Download citation
Download citation
link to html
MgAuGa (magnesium gold gallium), the first ternary representative of the Mg-Au-Ga system, crystallizes in the space group P\overline{6}2m and adopts the Fe2P structure type (Pearson symbol hP9). Various phases with the general composition AB2 have been reported in the surrounding binary systems, viz. Mg2Ga (hP18), MgGa2 (hP6; CaIn2 type), AuGa2 (cF12; CaF2 type), Au2Ga (oS24; Pd2As type) and Mg2Au (oP12; Co2Si type). In principle, MgAuGa can be obtained from each of them by partial replacement of the major element with the missing element. In fact, the structure of MgAuGa closely resembles hexa­gonal Mg2Ga through a direct group-subgroup relationship. MgAu2Ga (magnesium digold gallium) also crystallizes hexa­gonally in the space group P63/mmc and is isotypic with Na3As. It adopts the structure of another binary compound, viz. Mg3Au (hP8), but shows an unexpected distribution of Mg, Au, and Ga among the atomic positions of the asymmetric unit. Both MgAuGa and MgAu2Ga can be described as formally anionic Au/Ga frameworks, with pseudo-hexa­gonal tunnels around Mg in MgAuGa or cages in MgAu2Ga.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961400566X/ku3126sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961400566X/ku3126Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961400566X/ku3126IIsup3.hkl
Contains datablock II

CCDC references: 991455; 991456

Introduction top

Extensive synthetic explorations focusing on alkali/alkaline-earth–late transition–post transition systems have revealed a variety of compounds with novel structural motifs and bonding features (Corbett, 2010). Among these combinations, systems with active metals, Au and Ga, have been our focus over the last five years, resulting in quite fruitful outcomes (Smetana et al., 2012 [Ambiguous. Smetana, Corbett & Miller 2012, Smetana, Lin et al., 2012 or Smetana, Miller & Corbett, 2012 ?]; Smetana et al., 2013). These compounds exhibit polyanionic frameworks and clusters with encapsulated cations forming one-dimensional chains (A0.55Au2Ga2 and AAu2Ga4; A = Na–Cs), two-dimensional sheets (AAu3Ga2; A = K–Cs) and three-dimensional cages (Na13Au9Ga18 and Na17Au5.9Ga46.6). However, the last case is better described as two inter­penetrating polyanionic and polycationic networks. Moreover, the Na-containing phases, which are quasicrystalline or its approximant, indicate significant polar–covalent Na—Au bonding.

Along these lines, Li and Mg occupy special places among the active alkali and alkaline-earth metals in their inter­metallic chemistry. Their especially high electronegativities and small sizes allow these elements to be incorpotated into polyanionic networks with more electronegative metals and semimetals (Tillard-Charbonnel et al., 1990; Li & Corbett, 2005). Since the Mg–Au, Mg–Ga and Au–Ga systems contain significant numbers of binary compounds (Villars, 2013), there is an excellent opportunity to discover new ternary phases. Moreover, a large homogeneity region has been reported for MgAu (Schubert, 1966) and a maximum solubility of 13 at.% Ga in Au at around 673 K (Cooke & Hume-Rothery, 1966). In spite of these reports, no compound has been reported, as yet, in the ternary Mg–Au–Ga system, so we decided to conduct a preliminary exploration.

Our initial investigations have revealed that two ternary compounds in the Mg–Au–Ga system, in particular, are derivatives of the corresponding binaries. MgAu2Ga adopts the structure of Mg3Au (Schubert & Anderko, 1951), with partial redistribution of all positions in the asymmetric unit and the presence of Au–Au dimers, whereas MgAuGa shows a group–subgroup relation with Mg2Ga (Frank & Schubert, 1970).

Experimental top

Synthesis and crystallization top

The starting materials were Mg pieces (99.98%, Alfa Aesar), Au particles (99.999%, BASF) and Ga ingots (99.999%, Alfa Aesar). Mixtures of 300–400 mg total were weighed in an N2-filled glove-box (H2O < 0.1 p.p.m.v.), loaded into 9 mm Ta ampoules, sealed by arc-welding under Ar and then enclosed in evacuated SiO2 jackets. The samples were heated at 1073 K for 8 h, cooled to 623 K at a rate of 10 K h-1, then annealed at this temperature for 7 d and finally cooled to room temperature by switching off the furnace. Single crystals of MgAuGa and MgAu2Ga were obtained from several samples with loaded compositions of `MgAuGa', `MgAuGa3' and `MgAu2Ga2'. No homogeneity ranges were observed, in spite of frequent Au/Ga mixing in related compounds. The title compounds have a metallic luster and are stable against exposure to air or water at room temperature. Phase analyses were performed using monochromatic Cu Kα1 radiation on a Stoe STADI P diffractometer.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Analysis of the systematic absences for the single-crystal data of MgAuGa led to the possible space groups P3 (No. 143), P3 (No. 147), P3m1 (No. 164), P321 (No. 150), P31m (No. 157), P63/m (No. 176), P63 (No. 173), P62m (No. 176) and P6322 (No. 166). The space group P62m was found to be correct during the structure refinement. The starting atomic parameters were derived via direct methods and the structure was refined successfully using anisotropic atomic displacement parameters for all atoms. All crystallographic positions are fully occupied. Difference Fourier synthesis exhibits almost identical residual peaks and holes of about 2.5 e Å-3, which might result from insufficient data quality. However, all of these peaks and holes were found in the direct vicinity of Au atoms (~1.5 Å) and could not be assigned to any new atom.

Results and discussion top

The crystal structure of MgAuGa is best described as a ternary representative of the Fe2P structure type (Hendricks & Kosting, 1930). Au atoms occupy the P-atom positions, whereas Mg and Ga each occupy one of two inequivalent Fe positons. No Mg/Au or Au/Ga mixing was observed in this compound. A projection of the MgAuGa polyatomic framework along the c axis is shown in Fig. 1. The Mg atoms are formally cationic in this combination, so the compounds can also be represented in terms of tunnel structures. Penta­gonal Au-capped Au5Ga5 prisms (Fig. 2a) stack together, forming channels around Mg and along the c axis. The Mg—Mg distances in the chain are equivalent to the length of the axis. The Ga and Au atoms have somewhat lower coordination numbers, viz. 10 and 9, respectively. The coordination polyhedra of Au are two similar equatorially capped trigonal prisms with inverted locations of Ga and Mg, i.e. either [Au1Ga6Mg3] or [Au2Mg6Ga3] (Figs. 2c and 2d). All vertical Ga—Ga and Mg—Mg bonds are equivalent to the length of the c axis. All Mg—Ga connections within the first polyhedron are identical [3.051 (4) Å], whereas those in the second form two groups [2.981 (5) and 3.051 (4) Å]. These polyhedra reveal the similar roles of Ga and Mg in this crystal structure. The coordination polyhedra of Ga consist of inter­penetrating Mg6 trigonal prisms and Au4 tetra­hedra (Fig. 2b), although this description is rather formal because of one short [3.3738 (3) Å] and five quite long [4.2536 (3) and 4.5759 (2) Å] Au—Au distances. Mg—Mg and Mg—Au distances are in the ranges 3.3738 (3)–3.967 (7) and 2.835 (7)–2.844 (3) Å, respectively. This resembles the polyhedra of Au with one small exception, i.e. one of the equatorial capping atoms is split into two along the c axis.

The crystal structure of MgAu2Ga (Fig. 3), together with that of the binary compound Mg3Au, belong to the hexagonal Na3As structure type, although the distributions of elements in each of them are different. In Mg3Au, the Mg and Au atoms occupy the positions of Na and As, respectively, in accordance with their electronegativities. However, the situation is slightly different in MgAu2Ga, in which two Mg atoms are formally replaced by Au atoms (the 4f position) and Ga replaces Au at the 2a position (the sites of the As atoms in Na3As). At first glance, this substitution pattern does not follow the relative electronegativities of Mg, Au and Ga. However, the atomic distribution results in Au–Au dimers [2.761 (1) Å] oriented along the c axis and bridged by Mg atoms [Mg—Au = 2.8896 (6) Å]. Preliminary electronic structure calculations on MgAu2Ga suggest optimum Au—Au bonding in these dimers, but further theoretical analysis is underway to identify the nature of these bonds. In fact, the three-dimensional [Au2Ga] polyanionic network involves four-bonded Au atoms, by a distorted tetra­hedron of three Ga and one Au, and six-bonded Ga atoms, by a puckered six-membered ring of Au atoms to form a distorted close-packed environment. The Mg atoms are most closely coordinated by a trigonal prism of Ga atoms; likewise, each Ga atom is surrounded by a trigonal anti­prism (distorted o­cta­hedron) of Mg atoms.

The relationship between Mg2Ga and MgAuGa is also structurally inter­esting. In spite of almost identical covalent radii for Au and Mg (Cordero et al., 2008), the Au atoms prefer to occupy the positions of the more electronegative Ga atoms than the geometrically closer Mg atoms. As mentioned above, the same crystallographic positions are occupied by P atoms in the Fe2P prototype, showing strong site preference for the most electronegative element in each compound. However, Mg2Ga deviates from the Fe2P structure type by a doubling of the c axis, creating its own structure type with the space group P62c, which is a minimal non-isomorphic subgroup of P62m. MgAuGa has unit-cell parameters [a = 7.3682 (5) Å and c = 3.3738 (3) Å] that create a volume approximately one-half of that of Mg2Ga [a = 7.794 (2) Å and c = 6.893 (1) Å]. The coordination polyhedra of Ga in Mg2Ga remain the same tricapped trigonal prisms, but the polyhedra around the Mg atoms are significantly distorted tetra­gonal and penta­gonal prisms. Thus, replacing Mg with Au in the structure of Mg2Ga stimulates atomic ordering and a slight increase in symmetry. Another comparison may also come from Au2Ga (Puselj & Schubert, 1974), which crystallizes in the orthorhombic Pd2As structure type (Baelz & Schubert, 1969). In spite of the different crystallographic symmetry and no direct relation between the space groups of Au2Ga (Pbam) and MgAuGa (P62m), Au2Ga contains an ordered packing of trigonal and penta­gonal prisms. Moreover, a polymorphic modification of Pd2As (Schubert et al., 1963) includes the hexagonal Fe2P structure type. This reveals potential similarities between the Mg–Ga and Au–Ga binary systems concerning a strong structural correlation along the 33 at.% Ga line, i.e. Mg2Ga–MgAuGa–Au2Ga.

[Please supply refinement instruction files]

Related literature top

For related literature, see: Baelz & Schubert (1969); Cooke & Hume-Rothery (1966); Corbett (2010); Cordero et al. (2008); Frank & Schubert (1970); Hendricks & Kosting (1930); Li & Corbett (2005); Puselj & Schubert (1974); Schubert (1966); Schubert & Anderko (1951); Schubert et al. (1963); Smetana et al. (2013); Smetana, Corbett & Miller (2012); Smetana, Lin, Pratt, Kreyssig, Ramazanoglu, Corbett, Goldman & Miller (2012); Smetana, Miller & Corbett (2012); Tillard-Charbonnel, Belin & Soubeyroux (1990); Villars (2013).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A projection of the MgAuGa structure along the c axis.
[Figure 2] Fig. 2. The coordination polyhedra of Mg, Ga and Au in the crystal structure of MgAuGa. Au atoms are orange, Ga blue and Mg green. [What do the parts a/b/c/d specifically represent, e.g. (a) The pentagonal Au-capped Au5Ga5 prism. (b) The coordination polyhedron of Ga, consisting of interpenetrating Mg6 trigonal prisms and Au4 tetrahedra. (c) The [Au1Ga6Mg3] coordination polyhedron of Au, consisting of equatorially capped trigonal prisms. (d) The [Au2Mg6Ga3] coordination polyhedron of Au, consisting of equatorially capped trigonal prisms]
[Figure 3] Fig. 3. The crystal structure of MgAu2Ga, showing views of the unit cell along different directions.
(I) Magnesium gold gallium top
Crystal data top
MgAuGaDx = 9.139 Mg m3
Mr = 291.00Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P62mCell parameters from 2837 reflections
Hall symbol: P -6 -2θ = 5.5–39.5°
a = 7.3682 (5) ŵ = 81.83 mm1
c = 3.3738 (3) ÅT = 296 K
V = 158.63 (2) Å3Irregular fragment, colourless
Z = 30.12 × 0.10 × 0.09 mm
F(000) = 366
Data collection top
Bruker SMART CCD area-detector
diffractometer
388 independent reflections
Radiation source: fine-focus sealed tube313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 39.5°, θmin = 5.5°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 1313
Tmin = 0.000, Tmax = 0.001k = 1213
2837 measured reflectionsl = 56
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.069Δρmax = 2.59 e Å3
S = 1.07Δρmin = 2.06 e Å3
388 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 parametersExtinction coefficient: 0.0086 (12)
0 restraintsAbsolute structure: Flack (1983), with 163 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
MgAuGaZ = 3
Mr = 291.00Mo Kα radiation
Hexagonal, P62mµ = 81.83 mm1
a = 7.3682 (5) ÅT = 296 K
c = 3.3738 (3) Å0.12 × 0.10 × 0.09 mm
V = 158.63 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
388 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
313 reflections with I > 2σ(I)
Tmin = 0.000, Tmax = 0.001Rint = 0.071
2837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069Δρmax = 2.59 e Å3
S = 1.07Δρmin = 2.06 e Å3
388 reflectionsAbsolute structure: Flack (1983), with 163 Friedel pairs
14 parametersAbsolute structure parameter: 0.02 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.00000.00000.00000.01147 (19)
Au20.33330.66670.50000.01267 (18)
Ga10.2816 (3)0.00000.50000.0108 (3)
Mg10.6152 (9)0.00000.00000.0121 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0094 (2)0.0094 (2)0.0157 (4)0.00468 (12)0.0000.000
Au20.00854 (18)0.00854 (18)0.0209 (4)0.00427 (9)0.0000.000
Ga10.0080 (5)0.0082 (7)0.0161 (8)0.0041 (4)0.0000.000
Mg10.010 (2)0.014 (3)0.014 (3)0.0068 (13)0.0000.000
Geometric parameters (Å, º) top
Au1—Ga1i2.6740 (15)Au2—Au2ix3.3738 (3)
Au1—Ga12.6740 (15)Ga1—Au2xiv2.6672 (12)
Au1—Ga1ii2.6740 (15)Ga1—Au2xv2.6672 (12)
Au1—Ga1iii2.6740 (15)Ga1—Au1ix2.6740 (15)
Au1—Ga1iv2.6740 (15)Ga1—Mg1ix2.981 (5)
Au1—Ga1v2.6740 (15)Ga1—Mg12.981 (5)
Au1—Mg1vi2.835 (6)Ga1—Mg1viii3.051 (4)
Au1—Mg1vii2.835 (6)Ga1—Mg1xiii3.051 (4)
Au1—Mg1viii2.835 (6)Ga1—Mg1xvi3.051 (4)
Au1—Au1v3.3738 (3)Ga1—Mg1vi3.051 (4)
Au1—Au1ix3.3738 (3)Mg1—Au1xvii2.835 (6)
Au2—Ga1x2.6672 (12)Mg1—Au2xv2.8443 (19)
Au2—Ga1ii2.6672 (12)Mg1—Au2xviii2.8443 (19)
Au2—Ga1vi2.6672 (12)Mg1—Au2xix2.8443 (19)
Au2—Mg1ii2.844 (5)Mg1—Au2xiv2.8443 (19)
Au2—Mg1xi2.844 (5)Mg1—Ga1v2.981 (5)
Au2—Mg1xii2.844 (5)Mg1—Ga1xx3.051 (4)
Au2—Mg1x2.844 (5)Mg1—Ga1xxi3.051 (4)
Au2—Mg1vi2.844 (5)Mg1—Ga1xxii3.051 (4)
Au2—Mg1xiii2.844 (5)Mg1—Ga1xxiii3.051 (4)
Au2—Au2v3.3738 (3)Mg1—Mg1ix3.3738 (3)
Ga1i—Au1—Ga1134.346 (18)Au2xiv—Ga1—Au1117.915 (12)
Ga1i—Au1—Ga1ii134.346 (18)Au2xv—Ga1—Au1117.915 (12)
Ga1—Au1—Ga1ii84.44 (4)Au2xiv—Ga1—Au1ix117.915 (12)
Ga1i—Au1—Ga1iii78.23 (5)Au2xv—Ga1—Au1ix117.915 (12)
Ga1—Au1—Ga1iii84.44 (4)Au1—Ga1—Au1ix78.23 (5)
Ga1ii—Au1—Ga1iii84.44 (4)Au2xiv—Ga1—Mg1ix60.17 (4)
Ga1i—Au1—Ga1iv84.44 (4)Au2xv—Ga1—Mg1ix60.17 (4)
Ga1—Au1—Ga1iv134.346 (18)Au1—Ga1—Mg1ix175.35 (8)
Ga1ii—Au1—Ga1iv78.23 (5)Au1ix—Ga1—Mg1ix106.43 (7)
Ga1iii—Au1—Ga1iv134.346 (18)Au2xiv—Ga1—Mg160.17 (4)
Ga1i—Au1—Ga1v84.44 (4)Au2xv—Ga1—Mg160.17 (4)
Ga1—Au1—Ga1v78.23 (5)Au1—Ga1—Mg1106.43 (7)
Ga1ii—Au1—Ga1v134.346 (18)Au1ix—Ga1—Mg1175.35 (8)
Ga1iii—Au1—Ga1v134.346 (18)Mg1ix—Ga1—Mg168.92 (14)
Ga1iv—Au1—Ga1v84.44 (4)Au2xiv—Ga1—Mg1viii59.21 (10)
Ga1i—Au1—Mg1vi140.89 (3)Au2xv—Ga1—Mg1viii140.52 (4)
Ga1—Au1—Mg1vi67.173 (9)Au1—Ga1—Mg1viii58.94 (10)
Ga1ii—Au1—Mg1vi67.173 (9)Au1ix—Ga1—Mg1viii100.47 (6)
Ga1iii—Au1—Mg1vi140.89 (3)Mg1ix—Ga1—Mg1viii119.37 (8)
Ga1iv—Au1—Mg1vi67.173 (9)Mg1—Ga1—Mg1viii82.23 (8)
Ga1v—Au1—Mg1vi67.173 (9)Au2xiv—Ga1—Mg1xiii140.52 (4)
Ga1i—Au1—Mg1vii67.173 (9)Au2xv—Ga1—Mg1xiii59.21 (10)
Ga1—Au1—Mg1vii140.89 (3)Au1—Ga1—Mg1xiii100.47 (6)
Ga1ii—Au1—Mg1vii67.173 (9)Au1ix—Ga1—Mg1xiii58.94 (10)
Ga1iii—Au1—Mg1vii67.173 (9)Mg1ix—Ga1—Mg1xiii82.23 (8)
Ga1iv—Au1—Mg1vii67.173 (9)Mg1—Ga1—Mg1xiii119.37 (8)
Ga1v—Au1—Mg1vii140.89 (3)Mg1viii—Ga1—Mg1xiii155.12 (17)
Mg1vi—Au1—Mg1vii120.0Au2xiv—Ga1—Mg1xvi59.21 (10)
Ga1i—Au1—Mg1viii67.173 (9)Au2xv—Ga1—Mg1xvi140.52 (4)
Ga1—Au1—Mg1viii67.173 (9)Au1—Ga1—Mg1xvi100.47 (6)
Ga1ii—Au1—Mg1viii140.89 (3)Au1ix—Ga1—Mg1xvi58.94 (10)
Ga1iii—Au1—Mg1viii67.173 (9)Mg1ix—Ga1—Mg1xvi82.23 (8)
Ga1iv—Au1—Mg1viii140.89 (3)Mg1—Ga1—Mg1xvi119.37 (8)
Ga1v—Au1—Mg1viii67.173 (9)Mg1viii—Ga1—Mg1xvi67.14 (9)
Mg1vi—Au1—Mg1viii120.0Mg1xiii—Ga1—Mg1xvi107.20 (16)
Mg1vii—Au1—Mg1viii120.0Au2xiv—Ga1—Mg1vi140.52 (4)
Ga1i—Au1—Au1v50.89 (3)Au2xv—Ga1—Mg1vi59.21 (10)
Ga1—Au1—Au1v129.11 (3)Au1—Ga1—Mg1vi58.94 (10)
Ga1ii—Au1—Au1v129.11 (3)Au1ix—Ga1—Mg1vi100.47 (6)
Ga1iii—Au1—Au1v129.11 (3)Mg1ix—Ga1—Mg1vi119.37 (8)
Ga1iv—Au1—Au1v50.89 (3)Mg1—Ga1—Mg1vi82.23 (8)
Ga1v—Au1—Au1v50.89 (3)Mg1viii—Ga1—Mg1vi107.20 (16)
Mg1vi—Au1—Au1v90.000 (1)Mg1xiii—Ga1—Mg1vi67.14 (9)
Mg1vii—Au1—Au1v90.0Mg1xvi—Ga1—Mg1vi155.12 (17)
Mg1viii—Au1—Au1v90.0Au1xvii—Mg1—Au2xv107.36 (12)
Ga1i—Au1—Au1ix129.11 (3)Au1xvii—Mg1—Au2xviii107.36 (12)
Ga1—Au1—Au1ix50.89 (3)Au2xv—Mg1—Au2xviii145.3 (2)
Ga1ii—Au1—Au1ix50.89 (3)Au1xvii—Mg1—Au2xix107.36 (12)
Ga1iii—Au1—Au1ix50.89 (3)Au2xv—Mg1—Au2xix72.75 (6)
Ga1iv—Au1—Au1ix129.11 (3)Au2xviii—Mg1—Au2xix96.80 (9)
Ga1v—Au1—Au1ix129.11 (3)Au1xvii—Mg1—Au2xiv107.36 (12)
Mg1vi—Au1—Au1ix90.000 (1)Au2xv—Mg1—Au2xiv96.80 (9)
Mg1vii—Au1—Au1ix90.0Au2xviii—Mg1—Au2xiv72.75 (6)
Mg1viii—Au1—Au1ix90.0Au2xix—Mg1—Au2xiv145.3 (2)
Au1v—Au1—Au1ix180.0Au1xvii—Mg1—Ga1v145.54 (7)
Ga1x—Au2—Ga1ii120.0Au2xv—Mg1—Ga1v95.14 (16)
Ga1x—Au2—Ga1vi120.0Au2xviii—Mg1—Ga1v54.43 (8)
Ga1ii—Au2—Ga1vi120.0Au2xix—Mg1—Ga1v54.43 (8)
Ga1x—Au2—Mg1ii67.13 (12)Au2xiv—Mg1—Ga1v95.14 (16)
Ga1ii—Au2—Mg1ii65.40 (11)Au1xvii—Mg1—Ga1145.54 (7)
Ga1vi—Au2—Mg1ii143.61 (3)Au2xv—Mg1—Ga154.43 (8)
Ga1x—Au2—Mg1xi65.40 (11)Au2xviii—Mg1—Ga195.14 (16)
Ga1ii—Au2—Mg1xi143.61 (3)Au2xix—Mg1—Ga195.14 (16)
Ga1vi—Au2—Mg1xi67.13 (12)Au2xiv—Mg1—Ga154.43 (8)
Mg1ii—Au2—Mg1xi132.522 (18)Ga1v—Mg1—Ga168.92 (14)
Ga1x—Au2—Mg1xii67.13 (12)Au1xvii—Mg1—Ga1xx53.89 (10)
Ga1ii—Au2—Mg1xii65.40 (11)Au2xv—Mg1—Ga1xx53.66 (4)
Ga1vi—Au2—Mg1xii143.61 (3)Au2xviii—Mg1—Ga1xx160.8 (2)
Mg1ii—Au2—Mg1xii72.75 (6)Au2xix—Mg1—Ga1xx93.63 (5)
Mg1xi—Au2—Mg1xii88.42 (4)Au2xiv—Mg1—Ga1xx106.76 (5)
Ga1x—Au2—Mg1x65.40 (11)Ga1v—Mg1—Ga1xx143.02 (9)
Ga1ii—Au2—Mg1x143.61 (3)Ga1—Mg1—Ga1xx99.96 (5)
Ga1vi—Au2—Mg1x67.13 (12)Au1xvii—Mg1—Ga1xxi53.89 (10)
Mg1ii—Au2—Mg1x88.42 (4)Au2xv—Mg1—Ga1xxi160.8 (2)
Mg1xi—Au2—Mg1x72.75 (6)Au2xviii—Mg1—Ga1xxi53.66 (4)
Mg1xii—Au2—Mg1x132.522 (18)Au2xix—Mg1—Ga1xxi106.76 (5)
Ga1x—Au2—Mg1vi143.61 (3)Au2xiv—Mg1—Ga1xxi93.63 (5)
Ga1ii—Au2—Mg1vi67.13 (12)Ga1v—Mg1—Ga1xxi99.96 (5)
Ga1vi—Au2—Mg1vi65.40 (11)Ga1—Mg1—Ga1xxi143.02 (9)
Mg1ii—Au2—Mg1vi88.42 (4)Ga1xx—Mg1—Ga1xxi107.8 (2)
Mg1xi—Au2—Mg1vi132.521 (19)Au1xvii—Mg1—Ga1xxii53.89 (10)
Mg1xii—Au2—Mg1vi132.521 (19)Au2xv—Mg1—Ga1xxii106.76 (5)
Mg1x—Au2—Mg1vi88.42 (4)Au2xviii—Mg1—Ga1xxii93.63 (5)
Ga1x—Au2—Mg1xiii143.61 (3)Au2xix—Mg1—Ga1xxii160.8 (2)
Ga1ii—Au2—Mg1xiii67.13 (12)Au2xiv—Mg1—Ga1xxii53.66 (4)
Ga1vi—Au2—Mg1xiii65.40 (11)Ga1v—Mg1—Ga1xxii143.02 (9)
Mg1ii—Au2—Mg1xiii132.52 (2)Ga1—Mg1—Ga1xxii99.96 (5)
Mg1xi—Au2—Mg1xiii88.42 (4)Ga1xx—Mg1—Ga1xxii72.17 (12)
Mg1xii—Au2—Mg1xiii88.42 (4)Ga1xxi—Mg1—Ga1xxii67.14 (9)
Mg1x—Au2—Mg1xiii132.521 (19)Au1xvii—Mg1—Ga1xxiii53.89 (10)
Mg1vi—Au2—Mg1xiii72.75 (6)Au2xv—Mg1—Ga1xxiii93.63 (5)
Ga1x—Au2—Au2v90.0Au2xviii—Mg1—Ga1xxiii106.76 (5)
Ga1ii—Au2—Au2v90.0Au2xix—Mg1—Ga1xxiii53.66 (4)
Ga1vi—Au2—Au2v90.0Au2xiv—Mg1—Ga1xxiii160.8 (2)
Mg1ii—Au2—Au2v53.62 (3)Ga1v—Mg1—Ga1xxiii99.96 (5)
Mg1xi—Au2—Au2v126.38 (3)Ga1—Mg1—Ga1xxiii143.02 (9)
Mg1xii—Au2—Au2v126.38 (3)Ga1xx—Mg1—Ga1xxiii67.14 (9)
Mg1x—Au2—Au2v53.62 (3)Ga1xxi—Mg1—Ga1xxiii72.17 (12)
Mg1vi—Au2—Au2v53.62 (3)Ga1xxii—Mg1—Ga1xxiii107.8 (2)
Mg1xiii—Au2—Au2v126.38 (3)Au1xvii—Mg1—Mg1ix90.0
Ga1x—Au2—Au2ix90.0Au2xv—Mg1—Mg1ix53.62 (3)
Ga1ii—Au2—Au2ix90.0Au2xviii—Mg1—Mg1ix126.38 (3)
Ga1vi—Au2—Au2ix90.0Au2xix—Mg1—Mg1ix126.38 (3)
Mg1ii—Au2—Au2ix126.38 (3)Au2xiv—Mg1—Mg1ix53.62 (3)
Mg1xi—Au2—Au2ix53.62 (3)Ga1v—Mg1—Mg1ix124.46 (7)
Mg1xii—Au2—Au2ix53.62 (3)Ga1—Mg1—Mg1ix55.54 (7)
Mg1x—Au2—Au2ix126.38 (3)Ga1xx—Mg1—Mg1ix56.43 (5)
Mg1vi—Au2—Au2ix126.38 (3)Ga1xxi—Mg1—Mg1ix123.57 (5)
Mg1xiii—Au2—Au2ix53.62 (3)Ga1xxii—Mg1—Mg1ix56.43 (5)
Au2v—Au2—Au2ix180.0Ga1xxiii—Mg1—Mg1ix123.57 (5)
Au2xiv—Ga1—Au2xv105.78 (7)
Symmetry codes: (i) x+y, x, z1; (ii) y, xy, z; (iii) x+y, x, z; (iv) y, xy, z1; (v) x, y, z1; (vi) x+y+1, x+1, z; (vii) x1, y, z; (viii) y, xy1, z; (ix) x, y, z+1; (x) x, y+1, z; (xi) x, y+1, z+1; (xii) y, xy, z+1; (xiii) x+y+1, x+1, z+1; (xiv) x, y1, z; (xv) y, x, z+1; (xvi) y, xy1, z+1; (xvii) x+1, y, z; (xviii) x, y1, z1; (xix) y, x, z; (xx) y+1, xy, z; (xxi) x+y+1, x, z1; (xxii) x+y+1, x, z; (xxiii) y+1, xy, z1.
(II) Magnesium digold gallium top
Crystal data top
MgAu2GaDx = 11.311 Mg m3
Mr = 487.96Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1404 reflections
Hall symbol: -P 6c 2cθ = 4.8–33.0°
a = 4.4015 (3) ŵ = 111.34 mm1
c = 8.5398 (7) ÅT = 297 K
V = 143.28 (3) Å3Irregular fragment, colourless
Z = 20.12 × 0.11 × 0.11 mm
F(000) = 402
Data collection top
Bruker SMART CCD area-detector
diffractometer
129 independent reflections
Radiation source: fine-focus sealed tube111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 33.0°, θmin = 4.8°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 56
Tmin = 0.02, Tmax = 0.06k = 46
1404 measured reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023Secondary atom site location: difference Fourier map
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.7138P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
129 reflectionsΔρmax = 2.00 e Å3
9 parametersΔρmin = 2.97 e Å3
Crystal data top
MgAu2GaZ = 2
Mr = 487.96Mo Kα radiation
Hexagonal, P63/mmcµ = 111.34 mm1
a = 4.4015 (3) ÅT = 297 K
c = 8.5398 (7) Å0.12 × 0.11 × 0.11 mm
V = 143.28 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
129 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
111 reflections with I > 2σ(I)
Tmin = 0.02, Tmax = 0.06Rint = 0.041
1404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0239 parameters
wR(F2) = 0.0540 restraints
S = 1.19Δρmax = 2.00 e Å3
129 reflectionsΔρmin = 2.97 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.33330.66670.08837 (7)0.0069 (2)
Mg20.66670.33330.25000.016 (2)
Ga30.00000.00000.00000.0105 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0063 (2)0.0063 (2)0.0082 (3)0.00314 (12)0.0000.000
Mg20.019 (3)0.019 (3)0.009 (4)0.0097 (16)0.0000.000
Ga30.0047 (7)0.0047 (7)0.0221 (12)0.0023 (4)0.0000.000
Geometric parameters (Å, º) top
Au1—Ga3i2.6509 (2)Mg2—Au1xii2.8919 (3)
Au1—Ga32.6509 (2)Mg2—Au1iii2.8919 (3)
Au1—Ga3ii2.6509 (2)Mg2—Ga3viii3.3190 (2)
Au1—Au1iii2.7606 (12)Mg2—Ga33.3190 (2)
Au1—Mg2iv2.8896 (6)Mg2—Ga3xi3.3190 (2)
Au1—Mg2i2.8919 (3)Mg2—Ga3xiii3.3190 (2)
Au1—Mg2v2.8919 (3)Ga3—Au1vi2.6509 (2)
Au1—Mg22.8919 (3)Ga3—Au1x2.6509 (2)
Au1—Au1vi2.9556 (6)Ga3—Au1xiv2.6509 (2)
Au1—Au1vii2.9556 (6)Ga3—Au1iv2.6509 (2)
Au1—Au1iv2.9556 (6)Ga3—Au1xv2.6509 (2)
Mg2—Au1viii2.8896 (6)Ga3—Mg2xiv3.3190 (2)
Mg2—Au1iv2.8896 (6)Ga3—Mg2xvi3.3190 (2)
Mg2—Au1ix2.8919 (3)Ga3—Mg2v3.3190 (2)
Mg2—Au1x2.8919 (3)Ga3—Mg2iv3.3190 (2)
Mg2—Au1xi2.8919 (3)Ga3—Mg2xv3.3190 (2)
Ga3i—Au1—Ga3112.237 (10)Au1x—Mg2—Ga349.952 (5)
Ga3i—Au1—Ga3ii112.237 (10)Au1xi—Mg2—Ga3111.456 (11)
Ga3—Au1—Ga3ii112.237 (10)Au1xii—Mg2—Ga388.316 (8)
Ga3i—Au1—Au1iii106.540 (12)Au1iii—Mg2—Ga388.316 (8)
Ga3—Au1—Au1iii106.540 (12)Au1—Mg2—Ga349.952 (5)
Ga3ii—Au1—Au1iii106.540 (12)Ga3viii—Mg2—Ga3134.982 (2)
Ga3i—Au1—Mg2iv73.460 (12)Au1viii—Mg2—Ga3xi130.035 (3)
Ga3—Au1—Mg2iv73.460 (12)Au1iv—Mg2—Ga3xi49.965 (3)
Ga3ii—Au1—Mg2iv73.460 (12)Au1ix—Mg2—Ga3xi88.316 (8)
Au1iii—Au1—Mg2iv180.0Au1x—Mg2—Ga3xi49.952 (5)
Ga3i—Au1—Mg2i73.422 (3)Au1xi—Mg2—Ga3xi49.952 (5)
Ga3—Au1—Mg2i168.03 (2)Au1xii—Mg2—Ga3xi88.316 (8)
Ga3ii—Au1—Mg2i73.422 (3)Au1iii—Mg2—Ga3xi168.475 (10)
Au1iii—Au1—Mg2i61.491 (10)Au1—Mg2—Ga3xi111.456 (11)
Mg2iv—Au1—Mg2i118.509 (10)Ga3viii—Mg2—Ga3xi134.982 (2)
Ga3i—Au1—Mg2v73.422 (3)Ga3—Mg2—Ga3xi83.070 (5)
Ga3—Au1—Mg2v73.422 (3)Au1viii—Mg2—Ga3xiii49.965 (3)
Ga3ii—Au1—Mg2v168.03 (2)Au1iv—Mg2—Ga3xiii130.035 (3)
Au1iii—Au1—Mg2v61.491 (10)Au1ix—Mg2—Ga3xiii49.952 (5)
Mg2iv—Au1—Mg2v118.509 (10)Au1x—Mg2—Ga3xiii88.316 (8)
Mg2i—Au1—Mg2v99.107 (13)Au1xi—Mg2—Ga3xiii88.316 (8)
Ga3i—Au1—Mg2168.03 (2)Au1xii—Mg2—Ga3xiii49.952 (5)
Ga3—Au1—Mg273.422 (3)Au1iii—Mg2—Ga3xiii111.456 (11)
Ga3ii—Au1—Mg273.422 (3)Au1—Mg2—Ga3xiii168.475 (10)
Au1iii—Au1—Mg261.491 (10)Ga3viii—Mg2—Ga3xiii83.070 (4)
Mg2iv—Au1—Mg2118.509 (10)Ga3—Mg2—Ga3xiii134.982 (2)
Mg2i—Au1—Mg299.107 (13)Ga3xi—Mg2—Ga3xiii80.069 (6)
Mg2v—Au1—Mg299.107 (13)Au1vi—Ga3—Au1x180.00 (2)
Ga3i—Au1—Au1vi56.118 (5)Au1vi—Ga3—Au167.763 (10)
Ga3—Au1—Au1vi56.118 (5)Au1x—Ga3—Au1112.237 (10)
Ga3ii—Au1—Au1vi132.75 (3)Au1vi—Ga3—Au1xiv112.237 (10)
Au1iii—Au1—Au1vi120.707 (19)Au1x—Ga3—Au1xiv67.763 (10)
Mg2iv—Au1—Au1vi59.293 (19)Au1—Ga3—Au1xiv180.00 (2)
Mg2i—Au1—Au1vi128.426 (2)Au1vi—Ga3—Au1iv112.237 (10)
Mg2v—Au1—Au1vi59.217 (10)Au1x—Ga3—Au1iv67.763 (10)
Mg2—Au1—Au1vi128.426 (2)Au1—Ga3—Au1iv67.763 (10)
Ga3i—Au1—Au1vii56.118 (5)Au1xiv—Ga3—Au1iv112.237 (10)
Ga3—Au1—Au1vii132.75 (3)Au1vi—Ga3—Au1xv67.763 (10)
Ga3ii—Au1—Au1vii56.118 (5)Au1x—Ga3—Au1xv112.237 (10)
Au1iii—Au1—Au1vii120.707 (19)Au1—Ga3—Au1xv112.237 (10)
Mg2iv—Au1—Au1vii59.293 (19)Au1xiv—Ga3—Au1xv67.763 (10)
Mg2i—Au1—Au1vii59.217 (10)Au1iv—Ga3—Au1xv180.00 (2)
Mg2v—Au1—Au1vii128.426 (2)Au1vi—Ga3—Mg2xiv56.626 (7)
Mg2—Au1—Au1vii128.426 (2)Au1x—Ga3—Mg2xiv123.374 (7)
Au1vi—Au1—Au1vii96.25 (3)Au1—Ga3—Mg2xiv123.374 (7)
Ga3i—Au1—Au1iv132.75 (3)Au1xiv—Ga3—Mg2xiv56.626 (7)
Ga3—Au1—Au1iv56.118 (5)Au1iv—Ga3—Mg2xiv123.426 (13)
Ga3ii—Au1—Au1iv56.118 (5)Au1xv—Ga3—Mg2xiv56.574 (13)
Au1iii—Au1—Au1iv120.707 (19)Au1vi—Ga3—Mg2123.374 (7)
Mg2iv—Au1—Au1iv59.293 (19)Au1x—Ga3—Mg256.626 (7)
Mg2i—Au1—Au1iv128.426 (2)Au1—Ga3—Mg256.626 (7)
Mg2v—Au1—Au1iv128.426 (2)Au1xiv—Ga3—Mg2123.374 (7)
Mg2—Au1—Au1iv59.217 (10)Au1iv—Ga3—Mg256.574 (13)
Au1vi—Au1—Au1iv96.25 (3)Au1xv—Ga3—Mg2123.426 (13)
Au1vii—Au1—Au1iv96.25 (3)Mg2xiv—Ga3—Mg2180.0
Au1viii—Mg2—Au1iv180.0Au1vi—Ga3—Mg2xvi123.426 (13)
Au1viii—Mg2—Au1ix61.491 (10)Au1x—Ga3—Mg2xvi56.574 (13)
Au1iv—Mg2—Au1ix118.509 (10)Au1—Ga3—Mg2xvi123.374 (7)
Au1viii—Mg2—Au1x118.509 (10)Au1xiv—Ga3—Mg2xvi56.626 (7)
Au1iv—Mg2—Au1x61.491 (10)Au1iv—Ga3—Mg2xvi56.626 (7)
Au1ix—Mg2—Au1x127.873 (5)Au1xv—Ga3—Mg2xvi123.374 (7)
Au1viii—Mg2—Au1xi118.509 (10)Mg2xiv—Ga3—Mg2xvi83.070 (5)
Au1iv—Mg2—Au1xi61.491 (10)Mg2—Ga3—Mg2xvi96.930 (4)
Au1ix—Mg2—Au1xi57.02 (2)Au1vi—Ga3—Mg2v56.574 (13)
Au1x—Mg2—Au1xi99.107 (13)Au1x—Ga3—Mg2v123.426 (13)
Au1viii—Mg2—Au1xii61.491 (10)Au1—Ga3—Mg2v56.626 (7)
Au1iv—Mg2—Au1xii118.509 (10)Au1xiv—Ga3—Mg2v123.374 (7)
Au1ix—Mg2—Au1xii99.107 (13)Au1iv—Ga3—Mg2v123.374 (7)
Au1x—Mg2—Au1xii57.02 (2)Au1xv—Ga3—Mg2v56.626 (7)
Au1xi—Mg2—Au1xii127.873 (5)Mg2xiv—Ga3—Mg2v96.930 (4)
Au1viii—Mg2—Au1iii61.491 (10)Mg2—Ga3—Mg2v83.070 (5)
Au1iv—Mg2—Au1iii118.509 (10)Mg2xvi—Ga3—Mg2v180.0
Au1ix—Mg2—Au1iii99.107 (13)Au1vi—Ga3—Mg2iv56.626 (7)
Au1x—Mg2—Au1iii127.873 (5)Au1x—Ga3—Mg2iv123.374 (7)
Au1xi—Mg2—Au1iii127.873 (5)Au1—Ga3—Mg2iv56.574 (13)
Au1xii—Mg2—Au1iii99.107 (13)Au1xiv—Ga3—Mg2iv123.426 (13)
Au1viii—Mg2—Au1118.509 (10)Au1iv—Ga3—Mg2iv56.626 (7)
Au1iv—Mg2—Au161.491 (10)Au1xv—Ga3—Mg2iv123.374 (7)
Au1ix—Mg2—Au1127.873 (5)Mg2xiv—Ga3—Mg2iv83.070 (5)
Au1x—Mg2—Au199.107 (13)Mg2—Ga3—Mg2iv96.930 (4)
Au1xi—Mg2—Au199.107 (13)Mg2xvi—Ga3—Mg2iv83.070 (4)
Au1xii—Mg2—Au1127.873 (5)Mg2v—Ga3—Mg2iv96.930 (4)
Au1iii—Mg2—Au157.02 (2)Au1vi—Ga3—Mg2xv123.374 (7)
Au1viii—Mg2—Ga3viii49.965 (3)Au1x—Ga3—Mg2xv56.626 (7)
Au1iv—Mg2—Ga3viii130.035 (3)Au1—Ga3—Mg2xv123.426 (13)
Au1ix—Mg2—Ga3viii49.952 (5)Au1xiv—Ga3—Mg2xv56.574 (13)
Au1x—Mg2—Ga3viii168.475 (10)Au1iv—Ga3—Mg2xv123.374 (7)
Au1xi—Mg2—Ga3viii88.316 (8)Au1xv—Ga3—Mg2xv56.626 (7)
Au1xii—Mg2—Ga3viii111.456 (11)Mg2xiv—Ga3—Mg2xv96.930 (4)
Au1iii—Mg2—Ga3viii49.952 (5)Mg2—Ga3—Mg2xv83.070 (5)
Au1—Mg2—Ga3viii88.316 (8)Mg2xvi—Ga3—Mg2xv96.930 (4)
Au1viii—Mg2—Ga3130.035 (3)Mg2v—Ga3—Mg2xv83.070 (4)
Au1iv—Mg2—Ga349.965 (3)Mg2iv—Ga3—Mg2xv180.0
Au1ix—Mg2—Ga3168.475 (10)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z+1/2; (iv) x+1, y+1, z; (v) x1, y, z; (vi) x, y+1, z; (vii) x+1, y+2, z; (viii) x+1, y+1, z+1/2; (ix) x+1, y, z+1/2; (x) x, y1, z; (xi) x+1, y, z; (xii) x, y1, z+1/2; (xiii) x+1, y, z+1/2; (xiv) x, y, z; (xv) x1, y1, z; (xvi) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaMgAuGaMgAu2Ga
Mr291.00487.96
Crystal system, space groupHexagonal, P62mHexagonal, P63/mmc
Temperature (K)296297
a, c (Å)7.3682 (5), 3.3738 (3)4.4015 (3), 8.5398 (7)
V3)158.63 (2)143.28 (3)
Z32
Radiation typeMo KαMo Kα
µ (mm1)81.83111.34
Crystal size (mm)0.12 × 0.10 × 0.090.12 × 0.11 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995)
Empirical (using intensity measurements)
(Blessing, 1995)
Tmin, Tmax0.000, 0.0010.02, 0.06
No. of measured, independent and
observed [I > 2σ(I)] reflections
2837, 388, 313 1404, 129, 111
Rint0.0710.041
(sin θ/λ)max1)0.8950.767
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.07 0.023, 0.054, 1.19
No. of reflections388129
No. of parameters149
Δρmax, Δρmin (e Å3)2.59, 2.062.00, 2.97
Absolute structureFlack (1983), with 163 Friedel pairs?
Absolute structure parameter0.02 (5)?

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds