (2)0.0690 (2)0.98151 (9)0.0426 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0329 (12)0.0338 (14)0.0234 (11)0.0001 (11)0.0042 (9)0.0044 (10)
C120.0270 (12)0.0325 (17)0.0263 (13)0.0037 (11)0.0032 (11)0.0036 (11)
C80.0277 (13)0.0267 (14)0.0215 (12)0.0012 (11)0.0006 (10)0.0011 (10)
Cd10.02911 (9)0.02412 (9)0.02007 (8)0.00023 (7)0.00057 (7)0.00078 (7)
C10.0392 (16)0.0311 (17)0.0308 (15)0.0042 (12)0.0091 (13)0.0070 (11)
C20.0417 (17)0.0400 (18)0.0288 (15)0.0005 (14)0.0110 (13)0.0062 (13)
C30.0385 (16)0.0311 (16)0.0314 (15)0.0072 (12)0.0075 (13)0.0039 (12)
C40.0287 (14)0.0288 (15)0.0253 (13)0.0021 (11)0.0037 (11)0.0016 (11)
C50.0375 (16)0.0323 (16)0.0309 (15)0.0082 (12)0.0075 (12)0.0059 (11)
C60.077 (3)0.059 (3)0.064 (2)0.039 (2)0.037 (2)0.032 (2)
C70.0286 (14)0.0294 (14)0.0208 (12)0.0012 (11)0.0003 (10)0.0014 (10)
C90.0385 (16)0.0346 (16)0.0329 (15)0.0094 (13)0.0033 (12)0.0079 (13)
C100.0366 (17)0.050 (2)0.0429 (17)0.0118 (14)0.0160 (14)0.0103 (15)
C110.0377 (17)0.045 (2)0.0316 (15)0.0019 (13)0.0132 (13)0.0098 (12)
C130.132 (5)0.069 (3)0.067 (3)0.057 (3)0.025 (3)0.034 (2)
C140.054 (2)0.0332 (17)0.0346 (16)0.0059 (14)0.0041 (15)0.0062 (13)
C150.0358 (17)0.074 (3)0.063 (2)0.006 (2)0.0031 (16)0.008 (2)
C160.055 (2)0.054 (2)0.053 (2)0.0038 (18)0.0029 (18)0.0031 (17)
Cl10.0762 (8)0.1608 (15)0.0699 (7)0.0022 (8)0.0187 (6)0.0161 (8)
Cl20.0929 (8)0.0678 (7)0.0808 (8)0.0190 (6)0.0104 (7)0.0095 (6)
Cl30.0865 (8)0.0765 (8)0.1043 (9)0.0164 (7)0.0071 (7)0.0162 (7)
Cl40.1343 (13)0.1324 (13)0.0555 (7)0.0044 (11)0.0196 (8)0.0028 (8)
Cl50.0604 (6)0.1009 (9)0.0819 (8)0.0108 (6)0.0095 (6)0.0318 (7)
Cl60.0726 (7)0.0746 (7)0.0900 (8)0.0208 (7)0.0160 (6)0.0067 (7)
N10.0324 (13)0.0300 (13)0.0256 (12)0.0017 (10)0.0036 (10)0.0004 (10)
N20.0363 (14)0.0336 (14)0.0268 (12)0.0030 (11)0.0080 (10)0.0006 (10)
N30.0288 (12)0.0309 (13)0.0212 (11)0.0015 (10)0.0040 (9)0.0027 (9)
N40.0380 (15)0.0342 (13)0.0251 (11)0.0043 (11)0.0097 (10)0.0089 (10)
O10.0319 (11)0.0368 (12)0.0307 (10)0.0074 (9)0.0055 (9)0.0103 (9)
O20.0475 (12)0.0455 (13)0.0476 (13)0.0081 (11)0.0056 (10)0.0121 (12)
O30.0578 (13)0.0347 (11)0.0352 (10)0.0094 (12)0.0056 (10)0.0074 (7)
Geometric parameters (Å, º) top
N5—C111.331 (4)C6—H6A0.9600
N5—C121.334 (3)C6—H6B0.9600
N5—Cd1i2.328 (2)C6—H6C0.9600
C12—C81.387 (4)C7—O11.264 (3)
C12—H120.9304C7—N41.329 (3)
C8—C91.392 (4)C9—C101.378 (4)
C8—C71.494 (3)C9—H90.9300
Cd1—O12.3186 (19)C10—C111.364 (4)
Cd1—N5ii2.328 (2)C10—H100.9300
Cd1—N32.328 (2)C11—H110.9300
Cd1—O32.348 (2)C13—C141.510 (5)
Cd1—O22.420 (2)C13—H13A0.9600
Cd1—N12.457 (2)C13—H13B0.9600
Cd1—N2iii2.482 (2)C13—H13C0.9600
C1—N11.334 (3)C14—O31.247 (4)
C1—C21.375 (4)C14—O21.249 (4)
C1—H10.9300C15—Cl11.738 (4)
C2—N21.331 (4)C15—Cl31.745 (5)
C2—H20.9300C15—Cl21.750 (4)
C3—N21.334 (4)C15—H150.9800
C3—C41.392 (4)C16—Cl41.745 (4)
C3—H30.9300C16—Cl51.747 (4)
C4—N11.332 (4)C16—Cl61.747 (4)
C4—C51.475 (4)C16—H160.9800
C5—N31.287 (4)N2—Cd1iv2.482 (2)
C5—C61.497 (4)N3—N41.367 (3)
C11—N5—C12118.2 (3)H6A—C6—H6C109.5
C11—N5—Cd1i122.33 (19)H6B—C6—H6C109.5
C12—N5—Cd1i119.02 (18)O1—C7—N4128.2 (2)
N5—C12—C8123.0 (2)O1—C7—C8117.8 (2)
N5—C12—H12118.5N4—C7—C8114.0 (2)
C8—C12—H12118.5C10—C9—C8118.8 (3)
C12—C8—C9117.7 (2)C10—C9—H9120.6
C12—C8—C7122.1 (2)C8—C9—H9120.6
C9—C8—C7120.2 (2)C11—C10—C9119.4 (3)
O1—Cd1—N5ii92.24 (8)C11—C10—H10120.3
O1—Cd1—N368.30 (7)C9—C10—H10120.3
N5ii—Cd1—N399.50 (9)N5—C11—C10122.9 (3)
O1—Cd1—O3140.90 (7)N5—C11—H11118.6
N5ii—Cd1—O390.22 (8)C10—C11—H11118.6
N3—Cd1—O3149.22 (7)C14—C13—H13A109.5
O1—Cd1—O286.79 (7)C14—C13—H13B109.5
N5ii—Cd1—O284.84 (8)H13A—C13—H13B109.5
N3—Cd1—O2154.79 (8)C14—C13—H13C109.5
O3—Cd1—O254.58 (7)H13A—C13—H13C109.5
O1—Cd1—N1135.76 (7)H13B—C13—H13C109.5
N5ii—Cd1—N197.73 (8)O3—C14—O2122.4 (3)
N3—Cd1—N167.56 (7)O3—C14—C13118.3 (3)
O3—Cd1—N182.29 (7)O2—C14—C13119.3 (3)
O2—Cd1—N1136.85 (7)Cl1—C15—Cl3110.6 (2)
O1—Cd1—N2iii88.06 (8)Cl1—C15—Cl2110.9 (2)
N5ii—Cd1—N2iii172.41 (9)Cl3—C15—Cl2110.3 (2)
N3—Cd1—N2iii87.67 (8)Cl1—C15—H15108.3
O3—Cd1—N2iii84.80 (8)Cl3—C15—H15108.3
O2—Cd1—N2iii87.61 (8)Cl2—C15—H15108.3
N1—Cd1—N2iii87.29 (8)Cl4—C16—Cl5110.8 (2)
N1—C1—C2121.7 (3)Cl4—C16—Cl6110.7 (2)
N1—C1—H1119.2Cl5—C16—Cl6110.7 (2)
C2—C1—H1119.2Cl4—C16—H16108.2
N2—C2—C1121.5 (3)Cl5—C16—H16108.2
N2—C2—H2119.2Cl6—C16—H16108.2
C1—C2—H2119.2C4—N1—C1117.9 (2)
N2—C3—C4122.5 (3)C4—N1—Cd1115.12 (18)
N2—C3—H3118.7C1—N1—Cd1125.80 (19)
C4—C3—H3118.7C2—N2—C3116.6 (3)
N1—C4—C3119.8 (2)C2—N2—Cd1iv121.91 (19)
N1—C4—C5118.1 (2)C3—N2—Cd1iv121.0 (2)
C3—C4—C5122.1 (3)C5—N3—N4118.4 (2)
N3—C5—C4115.6 (3)C5—N3—Cd1123.04 (18)
N3—C5—C6123.5 (3)N4—N3—Cd1118.51 (16)
C4—C5—C6120.9 (3)C7—N4—N3110.7 (2)
C5—C6—H6A109.5C7—O1—Cd1113.86 (16)
C5—C6—H6B109.5C14—O2—Cd189.77 (19)
H6A—C6—H6B109.5C14—O3—Cd193.18 (18)
C5—C6—H6C109.5
C11—N5—C12—C81.2 (4)C6—C5—N3—N40.6 (5)
Cd1i—N5—C12—C8171.4 (2)C4—C5—N3—Cd13.6 (4)
N5—C12—C8—C90.0 (4)C6—C5—N3—Cd1178.9 (3)
N5—C12—C8—C7179.8 (3)O1—Cd1—N3—C5176.3 (3)
N1—C1—C2—N21.1 (5)N5ii—Cd1—N3—C595.0 (2)
N2—C3—C4—N12.6 (5)O3—Cd1—N3—C511.7 (3)
N2—C3—C4—C5175.8 (3)O2—Cd1—N3—C5166.8 (2)
N1—C4—C5—N38.5 (4)N1—Cd1—N3—C50.5 (2)
C3—C4—C5—N3170.0 (3)N2iii—Cd1—N3—C587.5 (2)
N1—C4—C5—C6173.9 (3)O1—Cd1—N3—N45.41 (18)
C3—C4—C5—C67.6 (5)N5ii—Cd1—N3—N483.22 (19)
C12—C8—C7—O1174.2 (3)O3—Cd1—N3—N4170.02 (17)
C9—C8—C7—O16.0 (4)O2—Cd1—N3—N414.9 (3)
C12—C8—C7—N46.4 (4)N1—Cd1—N3—N4177.7 (2)
C9—C8—C7—N4173.4 (3)N2iii—Cd1—N3—N494.25 (19)
C12—C8—C9—C101.0 (4)O1—C7—N4—N31.7 (4)
C7—C8—C9—C10178.8 (3)C8—C7—N4—N3179.0 (2)
C8—C9—C10—C110.8 (5)C5—N3—N4—C7177.4 (3)
C12—N5—C11—C101.4 (5)Cd1—N3—N4—C74.3 (3)
Cd1i—N5—C11—C10171.0 (3)N4—C7—O1—Cd16.6 (4)
C9—C10—C11—N50.4 (5)C8—C7—O1—Cd1174.11 (18)
C3—C4—N1—C11.3 (4)N5ii—Cd1—O1—C793.6 (2)
C5—C4—N1—C1177.2 (3)N3—Cd1—O1—C75.74 (18)
C3—C4—N1—Cd1169.7 (2)O3—Cd1—O1—C7173.31 (17)
C5—C4—N1—Cd18.8 (3)O2—Cd1—O1—C7178.3 (2)
C2—C1—N1—C40.4 (5)N1—Cd1—O1—C79.9 (2)
C2—C1—N1—Cd1166.6 (2)N2iii—Cd1—O1—C794.00 (19)
O1—Cd1—N1—C40.9 (2)O3—C14—O2—Cd12.6 (3)
N5ii—Cd1—N1—C4102.2 (2)C13—C14—O2—Cd1179.4 (4)
N3—Cd1—N1—C45.05 (19)O1—Cd1—O2—C14174.9 (2)
O3—Cd1—N1—C4168.7 (2)N5ii—Cd1—O2—C1492.5 (2)
O2—Cd1—N1—C4167.13 (18)N3—Cd1—O2—C14166.1 (2)
N2iii—Cd1—N1—C483.5 (2)O3—Cd1—O2—C141.41 (19)
O1—Cd1—N1—C1168.2 (2)N1—Cd1—O2—C143.3 (2)
N5ii—Cd1—N1—C190.5 (2)N2iii—Cd1—O2—C1486.7 (2)
N3—Cd1—N1—C1172.3 (3)O2—C14—O3—Cd12.7 (4)
O3—Cd1—N1—C11.4 (2)C13—C14—O3—Cd1179.3 (4)
O2—Cd1—N1—C10.2 (3)O1—Cd1—O3—C1411.7 (3)
N2iii—Cd1—N1—C183.7 (2)N5ii—Cd1—O3—C1482.1 (2)
C1—C2—N2—C30.1 (5)N3—Cd1—O3—C14168.7 (2)
C1—C2—N2—Cd1iv171.9 (2)O2—Cd1—O3—C141.42 (19)
C4—C3—N2—C21.9 (5)N1—Cd1—O3—C14179.9 (2)
C4—C3—N2—Cd1iv170.2 (2)N2iii—Cd1—O3—C1492.2 (2)
C4—C5—N3—N4178.1 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+2; (iv) x1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O20.982.513.230 (5)130
C15—H15···O10.982.393.186 (4)138
C16—H16···O2v0.982.463.316 (5)146
Symmetry code: (v) x1/2, y+1/2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[MnCl2(C12H11N5O)][Mn(C12H10N5O)2][Cd(C12H10N5O)(C2H3O2)]·2CHCl3
Mr367.10535.44650.43
Crystal system, space groupMonoclinic, CcOrthorhombic, Aba2Orthorhombic, P212121
Temperature (K)273273273
a, b, c (Å)14.1037 (7), 7.4955 (4), 14.5827 (8)12.3790 (7), 19.2445 (13), 9.8987 (6)10.4215 (4), 10.5323 (4), 22.2477 (10)
α, β, γ (°)90, 107.053 (2), 9090, 90, 9090, 90, 90
V3)1473.82 (13)2358.1 (3)2441.96 (17)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.260.611.58
Crystal size (mm)0.20 × 0.18 × 0.150.24 × 0.13 × 0.120.26 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.786, 0.8330.868, 0.9310.684, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
6817, 2749, 2593 11335, 2251, 1696 24532, 4778, 4608
Rint0.0250.0520.029
(sin θ/λ)max1)0.6110.6110.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.05 0.041, 0.093, 1.04 0.022, 0.053, 1.07
No. of reflections274922514778
No. of parameters191169282
No. of restraints311
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.170.39, 0.210.53, 0.40
Absolute structureFlack (1983), with 1347 Friedel pairsFlack (1983), with 1050 Friedel pairsFlack (1983), with 2061 Friedel pairs
Absolute structure parameter0.053 (15)0.00 (3)0.028 (19)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl2i0.822.733.310 (2)129.4
Symmetry code: (i) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.433.273 (4)150.8
C11—H11···N2ii0.932.623.405 (5)141.9
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O20.982.513.230 (5)129.9
C15—H15···O10.982.393.186 (4)138.2
C16—H16···O2i0.982.463.316 (5)145.9
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds