Download citation
Download citation
link to html
The title compound, [PdCl2(C21H17N3)], is a member of a sequence of Pd, Pt and Co dichloride complexes bearing polysubstituted (pyrazol-1-ylmeth­yl)pyridine ligands. It is shown that there is a correlation between the steric bulkiness of the bidentate (pyrazol-1-ylmeth­yl)pyridine ligands and the Pd—Npyrazole distances, i.e. the larger the ligand, the longer the bond. In contrast, no trend is observed between the steric properties of the ligand and the Pd—Npyridine bond lengths.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112043119/ku3079sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112043119/ku3079Isup2.hkl
Contains datablock I

CCDC reference: 914641

Comment top

[(Pyrazol-1-yl)methyl]pyridine ligands have been used to prepare platinum(II) and gold(III) complexes that were investigated as potential anticancer agents (Segapelo et al., 2009). [(Pyrazol-1-yl)methyl]pyridine palladium(II) complexes with 3,5-dimethyl- and 3,5-di-tert-butyl- substitutents have also been investigated as catalysts for ethylene polymerization reactions (House et al., 1986; Mohlala et al., 2005; Ojwach et al., 2007, 2009). In the course of this experimental work, the palladium 3,5-diphenyl analogue, namely dichlorido{2-[(3,5-diphenyl-1H-pyrazol-1-yl-κN2)methyl]pyridine-κN}palladium(II), (I), was synthesized.

Compound (I) (Fig. 1) has a slightly distorted square-planar geometry, with a bidentate ligand bite angle of 87.04 (4)°. The six-membered heterocycle is in the boat conformation which is common for metal compounds with this family of ligands (Ojwach et al., 2009). The geometric parameters [Table 1?] agree well with those of the 3,5-dimethyl- and 3,5-tert-butyl- analogues, as well as with those of {2-[(4-phenyl-1H-1,2,3-triazol-4-yl)methyl]pyridine}palladium(II) chloride (Ojwach et al., 2009; Kilpin & Crowley, 2010).

It has been established in previous work with similar compounds that the metal–Npz distance (pz is pyrazole) is dependent on the steric size of the pz ligand and its ability to shield the metal coordination sphere (Ojwach et al., 2009). There is a correlation between the shielding ability and the metal–Npz distance. The shielding is expressed by the percentage of the metal coordination sphere blocked by the ligand from molecular attack. Tables 2 and 3 compile the data of the shielding percentage (Guzei & Wendt, 2006) and the metal–Npz distance for (I), literature data and other related compounds in the Cambridge Structural Database (see Scheme) (Ojwach et al., 2009; Segapelo et al., 2009; Balamurugan et al., 2004; Benade et al., 2011; Kilpin & Crowley, 2010; Allen, 2002).

The 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine ligand (L1), with only one phenyl substituent on the triazole ring, is the least sterically demanding among the ligands in Table 2 (Kilpin & Crowley, 2010). Therefore it shields the metal coordination sphere in PdCl2(L1) and PtCl2(L1) to the least extent, resulting in the shortest metal–Npz distance. This trend continues for the Pd and Pt complexes with the 3,5-dimethylpyrazole ligand (L2), with the 3,5-diphenylpyrazole (L3) and with the 3,5-di-tert-butylpyrazole (L4). Interestingly, the cobalt analogues do not adhere to this trend. While the L2 analogue shields a smaller percentage of the metal than the L3 analogue, it is CoCl2(L2) that has a longer metal–Npz distance than CoCl2(L3) (Balamurugan et al., 2004; Benade et al., 2011). Steric effects alone cannot explain the latter observations for a metal with different electronic properties; thus, electronic effects must contribute to the solid-state geometry of the Co complexes.

The metal–Npy distances for the Pd, Pt and Co compounds are presented in Table 4. There are no consistent trends found between the ligand shielding percentage and this distance. Table 5 tabulates the ligand folding angle along the metal–methylene C atom. The folding angle is defined as a dihedral angle between two planes defined by four atoms, viz. the metal and a chain of three atoms connected to it; in (I), the planes are defined by Pd1/N1/C5/C6 and Pd1/N3/N2/C6. Overall the folding angles are fairly similar for the Pd and Pt analogues except for the triazoles. The average folding angle in Pd and Pt complexes with pyrazole ligands is 62.4 (18)°. The triazole folding angles in Pd and Pt complexes have a significantly lower average of 52.10 (4)°. The pyrazole ligands with Co as the metal also have a significantly lower folding angle [a 54 (2)° average] than with Pd or Pt as the metal. For comparison, the folding angle in the C2v symmetrical boat conformation cyclohexane is 126.9°.

In the L3 analogues for Pd [i.e. (I)] and Pt, the phenyl rings form angles with the pyrazole ring of 48.35 (5) and 34.97 (6)° for the former, and 48.97 (8) and 36.04 (9)° for the latter. In recently published work, in the compound 1,2-[bis(3,5-diphenylpyrazol-1-yl)methyl]benzene, the phenyl rings form angles of 15.9 (6), 48.48 (4), 17.62 (6) and 44.13 (3)° with the planes of the pyrazole rings (Spencer et al., 2012). Whereas the larger two angles from this compound are similar to those in the Pd and Pt derivatives of (I), the smaller two are quite different from this work, presumably due to electronic and intrinsic packing effects. We note that frequently large changes in dihedral angles are associated with only small molecular energy changes.

In metal compounds of Pd and Pt with analogues of the bidentate [(pyrazol-1-yl)methyl]pyridine ligand and [(triazol-4-yl)methyl]pyridine ligands, the larger the ligand (resulting in a greater shielding percentage of the metal) the longer the metal–Npz bond length. An equivalent trend was not observed in Co [(pyrazol-1-yl)methyl]pyridine analogues. No obvious trend was observed for the metal–Npy distances.

Related literature top

For related literature, see: Allen (2002); Balamurugan et al. (2004); Benade et al. (2011); Guzei & Wendt (2006); House et al. (1986); Kilpin & Crowley (2010); Mohlala et al. (2005); Ojwach et al. (2007, 2009); Segapelo et al. (2009); Spencer et al. (2012).

Experimental top

A mixture of 2-[(3,5-diphenylpyrazol-1-yl)methyl]pyridine (0.29 g, 0.93 mmol) and [PdCl2(NCMe)2] (0.24 g, 0.93 mmol) dissolved in dichloromethane (15 ml) was stirred for 6 h. The solvent was removed in vacuo to give an analytically pure yellow powder of the title compound (yield 0.21 g, 46%). Crystals of the product were obtained by slow evaporation from a solution used to run the NMR spectrum of the product. 1H NMR (CDCl3): δ 9.23 (d, 1H, py, 3JHH = 5.4 Hz), 8.26 (m, 2H, py), 7.92 (d, 1H, py, 3JHH = 7.2 Hz), 7.53 (m, 10H, Phpz), 6.53 (d, 1H, CH2–, 3JHH = 17.4 Hz), 5.45 (d, 1H, CH2–, 3JHH = 15.0 Hz). Analysis calculated for C21H17Cl2N3Pd.0.25CHCl3 [why the partial solvent?]: C 49.22, H 3.35, N 8.10%; found: C 49.14, H 3.21, N 7.75%.

Refinement top

All H atoms were placed in idealized locations and refined as riding with appropriate displacement parameters [Uiso(H) = 1.2Ueq(parent)]. Default effective X—H distances for T = 105 K, Csp2—H = 0.95 Å and Csp3—H = 0.99 Å.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title Pd complex, (I). Displacement ellipsoids are drawn at the 50% probability level.
Dichlorido{2-[(3,5-diphenyl-1H-pyrazol-1-yl- κN<ι>2)methyl]pyridine-κN}palladium(II) top
Crystal data top
[PdCl2(C21H17N3)]F(000) = 976
Mr = 488.68Dx = 1.674 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6759 reflections
a = 12.1226 (10) Åθ = 2.3–28.3°
b = 14.6299 (12) ŵ = 1.24 mm1
c = 12.258 (1) ÅT = 105 K
β = 116.862 (1)°Block, orange
V = 1939.4 (3) Å30.50 × 0.32 × 0.24 mm
Z = 4
Data collection top
Bruker CCD-1000 area-detector
diffractometer
4815 independent reflections
Radiation source: fine-focus sealed tube4638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
0.30° ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.575, Tmax = 0.755k = 1919
26141 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.2359P]
where P = (Fo2 + 2Fc2)/3
4815 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[PdCl2(C21H17N3)]V = 1939.4 (3) Å3
Mr = 488.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1226 (10) ŵ = 1.24 mm1
b = 14.6299 (12) ÅT = 105 K
c = 12.258 (1) Å0.50 × 0.32 × 0.24 mm
β = 116.862 (1)°
Data collection top
Bruker CCD-1000 area-detector
diffractometer
4815 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4638 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.755Rint = 0.024
26141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.05Δρmax = 0.46 e Å3
4815 reflectionsΔρmin = 0.60 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.683785 (8)0.080530 (6)0.528942 (8)0.01059 (4)
Cl10.49395 (3)0.14882 (2)0.43695 (3)0.01617 (7)
Cl20.69038 (3)0.07176 (2)0.34540 (3)0.01573 (7)
N10.68232 (10)0.09629 (8)0.69295 (10)0.0126 (2)
N20.93246 (11)0.06958 (7)0.72770 (11)0.0136 (2)
N30.85548 (10)0.02498 (8)0.62306 (10)0.0130 (2)
C10.58389 (13)0.07388 (9)0.71018 (13)0.0147 (2)
H10.51510.04490.64590.018*
C20.58038 (13)0.09201 (9)0.81962 (13)0.0173 (3)
H20.51020.07520.83030.021*
C30.68009 (13)0.13482 (10)0.91297 (13)0.0195 (3)
H30.67850.14930.98780.023*
C40.78310 (13)0.15634 (9)0.89553 (13)0.0177 (3)
H40.85320.18490.95880.021*
C50.78181 (12)0.13563 (9)0.78487 (12)0.0137 (2)
C60.88994 (12)0.15469 (9)0.75856 (12)0.0143 (2)
H6A0.86460.19830.68960.017*
H6B0.95820.18270.83120.017*
C71.04486 (12)0.02823 (9)0.78236 (12)0.0145 (2)
C81.14894 (12)0.06141 (9)0.89556 (12)0.0153 (2)
C91.13559 (14)0.08301 (9)0.99996 (14)0.0183 (3)
H91.05680.07830.99860.022*
C101.23782 (14)0.11145 (10)1.10624 (13)0.0201 (3)
H101.22860.12601.17720.024*
C111.35308 (13)0.11847 (10)1.10837 (13)0.0199 (3)
H111.42270.13761.18090.024*
C121.36664 (13)0.09757 (10)1.00465 (13)0.0198 (3)
H121.44540.10311.00620.024*
C131.26537 (13)0.06854 (10)0.89814 (13)0.0170 (3)
H131.27530.05370.82760.020*
C141.03930 (12)0.04562 (9)0.71005 (12)0.0157 (2)
H141.10390.08780.72390.019*
C150.91971 (12)0.04642 (9)0.61202 (12)0.0137 (2)
C160.86762 (12)0.11326 (9)0.51164 (12)0.0132 (2)
C170.94438 (13)0.15154 (9)0.46607 (13)0.0168 (3)
H171.02960.13580.50150.020*
C180.89541 (14)0.21269 (9)0.36864 (13)0.0186 (3)
H180.94750.23850.33760.022*
C190.77100 (14)0.23637 (9)0.31639 (12)0.0182 (3)
H190.73760.27660.24830.022*
C200.69582 (12)0.20081 (9)0.36438 (12)0.0170 (3)
H200.61130.21830.33050.020*
C210.74385 (12)0.13964 (9)0.46188 (12)0.0152 (2)
H210.69220.11580.49460.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00982 (6)0.01110 (6)0.01107 (6)0.00066 (3)0.00492 (4)0.00010 (3)
Cl10.01324 (14)0.01939 (15)0.01563 (14)0.00494 (11)0.00629 (11)0.00276 (11)
Cl20.01638 (15)0.01883 (15)0.01406 (14)0.00034 (11)0.00871 (12)0.00063 (11)
N10.0125 (5)0.0117 (5)0.0142 (5)0.0009 (4)0.0066 (4)0.0005 (4)
N20.0121 (5)0.0140 (5)0.0144 (5)0.0003 (4)0.0055 (4)0.0024 (4)
N30.0117 (5)0.0138 (5)0.0130 (5)0.0007 (4)0.0050 (4)0.0018 (4)
C10.0132 (6)0.0143 (6)0.0161 (6)0.0002 (4)0.0063 (5)0.0002 (4)
C20.0179 (6)0.0181 (6)0.0196 (7)0.0002 (5)0.0116 (5)0.0004 (5)
C30.0229 (7)0.0218 (7)0.0172 (6)0.0005 (5)0.0121 (5)0.0033 (5)
C40.0180 (6)0.0182 (6)0.0161 (6)0.0011 (5)0.0071 (5)0.0043 (5)
C50.0133 (6)0.0121 (5)0.0159 (6)0.0011 (4)0.0068 (5)0.0006 (5)
C60.0139 (6)0.0122 (6)0.0175 (6)0.0005 (4)0.0077 (5)0.0026 (4)
C70.0119 (5)0.0164 (6)0.0154 (6)0.0003 (5)0.0064 (5)0.0014 (5)
C80.0139 (6)0.0148 (6)0.0154 (6)0.0007 (5)0.0051 (5)0.0009 (5)
C90.0161 (7)0.0202 (7)0.0191 (7)0.0000 (5)0.0085 (6)0.0000 (5)
C100.0231 (7)0.0206 (7)0.0152 (6)0.0007 (5)0.0074 (5)0.0013 (5)
C110.0195 (6)0.0178 (6)0.0164 (6)0.0013 (5)0.0027 (5)0.0003 (5)
C120.0134 (6)0.0229 (7)0.0199 (7)0.0021 (5)0.0048 (5)0.0010 (5)
C130.0150 (6)0.0194 (6)0.0158 (6)0.0001 (5)0.0063 (5)0.0014 (5)
C140.0131 (6)0.0157 (6)0.0176 (6)0.0020 (5)0.0064 (5)0.0006 (5)
C150.0134 (6)0.0133 (6)0.0159 (6)0.0006 (5)0.0080 (5)0.0006 (5)
C160.0141 (6)0.0123 (6)0.0138 (6)0.0010 (4)0.0067 (5)0.0007 (4)
C170.0158 (6)0.0161 (6)0.0214 (6)0.0003 (5)0.0110 (5)0.0003 (5)
C180.0241 (7)0.0159 (6)0.0222 (7)0.0015 (5)0.0162 (6)0.0002 (5)
C190.0252 (7)0.0134 (6)0.0160 (6)0.0007 (5)0.0093 (5)0.0006 (5)
C200.0157 (6)0.0135 (6)0.0189 (6)0.0002 (5)0.0052 (5)0.0014 (5)
C210.0148 (6)0.0135 (6)0.0187 (6)0.0018 (5)0.0089 (5)0.0005 (5)
Geometric parameters (Å, º) top
Pd1—N12.0317 (11)C8—C131.4013 (19)
Pd1—N32.0381 (11)C9—C101.395 (2)
Pd1—Cl12.2848 (3)C9—H90.9500
Pd1—Cl22.2906 (4)C10—C111.389 (2)
N1—C11.3429 (18)C10—H100.9500
N1—C51.3518 (17)C11—C121.388 (2)
N2—C71.3589 (17)C11—H110.9500
N2—N31.3638 (15)C12—C131.394 (2)
N2—C61.4613 (16)C12—H120.9500
N3—C151.3457 (17)C13—H130.9500
C1—C21.3869 (19)C14—C151.4041 (18)
C1—H10.9500C14—H140.9500
C2—C31.383 (2)C15—C161.4721 (18)
C2—H20.9500C16—C211.3946 (18)
C3—C41.395 (2)C16—C171.4004 (18)
C3—H30.9500C17—C181.3923 (19)
C4—C51.3830 (18)C17—H170.9500
C4—H40.9500C18—C191.390 (2)
C5—C61.5107 (18)C18—H180.9500
C6—H6A0.9900C19—C201.390 (2)
C6—H6B0.9900C19—H190.9500
C7—C141.3797 (19)C20—C211.3926 (19)
C7—C81.4734 (18)C20—H200.9500
C8—C91.397 (2)C21—H210.9500
N1—Pd1—N387.04 (4)C13—C8—C7118.10 (12)
N1—Pd1—Cl188.95 (3)C10—C9—C8120.07 (13)
N3—Pd1—Cl1175.55 (3)C10—C9—H9120.0
N1—Pd1—Cl2176.44 (3)C8—C9—H9120.0
N3—Pd1—Cl293.08 (3)C11—C10—C9120.06 (13)
Cl1—Pd1—Cl290.808 (12)C11—C10—H10120.0
C1—N1—C5119.63 (12)C9—C10—H10120.0
C1—N1—Pd1122.24 (9)C12—C11—C10120.06 (13)
C5—N1—Pd1118.02 (9)C12—C11—H11120.0
C7—N2—N3111.00 (11)C10—C11—H11120.0
C7—N2—C6130.09 (11)C11—C12—C13120.42 (13)
N3—N2—C6118.66 (11)C11—C12—H12119.8
C15—N3—N2106.55 (10)C13—C12—H12119.8
C15—N3—Pd1137.90 (9)C12—C13—C8119.71 (13)
N2—N3—Pd1115.56 (8)C12—C13—H13120.1
N1—C1—C2121.54 (13)C8—C13—H13120.1
N1—C1—H1119.2C7—C14—C15106.75 (11)
C2—C1—H1119.2C7—C14—H14126.6
C3—C2—C1119.31 (13)C15—C14—H14126.6
C3—C2—H2120.3N3—C15—C14109.15 (11)
C1—C2—H2120.3N3—C15—C16123.40 (11)
C2—C3—C4118.93 (13)C14—C15—C16127.44 (12)
C2—C3—H3120.5C21—C16—C17119.50 (12)
C4—C3—H3120.5C21—C16—C15121.32 (11)
C5—C4—C3119.12 (13)C17—C16—C15119.18 (12)
C5—C4—H4120.4C18—C17—C16119.76 (13)
C3—C4—H4120.4C18—C17—H17120.1
N1—C5—C4121.42 (12)C16—C17—H17120.1
N1—C5—C6115.73 (11)C19—C18—C17120.58 (13)
C4—C5—C6122.86 (12)C19—C18—H18119.7
N2—C6—C5109.85 (10)C17—C18—H18119.7
N2—C6—H6A109.7C18—C19—C20119.61 (13)
C5—C6—H6A109.7C18—C19—H19120.2
N2—C6—H6B109.7C20—C19—H19120.2
C5—C6—H6B109.7C19—C20—C21120.26 (13)
H6A—C6—H6B108.2C19—C20—H20119.9
N2—C7—C14106.55 (11)C21—C20—H20119.9
N2—C7—C8123.98 (12)C20—C21—C16120.21 (12)
C14—C7—C8129.45 (12)C20—C21—H21119.9
C9—C8—C13119.67 (13)C16—C21—H21119.9
C9—C8—C7122.20 (12)
N3—Pd1—N1—C1134.67 (11)C6—N2—C7—C84.5 (2)
Cl1—Pd1—N1—C147.24 (10)N2—C7—C8—C949.9 (2)
Cl2—Pd1—N1—C1133.3 (5)C14—C7—C8—C9131.73 (16)
N3—Pd1—N1—C549.19 (10)N2—C7—C8—C13132.06 (14)
Cl1—Pd1—N1—C5128.89 (9)C14—C7—C8—C1346.3 (2)
Cl2—Pd1—N1—C542.8 (6)C13—C8—C9—C100.0 (2)
C7—N2—N3—C150.71 (14)C7—C8—C9—C10177.98 (13)
C6—N2—N3—C15175.58 (11)C8—C9—C10—C110.1 (2)
C7—N2—N3—Pd1178.97 (9)C9—C10—C11—C120.3 (2)
C6—N2—N3—Pd14.11 (14)C10—C11—C12—C130.7 (2)
N1—Pd1—N3—C15137.04 (14)C11—C12—C13—C80.7 (2)
Cl1—Pd1—N3—C15162.6 (3)C9—C8—C13—C120.3 (2)
Cl2—Pd1—N3—C1546.53 (13)C7—C8—C13—C12178.45 (13)
N1—Pd1—N3—N243.41 (9)N2—C7—C14—C150.48 (15)
Cl1—Pd1—N3—N217.9 (5)C8—C7—C14—C15179.09 (13)
Cl2—Pd1—N3—N2133.02 (9)N2—N3—C15—C141.00 (14)
C5—N1—C1—C21.50 (19)Pd1—N3—C15—C14178.58 (10)
Pd1—N1—C1—C2174.58 (10)N2—N3—C15—C16178.44 (12)
N1—C1—C2—C30.5 (2)Pd1—N3—C15—C162.0 (2)
C1—C2—C3—C41.7 (2)C7—C14—C15—N30.93 (15)
C2—C3—C4—C51.0 (2)C7—C14—C15—C16178.48 (13)
C1—N1—C5—C42.25 (19)N3—C15—C16—C2134.97 (19)
Pd1—N1—C5—C4173.99 (10)C14—C15—C16—C21144.36 (14)
C1—N1—C5—C6177.53 (11)N3—C15—C16—C17145.54 (13)
Pd1—N1—C5—C66.23 (15)C14—C15—C16—C1735.1 (2)
C3—C4—C5—N11.0 (2)C21—C16—C17—C182.5 (2)
C3—C4—C5—C6178.79 (13)C15—C16—C17—C18178.02 (12)
C7—N2—C6—C5120.70 (14)C16—C17—C18—C190.2 (2)
N3—N2—C6—C565.57 (15)C17—C18—C19—C202.0 (2)
N1—C5—C6—N258.74 (15)C18—C19—C20—C211.9 (2)
C4—C5—C6—N2121.04 (14)C19—C20—C21—C160.3 (2)
N3—N2—C7—C140.13 (15)C17—C16—C21—C202.55 (19)
C6—N2—C7—C14174.25 (13)C15—C16—C21—C20177.96 (12)
N3—N2—C7—C8178.58 (12)

Experimental details

Crystal data
Chemical formula[PdCl2(C21H17N3)]
Mr488.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)105
a, b, c (Å)12.1226 (10), 14.6299 (12), 12.258 (1)
β (°) 116.862 (1)
V3)1939.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.50 × 0.32 × 0.24
Data collection
DiffractometerBruker CCD-1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.575, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
26141, 4815, 4638
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.050, 1.05
No. of reflections4815
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.60

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Selected geometric parameters (Å, º) top
Pd1—N12.0317 (11)Pd1—Cl12.2848 (3)
Pd1—N32.0381 (11)Pd1—Cl22.2906 (4)
N1—Pd1—N387.04 (4)N1—Pd1—Cl2176.44 (3)
N1—Pd1—Cl188.95 (3)N3—Pd1—Cl293.08 (3)
N3—Pd1—Cl1175.55 (3)Cl1—Pd1—Cl290.808 (12)
Table 2. Shielding percentage of metal centre by the bidentate ligand (%) top
LigandSubstituents on bidentate ligandPdPtCo
L14-Phenyl-1H-1,2,3-triazole36.036.4
L23,5-Dimethylpyrazole38.938.6
L33,5-Diphenylpyrazole42.442.741.8
L43,5-Di-tert-butylpyrazole43.944.5
Table 3. Metal–Npz distances (Å) top
LigandSubstituents on bidentate ligandPdPtCo
L14-Phenyl-1H-1,2,3-triazole2.012 (3)2.000 (3)
L23,5-Dimethylpyrazole2.034 (3)2.0503 (19)
L33,5-Diphenylpyrazole2.0381 (11)2.0193 (16)2.023 (4)
L43,5-Di-tert-butylpyrazole2.060 (3)2.041 (4)
Table 4. Metal–Npy distances (Å) top
LigandSubstituents on bidentate ligandPdPtCo
L14-Phenyl-1H-1,2,3-triazole2.067 (3)2.052 (3)
L23,5-Dimethylpyrazole2.048 (3)2.0609 (19)
L33,5-Diphenylpyrazole2.0317 (11)2.0220 (17)2.048 (4)
L43,5-Di-tert-butylpyrazole2.037 (3)2.012 (4)
Table 5. Ligand folding angle (°) top
LigandSubstituents on bidentate ligandPdPtCo
L14-Phenyl-1H-1,2,3-triazole52.0752.12
L23,5-Dimethylpyrazole63.50 (13)55.13 (8)
L33,5-Diphenylpyrazole62.04 (5)61.50 (8)52.15
L43,5-Di-tert-butylpyrazole60.18 (29)64.93 (17)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds