Download citation
Download citation
link to html
The solid solution KNi0.93FeII0.07FeIII(PO4)2 {potassium [nickel(II)/iron(II)] iron(III) bis­(orthophosphate)} has been prepared by the flux method. The compound shows a new type of structure for a phosphate with the general composition MIMIIMIII(PO4)2. The framework is formed by [(Ni/Fe)O6] polyhedra [Fe site occupancy = 0.069 (14)] linked via shared oxygen vertices forming a cis-like parallel chain stretching along a and [FeO5] polyhedra (located on alternate sides of the chains) connected via two types of PO4 groups into a three-dimensional structure. The K atoms are disordered between two sites, denoted K1A and K1B, with occupancies of 0.930 (9) and 0.070 (9), respectively, and reside inside channels along the a axis. Calculations of the Voronoi-Dirichlet polyhedra of the K atoms give a coordination scheme for K1A of [9 + 3] and for K1B of [10 + 2]. The most remarkable feature of the structure is the splitting of the K-atom site and the population of the K1A and K1B positions due to substitution of Ni by Fe in the (Ni/Fe) position.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614000679/ku3117sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614000679/ku3117Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229614000679/ku3117Isup3.pdf
Supplementary material

CCDC reference: 981045

Introduction top

The properties and structure of complex phosphates have been extensively studied in order to search and create new ferroelectric, nonlinear–optical, luminescent, ionic-conductor, catalytic and other materials (Wang et al., 2000; Roth et al., 2001; Henry et al., 2000). Phosphates of the general formula MIMIIFeIII(PO4)2 have been discussed in detail using the examples of the isotypic members KFeIIFeIII(PO4)2 (Yakubovich et al., 1986), KCuIIFeIII(PO4)2 (Badri et al., 2011), RbCuIIFeIII(PO4)2 (Badri et al., 2013), KMgFeIII(PO4)2 (Badri et al., 2009) and the solid solution KMg0.09FeII0.91FeIII(PO4)2 (Yatskin et al., 2012), which exhibits an original structure. We report here the structure of the solid solution of KNi0.93FeII0.07FeIII(PO4)2, (I), which represents a new type of three-dimensional-framework for compounds of the type MIMIIMIII(PO4)2.

Experimental top

Synthesis and crystallization top

Crystals of a solid solution of (I) were obtained from a high-temperature solution in the pseudo-system K2O–P2O5–MoO3–Fe2O3–NiO. A mixture of KPO3 (10.62 g), H3PO4 (2.94 g), Fe2O3 (2.88 g), NiO (2.67 g) and K2Mo2O7 (3.40 g) (molar ratio K/P/Fe/Ni/Mo equal to 1:1.1:0.3:0.3:0.15) was placed in a platinum crucible and heated to 1273 K. The melt obtained was kept at this temperature for 2 h and then cooled to 873 K at a rate of 25 K h-1. Light-yellow prismatic crystals of (I) were separated from the flux by decantation at the final crystallization temperature and were washed from the remaining flux with a hot water. The chemical composition of single crystals was verified using EDX analysis. Analysis found: K 11.42, Fe 17.46, Ni 15.97, P 17.76 at%, while KNi0.93FeII0.07FeIII(PO4)2 requires K 11.39, Fe 17.40, Ni 15.90, P 18.04 at%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The structure was solved by direct methods and the positions of Fe1, Ni1, K1 and P were determined. The positions of O atoms were found as peaks with high electron density on difference Fourier maps. Anisotropic approach of displacement parameters was applied on the next stage. After all these manipulations the resulting electron density and convergence factors were found to be very high. As the electron densities of Fe and Ni positions are similar (very close atomic mass and atomic numbers) and their typical oxygen environment can be the same we supposed partial substitution of Fe by Ni and Ni by Fe. To check this idea we constrained the coordinates of Ni1—Fe1 and Ni2—Fe2 and their ADP equal for corresponding positions. The corresponding occupancies of Fe and Ni were refined using free variables. As the value for Ni2 was found negligible, we removed this position and corresponding variable from the following refinement. The occupancy factor of Fe2 was fixed at 1. Than after refinement the values of convergence factors significantly decreased comparing with the starting values, but remaining electron density was still high. At a distance approximately 0.741 Å from K1 site was found a peak with positive electron density 1.37 e Å-3. It was suggested as K1B site, while K1 was renamed as K1A. Thus we got splitting of the K site. The ADP of these positions was constrained as equal. The occupancies of K1A and K1B were refined using free variables. As a result we got the reported convergence factors and residual electron density.

Results and discussion top

The structure of (I) is built up from [(Ni/Fe)1O6] and [Fe2O5] polyhedra inter­linked via two types of PO4 groups (Fig. 1). The Ni-atom positions [Ni is partially substituted by Fe with an occupancy of 0.069 (14)] have a significantly distorted o­cta­hedral environment, with (Ni/Fe)1—O distances in the range 2.0140 (14)–2.1975 (14) Å (Table 1). The [Fe2O5] polyhedra show an almost regular trigonal bipyramidal shape. The Fe-atom site is located close to the centre of the O2—O4—O7 triangle, where three Fe—O bonds are spread over the range 1.8920 (13)–1.9273 (14) Å. The distances between axial O atoms and atom Fe2 are 1.9292 (14) and 2.0166 (13) Å for Fe2—O5 and Fe2—O1, respectively, and the O1—Fe2—O5 angle is 173.02 (6)°. One of the O atoms (O4) is shared by the [(Ni/Fe)1O6] and [Fe2O5] polyhedra; the (Ni/Fe)1—Fe2 distance is 3.6581 (12) Å and the (Ni/Fe)1—O4—Fe2 angle is 127.39 (7)° (Fig. 2a). The inter­atomic distances and angles (Table 2) show that the [P1O4] and [P2O4] tetra­hedra are almost regular, with classical P—O bond lengths ranging from 1.5211 (14) to 1.5675 (14) Å (Corbridge, 1980).

The [(Ni/Fe)1O6] polyhedra are linked via common O-atom vertices, forming a cis-like parallel zigzag chain stretching along the a direction and the [Fe2O5] polyhedra alternate with different sides of such chains (Fig. 2b). In each chain, the [P1O4] tetra­hedron has a common edge with [(Ni/Fe)1O6] polyhedra (Fig. 2a) and provides a monodentate type of coordination to two Fe2 and one (Ni/Fe)1 atom, while the fourth corner assembles with [Fe2O5] polyhedra in a parallel chain. The second [P2O4] tetra­hedron coordinates in a monodentate manner to two (Ni/Fe)1 and one Fe2 atom in the same chain, and to one Fe2 atom of the next chain. As a result of these linkages, a three-dimensional framework of the general composition [Ni0.93FeII0.07FeIII(PO4)2]- is formed. The projection of the structure of (I) on the bc plane (Fig. 2c) shows tunnels running along a, where the K+ cations are located.

The K atoms are disordered between two sites, K1A and K1B, in which the occupancies are 0.930 (9) and 0.070 (9), respectively. For the determination of the coordination numbers (CN) of K1A and K1B, Voronoi–Dirichlet polyhedra (VDP) were constructed using the DIRICHLET program included in the TOPOS package (Blatov et al., 1995). Details connected with this procedure are given as Supplementary information. Analysis of the solid angle (Ω) distribution revealed 12 K—O contacts for K1A and K1B [cut-off distance of 4.1 Å, neglecting those corresponding to Ω < 1.5% (Blatov et al., 1998)]. The coordination scheme for K1A and K1B is described as [9+3] [nine refers to the `ion–covalent' bonds in the range 2.7506 (17)–3.289 (2) Å, which have Ω > 5.0%, and three refers to the distances ranging from 3.4429 (18) to 3.752 (3) Å corresponding to 1.5% < Ω < 5.0%] and [10+2] [i.e. ten K—O contacts in the range 2.689 (11)–3.36 (2) Å, corresponding to Ω > 5.0%, and two bonds of 3.569 (2) (Ω = 3.23%) and 3.622 (14) Å (Ω = 3.05%) Å) (Table 2)].

The K1B sites are located around the K1A···K1A axis (running along a), with the shortest distances being between sites K1A···K1B, K1A···K1Ai and K1B···K1Ai of 0.44 (2), 4.74 (2) and 5.102 (3) Å, respectively. The splitting of site K1 and the filling of positions K1A and K1B implemented due to substitution of Ni with Fe in the position (Ni/Fe)1 (the occupancies of sites K1B and Fe1 are 0.07). Thus, when a K1A position moves to a K1B position there is a change in the K—O distances and the Δd of values ΔΩ (Table 2); only the K1–O7i/O6/O8ii distances remain virtually unchanged (Δd = 0.03–0.06 Å, ΔΩ = 0.11–0.69%), K1—O7iv is significantly weakened (Δd = 0.39 Å, ΔΩ = 2.3%) and K1—O6vi decreases (Δd = 0.39 Å, ΔΩ = 2.69%). [please check rewording carefully]

As a result, the K atom is moved to the O3v–O6vi–O8ii face of the [FeO6] polyhedron, as shown in Fig. 3.

Another inter­esting fact should be noted also. In the formation of (I), a partial transition of FeIII to FeII was observed, as in case of the solid solution KMg0.09FeII0.91FeIII(PO4)2 (Yatskin et al., 2012).

For (I) and phosphates of the general formula MIMIIFeIII(PO4)2, the framework of the structures is built from the elements [MO5], [MO6] and [PO4], but the method of their joining is different (Figs. 2a and 4a).

In the structures of compounds of type MIMIIFeIII(PO4)2 [MI = K, Rb; MII = Fe, Mg, (Fe/Mg), Cu], two [MIIO5] trigonal bipyramids are linked via an edge, resulting in a fragment of composition [MII2O8]. For example, in KMg0.09FeII0.91FeIII(PO4)2, [Fe2O8] units are connected by [(Fe/Mg)O6] polyhedra into a two-dimensional-lattice (Figs. 4a and 4b), which additionally are linked by PO4 tetra­hedra to form a three-dimensional-framework. The K atoms are located in hexagonal channels along [101] (Fig. 4c). Besides, the substitution of Fe by Mg in the case of KMg0.09FeII0.91FeIII(PO4)2 does not caused splitting of the potassium site. In the case of (I), the [MO5] and [MO6] polyhedra are formed by di- and threevalent metals, respectively. These polyhedra are inter­linked by a common edge and a corner giving an infinite chain along a; these chains are connected by PO4 tetra­hedra into a three-dimensional-framework. It should be noted that such a condensation of [MO5] and [MO6] polyhedra had not been found for compounds of the MIMIIFeIII(PO4)2 type. Accordingly, the key role in the formation of [MIIMIII(PO4)2]- anionic lattices is played by the nature of the polyvalent pair MII + MIII. It is noteworthy that this factor does not exclude the possibility of the existence of polymorphs for compounds of the type MIMIIMIII(PO4)2.

Related literature top

For related literature, see: Badri et al. (2009, 2011, 2013); Blatov et al. (1998); Henry et al. (2000); Roth et al. (2001); Wang et al. (2000); Yakubovich et al. (1986); Yatskin et al. (2012).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Figures top
Fig. 1. A connected set of numbered atoms, showing displacement ellipsoids at the 50% probability level. M1 is Ni or Fe. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2; (iv) x, -y+1/2, z+1/2; (v) -x, -y+1, -z+2.]

Fig. 2. (a) The asssemblage of PO4 tetrahedra and M1FeO10 (M1 is Ni or Fe) units in (I), (b) the formation of a zigzag chain from M1O6 (M1 is Ni or Fe) and FeO5 polyhedra and (c) a projection of the structure of (I) on the bc plane (K atoms are shown as grey circles).

Fig. 3. The O-atom coordination around the K atoms in (a) position K1A and (b) position K1B for (I). [Symmetry codes: (i) x-1, y, z; (ii) -x, y-1/2, -z+3/2; (iii) x, -y+1/2, z+1/2; (iv) x-1, -y+1/2, z+1/2; (v) -x+1, y-1/2, -z+3/2; (vi) x, -y+1/2, z-1/2; (vi) x+1, y, z.]

Fig. 4. (a)/(b) The elementary fragment and (c) the two-dimensional-lattice in a projection along [101] (K atoms are shown as grey circles) for KMg0.09FeII0.91FeIII(PO4)2 (Yatskin et al., 2012).
Potassium [nickel(II)/iron(II)] iron(III) bis(orthophosphate) top
Crystal data top
KNi0.93Fe1.07(PO4)2F(000) = 667.4
Mr = 343.39Dx = 3.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11250 reflections
a = 5.102 (1) Åθ = 3.6–33°
b = 14.464 (3) ŵ = 6.15 mm1
c = 9.2260 (18) ÅT = 293 K
β = 104.74 (3)°Needle, yellow
V = 658.4 (2) Å30.15 × 0.02 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
2480 independent reflections
Radiation source: fine-focus sealed tube2158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 33°, θmin = 3.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 77
Tmin = 0.879, Tmax = 0.914k = 2222
11250 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0237P)2 + 0.2992P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.57 e Å3
2480 reflectionsΔρmin = 0.68 e Å3
124 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0037 (5)
Crystal data top
KNi0.93Fe1.07(PO4)2V = 658.4 (2) Å3
Mr = 343.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.102 (1) ŵ = 6.15 mm1
b = 14.464 (3) ÅT = 293 K
c = 9.2260 (18) Å0.15 × 0.02 × 0.02 mm
β = 104.74 (3)°
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
2480 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2158 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.914Rint = 0.032
11250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023124 parameters
wR(F2) = 0.0520 restraints
S = 1.03Δρmax = 0.57 e Å3
2480 reflectionsΔρmin = 0.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K1A0.1860 (4)0.17581 (5)0.81425 (17)0.0211 (3)0.930 (9)
K1B0.246 (4)0.1800 (8)0.7879 (19)0.0211 (3)0.070 (9)
Fe10.24264 (5)0.454843 (16)0.96107 (2)0.00757 (7)0.069 (14)
Ni10.24264 (5)0.454843 (16)0.96107 (2)0.00757 (7)0.931 (14)
Fe20.77277 (5)0.371170 (17)0.61772 (3)0.00758 (7)
P10.30800 (9)0.49372 (3)0.67867 (5)0.00715 (9)
P20.74384 (9)0.32811 (3)0.96343 (5)0.00705 (9)
O10.2259 (3)0.58160 (9)0.58775 (15)0.0130 (3)
O20.4142 (3)0.42097 (9)0.58654 (14)0.0113 (2)
O30.5067 (3)0.51309 (9)0.82954 (14)0.0117 (2)
O40.0560 (3)0.45257 (9)0.72405 (14)0.0109 (2)
O50.7650 (3)0.31122 (9)0.80337 (14)0.0138 (3)
O60.4499 (3)0.33556 (9)0.97039 (16)0.0131 (3)
O70.8819 (3)0.25595 (9)0.55545 (14)0.0113 (2)
O80.0833 (2)0.58636 (9)0.96854 (14)0.0084 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K1A0.0206 (5)0.0201 (2)0.0184 (3)0.0004 (2)0.0026 (3)0.0028 (2)
K1B0.0206 (5)0.0201 (2)0.0184 (3)0.0004 (2)0.0026 (3)0.0028 (2)
Fe10.00739 (11)0.00809 (12)0.00739 (11)0.00049 (8)0.00216 (7)0.00034 (7)
Ni10.00739 (11)0.00809 (12)0.00739 (11)0.00049 (8)0.00216 (7)0.00034 (7)
Fe20.00866 (12)0.00716 (12)0.00668 (12)0.00024 (9)0.00149 (8)0.00032 (8)
P10.00745 (19)0.0080 (2)0.00599 (19)0.00017 (15)0.00174 (14)0.00040 (14)
P20.00848 (19)0.00597 (19)0.00695 (18)0.00036 (15)0.00242 (14)0.00020 (14)
O10.0176 (6)0.0121 (6)0.0105 (6)0.0039 (5)0.0056 (5)0.0040 (5)
O20.0108 (6)0.0135 (6)0.0098 (6)0.0019 (5)0.0032 (5)0.0029 (5)
O30.0106 (6)0.0152 (6)0.0079 (6)0.0016 (5)0.0003 (4)0.0016 (5)
O40.0089 (6)0.0154 (6)0.0088 (6)0.0042 (5)0.0032 (4)0.0016 (4)
O50.0209 (7)0.0129 (6)0.0085 (6)0.0000 (5)0.0053 (5)0.0007 (5)
O60.0095 (6)0.0100 (6)0.0207 (7)0.0002 (5)0.0053 (5)0.0012 (5)
O70.0162 (6)0.0070 (6)0.0101 (6)0.0000 (5)0.0021 (5)0.0026 (4)
O80.0079 (5)0.0071 (6)0.0106 (6)0.0009 (4)0.0031 (4)0.0007 (4)
Geometric parameters (Å, º) top
K1A—O7i2.7506 (17)Fe2—K1Ax3.7109 (10)
K1A—O1ii2.838 (3)Fe2—K1Bx3.743 (12)
K1A—O2iii2.8526 (18)Fe2—K1Axii3.968 (3)
K1A—O62.8706 (16)P1—O11.5218 (14)
K1A—O5i2.889 (2)P1—O31.5248 (14)
K1A—O8ii2.9230 (17)P1—O21.5354 (14)
K1A—O7iv3.177 (3)P1—O41.5675 (14)
K1A—O1v3.209 (2)P1—K1Bxiii3.490 (15)
K1A—O3v3.289 (2)P1—K1Axiv3.657 (2)
K1A—P2vi3.4425 (15)P1—K1Axiii3.6771 (16)
K1A—P23.5853 (16)P2—O61.5211 (14)
K1A—Fe2iii3.6052 (15)P2—O51.5275 (14)
K1B—O7i2.689 (11)P2—O7iii1.5461 (14)
K1B—O62.844 (12)P2—O8ix1.5557 (13)
K1B—O8ii2.869 (11)P2—K1Bxv3.411 (11)
K1B—O1v3.005 (15)P2—K1Axv3.4425 (15)
K1B—O2iii3.042 (16)P2—K1Ax3.663 (2)
K1B—O3v3.049 (17)O1—Fe2xi2.0166 (13)
K1B—O5i3.134 (18)O1—K1Axiv2.838 (3)
K1B—O53.23 (2)O1—K1Bxiii3.005 (15)
K1B—O1ii3.25 (2)O1—K1Axiii3.209 (2)
K1B—O6vii3.36 (2)O1—K1Bxiv3.25 (3)
K1B—P23.402 (14)O2—K1Avii2.8526 (18)
K1B—P2vi3.411 (11)O2—K1Bvii3.042 (16)
Fe1—O62.0140 (14)O3—Ni1ix2.0797 (14)
Fe1—O8viii2.0230 (13)O3—Fe1ix2.0797 (14)
Fe1—O82.0766 (13)O3—K1Bxiii3.049 (17)
Fe1—O3ix2.0797 (14)O3—K1Axiii3.289 (2)
Fe1—O42.1518 (14)O4—Fe2i1.9273 (14)
Fe1—O32.1975 (14)O5—K1Ax2.889 (2)
Fe1—P12.7673 (7)O5—K1Bx3.134 (19)
Fe1—Ni1ix2.8563 (7)O6—K1Biii3.36 (2)
Fe1—Fe1ix2.8563 (7)O7—P2vii1.5461 (14)
Fe1—K1Biii3.588 (17)O7—K1Bx2.689 (11)
Fe1—K1Aiii3.8408 (18)O7—K1Ax2.7506 (17)
Fe2—O71.8920 (13)O7—K1Axii3.177 (3)
Fe2—O21.9186 (14)O8—P2ix1.5557 (13)
Fe2—O4x1.9273 (14)O8—Ni1viii2.0230 (13)
Fe2—O51.9292 (14)O8—Fe1viii2.0230 (13)
Fe2—O1xi2.0166 (13)O8—K1Bxiv2.869 (11)
Fe2—K1Bvii3.587 (11)O8—K1Axiv2.9230 (17)
Fe2—K1Avii3.6052 (15)
O7i—K1A—O1ii100.32 (7)O7—Fe2—O587.01 (6)
O7i—K1A—O2iii170.02 (10)O2—Fe2—O593.87 (6)
O1ii—K1A—O2iii69.71 (6)O4x—Fe2—O590.27 (6)
O7i—K1A—O6100.68 (5)O7—Fe2—O1xi86.64 (6)
O1ii—K1A—O6121.15 (8)O2—Fe2—O1xi87.89 (6)
O2iii—K1A—O685.34 (5)O4x—Fe2—O1xi95.17 (6)
O7i—K1A—O5i55.54 (4)O5—Fe2—O1xi173.02 (6)
O1ii—K1A—O5i74.49 (7)O7—Fe2—K1Bvii77.0 (3)
O2iii—K1A—O5i119.76 (9)O2—Fe2—K1Bvii58.0 (4)
O6—K1A—O5i73.83 (5)O4x—Fe2—K1Bvii149.4 (2)
O7i—K1A—O8ii51.58 (4)O5—Fe2—K1Bvii118.7 (3)
O1ii—K1A—O8ii81.60 (5)O1xi—Fe2—K1Bvii56.9 (3)
O2iii—K1A—O8ii124.24 (5)O7—Fe2—K1Avii81.29 (5)
O6—K1A—O8ii149.11 (8)O2—Fe2—K1Avii51.87 (6)
O5i—K1A—O8ii95.32 (5)O4x—Fe2—K1Avii151.31 (4)
O7i—K1A—O7iv102.06 (6)O5—Fe2—K1Avii113.84 (6)
O1ii—K1A—O7iv52.62 (6)O1xi—Fe2—K1Avii62.27 (6)
O2iii—K1A—O7iv72.43 (6)K1Bvii—Fe2—K1Avii7.0 (4)
O6—K1A—O7iv69.43 (5)O7—Fe2—K1Ax45.83 (5)
O5i—K1A—O7iv47.35 (5)O2—Fe2—K1Ax139.52 (6)
O8ii—K1A—O7iv124.08 (8)O4x—Fe2—K1Ax87.56 (5)
O7i—K1A—O1v134.74 (10)O5—Fe2—K1Ax50.31 (6)
O1ii—K1A—O1v114.92 (6)O1xi—Fe2—K1Ax125.44 (6)
O2iii—K1A—O1v53.18 (4)K1Bvii—Fe2—K1Ax117.9 (2)
O6—K1A—O1v85.11 (5)K1Avii—Fe2—K1Ax119.482 (19)
O5i—K1A—O1v158.60 (4)O7—Fe2—K1Bx43.0 (2)
O8ii—K1A—O1v104.89 (6)O2—Fe2—K1Bx146.0 (4)
O7iv—K1A—O1v121.53 (5)O4x—Fe2—K1Bx85.3 (2)
O7i—K1A—O3v99.96 (6)O5—Fe2—K1Bx56.8 (4)
O1ii—K1A—O3v104.63 (5)O1xi—Fe2—K1Bx119.2 (4)
O2iii—K1A—O3v82.78 (4)K1Bvii—Fe2—K1Bx117.9 (2)
O6—K1A—O3v124.57 (8)K1Avii—Fe2—K1Bx120.40 (18)
O5i—K1A—O3v153.84 (5)K1Ax—Fe2—K1Bx6.8 (4)
O8ii—K1A—O3v59.16 (4)O7—Fe2—K1Axii52.04 (4)
O7iv—K1A—O3v150.80 (6)O2—Fe2—K1Axii128.03 (5)
O1v—K1A—O3v45.74 (4)O4x—Fe2—K1Axii89.98 (4)
O7i—K1A—P2vi25.97 (3)O5—Fe2—K1Axii133.16 (5)
O1ii—K1A—P2vi86.02 (5)O1xi—Fe2—K1Axii42.72 (4)
O2iii—K1A—P2vi147.44 (5)K1Bvii—Fe2—K1Axii77.5 (4)
O6—K1A—P2vi126.62 (5)K1Avii—Fe2—K1Axii84.55 (4)
O5i—K1A—P2vi71.04 (4)K1Ax—Fe2—K1Axii82.91 (4)
O8ii—K1A—P2vi26.73 (3)K1Bx—Fe2—K1Axii76.6 (4)
O7iv—K1A—P2vi110.11 (6)O1—P1—O3112.05 (8)
O1v—K1A—P2vi126.86 (7)O1—P1—O2110.71 (8)
O3v—K1A—P2vi82.80 (4)O3—P1—O2112.64 (8)
O7i—K1A—P2106.95 (6)O1—P1—O4109.56 (8)
O1ii—K1A—P2138.80 (6)O3—P1—O4103.05 (8)
O2iii—K1A—P281.79 (4)O2—P1—O4108.46 (8)
O6—K1A—P224.16 (3)O1—P1—Fe1127.33 (6)
O5i—K1A—P296.16 (4)O3—P1—Fe152.36 (5)
O8ii—K1A—P2139.60 (9)O2—P1—Fe1121.74 (6)
O7iv—K1A—P291.24 (4)O4—P1—Fe150.78 (5)
O1v—K1A—P263.81 (4)O1—P1—K1Bxiii59.0 (2)
O3v—K1A—P2100.43 (6)O3—P1—K1Bxiii60.7 (2)
P2vi—K1A—P2129.59 (6)O2—P1—K1Bxiii105.3 (4)
O7i—K1A—Fe2iii157.97 (9)O4—P1—K1Bxiii146.2 (4)
O1ii—K1A—Fe2iii101.41 (5)Fe1—P1—K1Bxiii107.8 (3)
O2iii—K1A—Fe2iii31.94 (3)O1—P1—K1Axiv46.69 (6)
O6—K1A—Fe2iii64.61 (3)O3—P1—K1Axiv98.76 (6)
O5i—K1A—Fe2iii128.15 (5)O2—P1—K1Axiv147.69 (6)
O8ii—K1A—Fe2iii135.93 (5)O4—P1—K1Axiv69.68 (6)
O7iv—K1A—Fe2iii88.38 (4)Fe1—P1—K1Axiv83.15 (4)
O1v—K1A—Fe2iii33.80 (3)K1Bxiii—P1—K1Axiv83.1 (3)
O3v—K1A—Fe2iii77.96 (4)O1—P1—K1Axiii60.34 (6)
P2vi—K1A—Fe2iii160.56 (6)O3—P1—K1Axiii63.36 (6)
P2—K1A—Fe2iii52.87 (2)O2—P1—K1Axiii98.95 (7)
O7i—K1B—O6102.9 (4)O4—P1—K1Axiii152.53 (7)
O7i—K1B—O8ii52.7 (2)Fe1—P1—K1Axiii112.40 (4)
O6—K1B—O8ii155.6 (4)K1Bxiii—P1—K1Axiii6.4 (4)
O7i—K1B—O1v150.3 (10)K1Axiv—P1—K1Axiii88.15 (3)
O6—K1B—O1v89.5 (4)O6—P2—O5111.42 (9)
O8ii—K1B—O1v111.8 (5)O6—P2—O7iii110.40 (8)
O7i—K1B—O2iii153.8 (10)O5—P2—O7iii105.71 (8)
O6—K1B—O2iii82.4 (4)O6—P2—O8ix112.97 (7)
O8ii—K1B—O2iii119.4 (5)O5—P2—O8ix110.18 (8)
O1v—K1B—O2iii53.70 (19)O7iii—P2—O8ix105.76 (8)
O7i—K1B—O3v107.7 (5)O6—P2—K1B55.9 (4)
O6—K1B—O3v135.6 (7)O5—P2—K1B70.6 (4)
O8ii—K1B—O3v62.7 (3)O7iii—P2—K1B86.9 (2)
O1v—K1B—O3v49.3 (3)O8ix—P2—K1B166.1 (2)
O2iii—K1B—O3v84.0 (3)O6—P2—K1Bxv119.6 (4)
O7i—K1B—O5i53.1 (3)O5—P2—K1Bxv128.4 (5)
O6—K1B—O5i70.5 (3)O7iii—P2—K1Bxv49.9 (2)
O8ii—K1B—O5i91.3 (4)O8ix—P2—K1Bxv56.7 (2)
O1v—K1B—O5i155.0 (6)K1B—P2—K1Bxv134.4 (3)
O2iii—K1B—O5i107.1 (7)O6—P2—K1Axv112.25 (8)
O3v—K1B—O5i153.6 (4)O5—P2—K1Axv135.70 (8)
O7i—K1B—O5100.8 (6)O7iii—P2—K1Axv51.17 (5)
O6—K1B—O548.5 (3)O8ix—P2—K1Axv57.68 (5)
O8ii—K1B—O5127.9 (8)K1B—P2—K1Axv131.9 (3)
O1v—K1B—O567.4 (4)K1Bxv—P2—K1Axv7.3 (4)
O2iii—K1B—O5101.7 (3)O6—P2—K1A50.57 (6)
O3v—K1B—O594.1 (7)O5—P2—K1A77.01 (7)
O5i—K1B—O5106.5 (3)O7iii—P2—K1A86.20 (6)
O7i—K1B—O1ii92.1 (6)O8ix—P2—K1A163.05 (6)
O6—K1B—O1ii109.3 (7)K1B—P2—K1A6.6 (4)
O8ii—K1B—O1ii75.7 (4)K1Bxv—P2—K1A131.4 (3)
O1v—K1B—O1ii109.3 (5)K1Axv—P2—K1A128.10 (5)
O2iii—K1B—O1ii62.2 (4)O6—P2—K1Ax140.05 (6)
O3v—K1B—O1ii100.9 (4)O5—P2—K1Ax48.60 (6)
O5i—K1B—O1ii65.8 (5)O7iii—P2—K1Ax59.70 (6)
O5—K1B—O1ii156.2 (6)O8ix—P2—K1Ax106.85 (6)
O7i—K1B—O6vii68.6 (4)K1B—P2—K1Ax84.2 (3)
O6—K1B—O6vii114.9 (7)K1Bxv—P2—K1Ax85.0 (4)
O8ii—K1B—O6vii59.7 (4)K1Axv—P2—K1Ax91.41 (4)
O1v—K1B—O6vii81.6 (6)K1A—P2—K1Ax89.48 (3)
O2iii—K1B—O6vii132.8 (5)P1—O1—Fe2xi137.28 (9)
O3v—K1B—O6vii52.3 (4)P1—O1—K1Axiv110.35 (7)
O5i—K1B—O6vii120.0 (4)Fe2xi—O1—K1Axiv108.47 (6)
O5—K1B—O6vii69.2 (5)P1—O1—K1Bxiii95.2 (2)
O1ii—K1B—O6vii134.5 (4)Fe2xi—O1—K1Bxiii88.9 (4)
O7i—K1B—P2113.8 (5)K1Axiv—O1—K1Bxiii108.4 (4)
O6—K1B—P226.30 (14)P1—O1—K1Axiii95.33 (6)
O8ii—K1B—P2154.1 (9)Fe2xi—O1—K1Axiii83.94 (6)
O1v—K1B—P268.2 (3)K1Axiv—O1—K1Axiii114.92 (6)
O2iii—K1B—P282.3 (3)K1Bxiii—O1—K1Axiii7.2 (4)
O3v—K1B—P2109.9 (6)P1—O1—K1Bxiv107.2 (3)
O5i—K1B—P295.5 (3)Fe2xi—O1—K1Bxiv111.3 (2)
O5—K1B—P226.47 (13)K1Axiv—O1—K1Bxiv3.1 (2)
O1ii—K1B—P2129.7 (6)K1Bxiii—O1—K1Bxiv109.3 (5)
O6vii—K1B—P295.6 (6)K1Axiii—O1—K1Bxiv116.0 (2)
O7i—K1B—P2vi26.09 (11)P1—O2—Fe2129.17 (8)
O6—K1B—P2vi128.8 (4)P1—O2—K1Avii134.54 (8)
O8ii—K1B—P2vi26.96 (10)Fe2—O2—K1Avii96.18 (7)
O1v—K1B—P2vi136.0 (6)P1—O2—K1Bvii140.6 (4)
O2iii—K1B—P2vi139.0 (7)Fe2—O2—K1Bvii89.7 (4)
O3v—K1B—P2vi87.0 (3)K1Avii—O2—K1Bvii7.7 (4)
O5i—K1B—P2vi68.8 (3)P1—O3—Ni1ix176.08 (9)
O5—K1B—P2vi118.9 (6)P1—O3—Fe1ix176.08 (9)
O1ii—K1B—P2vi80.6 (4)Ni1ix—O3—Fe1ix0.000 (8)
O6vii—K1B—P2vi64.0 (3)P1—O3—Fe194.31 (7)
P2—K1B—P2vi137.9 (5)Ni1ix—O3—Fe183.74 (5)
O6—Fe1—O8viii101.51 (5)Fe1ix—O3—Fe183.74 (5)
O6—Fe1—O8171.50 (5)P1—O3—K1Bxiii93.5 (2)
O8viii—Fe1—O884.17 (5)Ni1ix—O3—K1Bxiii86.6 (2)
O6—Fe1—O3ix87.67 (6)Fe1ix—O3—K1Bxiii86.6 (2)
O8viii—Fe1—O3ix97.41 (6)Fe1—O3—K1Bxiii150.2 (4)
O8—Fe1—O3ix85.31 (5)P1—O3—K1Axiii92.16 (6)
O6—Fe1—O497.02 (6)Ni1ix—O3—K1Axiii88.36 (5)
O8viii—Fe1—O497.72 (5)Fe1ix—O3—K1Axiii88.36 (5)
O8—Fe1—O488.39 (5)Fe1—O3—K1Axiii156.82 (7)
O3ix—Fe1—O4162.92 (5)K1Bxiii—O3—K1Axiii6.7 (4)
O6—Fe1—O387.88 (5)P1—O4—Fe2i130.97 (8)
O8viii—Fe1—O3163.69 (5)P1—O4—Fe194.85 (7)
O8—Fe1—O388.12 (5)Fe2i—O4—Fe1127.39 (7)
O3ix—Fe1—O396.26 (5)P2—O5—Fe2144.00 (9)
O4—Fe1—O367.64 (5)P2—O5—K1Ax108.04 (8)
O6—Fe1—P191.52 (4)Fe2—O5—K1Ax98.77 (7)
O8viii—Fe1—P1131.91 (4)P2—O5—K1Bx112.9 (3)
O8—Fe1—P189.26 (4)Fe2—O5—K1Bx92.2 (4)
O3ix—Fe1—P1129.51 (4)K1Ax—O5—K1Bx7.0 (4)
O4—Fe1—P134.36 (4)P2—O5—K1B83.0 (4)
O3—Fe1—P133.33 (4)Fe2—O5—K1B115.3 (3)
O6—Fe1—Ni1ix86.67 (4)K1Ax—O5—K1B101.4 (2)
O8viii—Fe1—Ni1ix146.34 (4)K1Bx—O5—K1B106.5 (3)
O8—Fe1—Ni1ix85.14 (4)P2—O6—Fe1124.85 (8)
O3ix—Fe1—Ni1ix49.89 (4)P2—O6—K1B97.8 (5)
O4—Fe1—Ni1ix113.79 (4)Fe1—O6—K1B122.9 (3)
O3—Fe1—Ni1ix46.37 (4)P2—O6—K1A105.27 (8)
P1—Fe1—Ni1ix79.66 (3)Fe1—O6—K1A119.60 (7)
O6—Fe1—Fe1ix86.67 (4)K1B—O6—K1A8.8 (5)
O8viii—Fe1—Fe1ix146.34 (4)P2—O6—K1Biii124.1 (3)
O8—Fe1—Fe1ix85.14 (4)Fe1—O6—K1Biii79.5 (2)
O3ix—Fe1—Fe1ix49.89 (4)K1B—O6—K1Biii108.4 (5)
O4—Fe1—Fe1ix113.79 (4)K1A—O6—K1Biii100.0 (2)
O3—Fe1—Fe1ix46.37 (4)P2vii—O7—Fe2136.99 (9)
P1—Fe1—Fe1ix79.66 (3)P2vii—O7—K1Bx104.0 (3)
Ni1ix—Fe1—Fe1ix0.000 (14)Fe2—O7—K1Bx108.3 (3)
O6—Fe1—K1Biii66.9 (4)P2vii—O7—K1Ax102.87 (7)
O8viii—Fe1—K1Biii53.0 (3)Fe2—O7—K1Ax104.61 (6)
O8—Fe1—K1Biii112.8 (3)K1Bx—O7—K1Ax9.2 (5)
O3ix—Fe1—K1Biii58.02 (18)P2vii—O7—K1Axii95.45 (6)
O4—Fe1—K1Biii138.77 (19)Fe2—O7—K1Axii99.95 (6)
O3—Fe1—K1Biii143.2 (3)K1Bx—O7—K1Axii108.9 (6)
P1—Fe1—K1Biii157.8 (3)K1Ax—O7—K1Axii118.09 (9)
Ni1ix—Fe1—K1Biii103.3 (2)P2ix—O8—Ni1viii122.18 (7)
Fe1ix—Fe1—K1Biii103.3 (2)P2ix—O8—Fe1viii122.18 (7)
O6—Fe1—K1Aiii72.20 (5)Ni1viii—O8—Fe1viii0.000 (14)
O8viii—Fe1—K1Aiii48.48 (5)P2ix—O8—Fe1123.74 (7)
O8—Fe1—K1Aiii107.93 (5)Ni1viii—O8—Fe195.83 (5)
O3ix—Fe1—K1Aiii58.87 (4)Fe1viii—O8—Fe195.83 (5)
O4—Fe1—K1Aiii138.18 (4)P2ix—O8—K1Bxiv96.3 (2)
O3—Fe1—K1Aiii147.80 (5)Ni1viii—O8—K1Bxiv92.7 (5)
P1—Fe1—K1Aiii162.15 (3)Fe1viii—O8—K1Bxiv92.7 (5)
Ni1ix—Fe1—K1Aiii105.94 (3)Fe1—O8—K1Bxiv123.8 (4)
Fe1ix—Fe1—K1Aiii105.94 (3)P2ix—O8—K1Axiv95.59 (6)
K1Biii—Fe1—K1Aiii5.6 (3)Ni1viii—O8—K1Axiv100.30 (7)
O7—Fe2—O2128.91 (6)Fe1viii—O8—K1Axiv100.30 (7)
O7—Fe2—O4x116.89 (6)Fe1—O8—K1Axiv118.35 (6)
O2—Fe2—O4x114.18 (6)K1Bxiv—O8—K1Axiv8.7 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x1, y+1/2, z+1/2; (v) x+1, y1/2, z+3/2; (vi) x1, y+1/2, z1/2; (vii) x, y+1/2, z1/2; (viii) x, y+1, z+2; (ix) x+1, y+1, z+2; (x) x+1, y, z; (xi) x+1, y+1, z+1; (xii) x+1, y+1/2, z1/2; (xiii) x+1, y+1/2, z+3/2; (xiv) x, y+1/2, z+3/2; (xv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaKNi0.93Fe1.07(PO4)2
Mr343.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.102 (1), 14.464 (3), 9.2260 (18)
β (°) 104.74 (3)
V3)658.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.15
Crystal size (mm)0.15 × 0.02 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur-3
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.879, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
11250, 2480, 2158
Rint0.032
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.03
No. of reflections2480
No. of parameters124
Δρmax, Δρmin (e Å3)0.57, 0.68

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Fe1—O62.0140 (14)Fe2—O1iv2.0166 (13)
Fe1—O8i2.0230 (13)P1—O11.5218 (14)
Fe1—O82.0766 (13)P1—O31.5248 (14)
Fe1—O3ii2.0797 (14)P1—O21.5354 (14)
Fe1—O42.1518 (14)P1—O41.5675 (14)
Fe1—O32.1975 (14)P2—O61.5211 (14)
Fe2—O71.8920 (13)P2—O51.5275 (14)
Fe2—O21.9186 (14)P2—O7v1.5461 (14)
Fe2—O4iii1.9273 (14)P2—O8ii1.5557 (13)
Fe2—O51.9292 (14)
O6—Fe1—O8171.50 (5)O3—P1—O2112.64 (8)
O6—Fe1—O497.02 (6)O1—P1—O4109.56 (8)
O8—Fe1—O488.39 (5)O3—P1—O4103.05 (8)
O6—Fe1—O387.88 (5)O2—P1—O4108.46 (8)
O8—Fe1—O388.12 (5)O6—P2—O5111.42 (9)
O4—Fe1—O367.64 (5)O6—P2—O7v110.40 (8)
O7—Fe2—O2128.91 (6)O5—P2—O7v105.71 (8)
O7—Fe2—O587.01 (6)O6—P2—O8ii112.97 (7)
O2—Fe2—O593.87 (6)O5—P2—O8ii110.18 (8)
O1—P1—O3112.05 (8)O7v—P2—O8ii105.76 (8)
O1—P1—O2110.71 (8)Fe2vi—O4—Fe1127.39 (7)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x1, y, z.
The K—O distances, Ω values and the changes for coordination polyhedra of K atoms in sites K1A and K1B for (I). top
K1A—OK1B—OK1A—K1B
d (Å)Ω (%)d (Å)Ω (%)Δd (Å)ΔΩ (%)
O7i2.7506 (17)12.242.689 (11)12.930.060.69
O1ii2.838 (3)11.173.25 (2)7.830.593.34
O2iii2.8526 (18)11.793.042 (16)9.840.191.95
O62.8706 (16)12.652.844 (12)12.320.030.33
O5i2.889 (2)9.203.134 (18)7.150.252.05
O8ii2.9230 (17)9.462.869 (11)9.570.050.11
O7iv3.177 (3)5.533.569 (43)3.230.392.30
O1v3.209 (2)6.933.005 (15)8.580.201.65
O3v3.289 (2)6.613.049 (17)8.150.241.54
O4ii3.443 (4)3.853.622 (14)3.050.180.80
O53.567 (3)4.993.231 (18)7.380.342.39
O6vi3.752 (33)3.653.36 (2)6.340.392.69
Symmetry codes: (i) x-1, y, z; (ii) -x, y-1/2, -z+3/2; (iii) x, -y+1/2, z+1/2; (iv) x-1, -y+1/2, z+1/2; (v) -x+1, y-1/2, -z+3/2; (vi) x, -y+1/2, z-1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds