Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, [Cu(C5H7O2)2(C5H6N2)], (I), and [Cu(C5H7O2)2(C4H5N3)], (II), were prepared by the reaction of bis­(pentane-2,4-dionato-κ2O,O′)copper(II) with pyridin-2-am­ine and pyrimidin-2-amine, respectively. From a chemical point of view, it is inter­esting that no Schiff base formation was observed. The compounds are isostructural, with both having a square-pyramidal coordination of the CuII atom and intra­molecular N—H...O hydrogen bonding. The additional N atom of the pyrimidin-2-amine ligand is not involved in hydrogen bonding or in metal coordination. In the crystal structure, chelate rings are involved in π–π inter­actions and mol­ecules of (I) are linked together via N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112004386/ku3061sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112004386/ku3061Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112004386/ku3061IIsup3.hkl
Contains datablock II

CCDC references: 873876; 873877

Comment top

Metal β-diketonate compounds attract great interest, because metal complexes of β-diketonate derivatives can be used as good precursors in metal–organic chemical vapour deposition (MOCVD) (Kodas & Hampden-Smith, 1994), or as building blocks for the design of porous and supramolecular materials (Bray et al., 2007; Garibay et al., 2009). β-Diketonates and organic compounds containing an amino group are suitable starting materials for the formation of Schiff bases (Bourget-Merle et al., 2002; Holm et al., 1966). Pyridin-2-amine and pyrimidin-2-amine are close analogues of purine and pyrimidine nucleobases and are thus interesting as model compounds. They can act both as metal-coordinating ligands through the aromatic N atom and as hydrogen-bond donors through the amino group. Furthermore, pyrimidin-2-amine has an additional aromatic N atom that can serve as a second ligation centre or as a strong hydrogen-bond acceptor. When we examined the reactivity of bis(pentane-2,4-dionato-O,O')copper(II) with pyridin-2-amine and pyrimidin-2-amine, no Schiff base formation was observed under the applied reaction conditions; instead both compounds acted rather as a nitrogen-donor ligand, occupying the fifth coordination site via an aromatic N atom.

The title compounds, (pentane-2,4-dionato-κ2O,O')(pyridin-2-amine-κN1)copper(II), (I) (Fig. 1), and (pentane-2,4-dionato-κ2O,O')(pyrimidin-2-amine-κN1)copper(II), (II) (Fig. 2), have similar molecular structures. In the equatorial plane, the Cu atom is surrounded by four O atoms of two chelating pentane-2,4-dionate ligands. Selected bond distances and angles are listed in Tables 1 and 3. Bond distances and angles are typical for β-diketonate compounds (Gromilov & Baidina, 2004; Stabnikov et al., 2008; Germán-Acacio et al., 2009). The Cu atom lies above the plane formed by four acetylacetonate O atoms, by 0.219 Å in (I) and 0.174 Å in (II). The fifth coordination site is occupied by the additional ligand in the axial position. The geometry is square-pyramidal with only slight distortion. The distortion of a square-pyramid can be best described by the structural parameter τ = (βα)/60°, where β and α are the largest angles in the coordination sphere (τ = 0 for a square-pyramid and τ = 1 for a trigonal-bipyramid; Addison et al., 1984), which in this case has values of 0.05 and 0.04 for (I) and (II), respectively. For five-coordinate β-diketonates, square-pyramidal geometry is more common (Bray et al., 2007; Garibay et al., 2009) than trigonal-bipyramidal. But still, the three closely related compounds (4-dimethylaminopyridine-κN)bis(pentane-2,4-dionato-κ2O,O')copper(II), (4-aminopyridine-κN)bis(pentane-2,4-dionato-κ2O,O')copper(II) and (4-dimethylaminopyridine-κN)bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-κ2O,O')copper(II) have trigonal–bipyramidal geometry (Lindoy et al., 2006; Stabnikov et al., 2011). The Cu—N bond length is 2.3287 (17) Å in (I) and 2.3672 (19) Å in (II), significantly greater than in the above-mentioned trigonal–bipyramidal compounds (2.119, 2.008 and 1.978 Å, respectively; Lindoy et al., 2006; Stabnikov et al., 2011). However, they are similar to those in square-pyramidal copper(II) pentane-2,4-dionate complexes with adenine (Zaworotko et al., 2009), quinoline (Jose et al., 1969) and isonicotinamide (Germán-Acacio et al., 2009), where the bond lengths are 2.328, 2.357 and 2.384 Å, respectively. The molecular structure is by no means easy to predict. Coordination geometry can be influenced by electronic, steric and packing effects. Even small changes in noncovalent bonding, such as hydrogen-bonding and ππ interactions, might lead to different coordination geometry. Quantum-mechanical studies would be needed to understand the differences in geometries.

In both (I) and (II), the two acetylacetonate ligands are not coplanar. The angle formed between the Cu1/O1/C2–C4/O2 and Cu1/O3/C6–C8/O4 rings is 30.84 (8)° in (I) and 26.89 (8)° in (II). The pyridine and pyrimidine rings are not perpendicular to the O1/O2/O3/O4 plane, but form an angle of 81.72° in (I) and 81.35° in (II). Furthermore, the pyridine and pyrimidine rings are slightly rotated towards the O1 atom, as can be seen by comparing the O1—Cu1—N1—C11 and O4—Cu1—N1—C11 torsion angles [41.55 (16) and -44.05 (16)°, respectively, in (I), and 42.65 (19) and -44.10 (18)°, respectively, in (II)]. Owing to this rotation, the amino groups in both compounds form an intramolecular hydrogen bond with the O1 atom and not with the O4 atom (Tables 2 and 4). The graph-set motif is S(6) (Bernstein et al., 1995). In compound (I), a chain is formed due to the intermolecular bifurcated hydrogen bonds N2—H2b···O2(x+1, y, z) and N2—H2b···O3(x+1, y, z), with the graph-set motif C12(6)[R12(4)] (Fig. 3). Although the packing in (II) is similar, no intermolecular hydrogen bonding was observed owing to a somewhat larger separation between atom N2 and atoms O2 and O3 of an adjacent molecule, viz. 3.248 (3) and 3.301 (3) Å in (I), and 3.339 (3) Å and 3.322 (3) Å in (II). The H2b···O2(x+1, y, z) and H2b···O3(x+1, y, z) hydrogen-bond separations in (I) are 2.48 and 2.56 Å; the separations are, however, slightly longer in (II), where both contacts are 2.60 Å. The degree of similarity between crystals can be defined, for example, by the unit-cell similarity index (Π). In the event of great similarity of two unit cells, the index Π is practically zero (Kálmán et al., 1993), as can be observed also for (I) and (II) with Π = 0.016. Since the compounds are isostructural, the interactions should also be similar in both cases. The crystal packing in both compounds is similar also because the pyrimide atom N3 in compound (II), which could act as an electron donor, is not involved in the hydrogen bonding or in the metal coordination. For comparison, both N atoms of the pyrimidine ring are involved in the coordination to the copper metal centres in bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)copper(II) adducts with pyrimidine and 4-methylpyrimidine (Yasui et al., 2001).

In both square-pyramidal compounds (I) and (II), there are ππ interactions between two parallel neighbouring Cu1/O3/C7–C9/O4 chelate rings, with a Cg1···Cg1(-x, -y, -z+1) centroid–centroid distance of 3.7106 (11) Å, a perpendicular distance from the centroid Cg1 to the plane of the other ring of 3.5682 (8) Å and a slippage between the centroids of 1.018 Å in compound (I). In compound (II), these values are even smaller, since two parallel neighbouring Cu1/O3/C7–C9/O4 rings have a Cg1···Cg1(-x, -y+1, -z+2) centroid–centroid distance of 3.5310 (11) Å, a perpendicular distance from the centroid Cg1 to the plane of the other ring of 3.4535 (8) Å and a slippage between the centroids of 0.736 Å. Such interactions would be consistent with well defined ππ stacking interactions in organic aromatic compounds (Hunter, 1994; Choudhury & Chitra, 2010; Malathy Sony & Ponnuswamy, 2006; Perdih & Perdih, 2011), although the interplanar separations are somewhat greater than the graphite spacing of 3.35 Å (Bacon, 1951). Janiak (2000) classified ππ interactions in nitrogen-containing heteroaromatic compounds where such values would indicate strong interactions, since strong interactions exhibit rather short centroid–centroid contacts (Cg···Cg < 3.8 Å), small slip angles (<25°) and vertical displacements (<1.5 Å), which translate into a sizeable overlap of the aromatic planes. In comparison, medium-to-weak interactions exhibit rather long centroid–centroid distances (>4.0 Å) together with large slip angles (>30°) and vertical displacements (>2.0 Å) (Janiak, 2000; Yang et al., 2005; Dorn et al., 2005). It is arguable whether aromatic ππ interactions are comparable with those observed in (I) and (II), since π-delocalized β-diketonate chelate rings have little or no aromatic character (Cotton et al., 1999). The necessity of the aromaticity for ππ interactions was questioned also by Bloom & Wheller (2011). Detailed analysis of XRD [X-ray diffraction?] data on copper β-diketonates and quantum-mechanical studies would be needed in order to study the nature as well as the factors influencing the ππ interactions in β-diketonates.

Strong ππ interactions are very common in square-planar bis(β-diketonato)copper(II) compounds. For example, in trans-bis(benzoylacetonato)copper(II), bis(pentane-2,4-dionato)copper(II) and bis(3-benzylpentane-2,4-dionato)copper(II), centroid–centroid contacts are 3.13, 3.14 and 3.22 Å, respectively, with parallel metallacycles or deviating from planarity by 0.02° (Hon et al., 1966; Lebrun et al., 1986; Judaš & Kaitner, 2006a). Strong ππ interactions are also present in some square-pyramidal compounds of copper(II) β-diketonates. The shortest interactions were found in catena-[3-cyanopentane-2,4-dionato-O,O',N)(3-cyanopentane-2,4-dionato-O,O')copper(II), with centroid–centroid contacts between two parallel metallacycles of 3.16 Å (Angelova et al., 1989). Centroid–centroid distances in the range 3.23–3.49 Å with parallel metallacycles or deviating from planarity by up to 0.03° were observed in several examples (Lee et al., 2001; Zaworotko et al., 2009; Delgado et al., 2007; Jose et al., 1969; Stabnikov et al., 2008; Caneschi et al., 1988; Song & Iyoda, 2009; Judaš & Kaitner, 2006b; Yoshida et al., 2008; Atienza et al., 2008). Interestingly, when searching the centroid–centroid distances in the range 3.50–4.00 Å, as observed in compounds (I) and (II), we found only two structures, viz. a tricopper complex where the centroid–centroid distance is 3.66 Å and the angle between metallacycles is 0.02° (Maxim et al., 2010), and (isonicotinamide-N)bis(pentane-2,4-dionato-O,O')copper(II), with a centroid–centroid distance of 3.90 Å and an angle between metallacycles of 6.97° (Germán-Acacio et al., 2009).

Related literature top

For related literature, see: Addison et al. (1984); Angelova et al. (1989); Atienza et al. (2008); Bacon (1951); Bernstein et al. (1995); Bloom & Wheller (2011); Bourget-Merle, Lappert & Severn (2002); Bray et al. (2007); Caneschi et al. (1988); Choudhury & Chitra (2010); Cotton et al. (1999); Delgado et al. (2007); Dorn et al. (2005); Garibay et al. (2009); Germán-Acacio, Hernández-Ortega, Aakeröy & Valdés-Martínez (2009); Gromilov & Baidina (2004); Holm et al. (1966); Hon et al. (1966); Hunter (1994); Janiak (2000); Jose et al. (1969); Judaš & Kaitner (2006a); Kálmán et al. (1993); Kodas & Hampden-Smith (1994); Lebrun et al. (1986); Lee et al. (2001); Lindoy et al. (2006); Malathy & Ponnuswamy (2006); Maxim et al. (2010); Perdih & Perdih (2011); Song & Iyoda (2009); Stabnikov et al. (2008, 2011); Yang et al. (2005); Yasui et al. (2001); Yoshida et al. (2008); Zaworotko et al. (2009).

Experimental top

Cu(acac)2 (acac is acetylacetonate; 0.25 mmol) was dissolved in warm chloroform (5 ml) and pyridin-2-amine (0.25 mmol) for the preparation of (I) and pyrimidin-2-amine (0.25 mmol) for the preparation of (II) was added. The reaction mixture was stirred for 5 min and then allowed to stand at room temperature. Crystals suitable for X-ray analysis were obtained after slow evaporation of the solvent (yields: 50–55%).

Refinement top

All H atoms were initially located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 (aromatic and alkenyl) or 0.96 Å (CH3), and N—H = 0.86 Å and with Uiso(H) = kUeq(C,N), where k = 1.5 for amino and methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. To improve the refinement results, two reflections in the case of (I) and eight reflections in the case of (II) with too high values of δ(F2)/e.s.d. and with Fo2 < Fc2 were deleted from the refinement.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is indicated by a dashed line.
[Figure 3] Fig. 3. A packing diagram for (I). Dashed lines indicate hydrogen bonds and ππ interactions. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) (Pentane-2,4-dionato-κ2O,O')(pyridin-2-amine- κN1)copper(II) top
Crystal data top
[Cu(C5H7O2)2(C5H6N2)]F(000) = 740
Mr = 355.87Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3433 reflections
a = 7.5686 (1) Åθ = 0.4–27.5°
b = 8.2944 (2) ŵ = 1.34 mm1
c = 26.4250 (7) ÅT = 293 K
β = 93.944 (1)°Prism, blue
V = 1654.95 (6) Å30.6 × 0.6 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3572 independent reflections
Graphite monochromator3238 reflections with I > 2σ(I)
Detector resolution: 0.055 pixels mm-1Rint = 0.026
ϕ scans + ω scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.501, Tmax = 0.731k = 1010
6316 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.6509P]
where P = (Fo2 + 2Fc2)/3
3572 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(C5H7O2)2(C5H6N2)]V = 1654.95 (6) Å3
Mr = 355.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5686 (1) ŵ = 1.34 mm1
b = 8.2944 (2) ÅT = 293 K
c = 26.4250 (7) Å0.6 × 0.6 × 0.25 mm
β = 93.944 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3572 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3238 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 0.731Rint = 0.026
6316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
3572 reflectionsΔρmin = 0.48 e Å3
203 parameters
Special details top

Experimental. 346 frames in 3 sets of ϕ scans + ω scans. Rotation/frame = 1.1 °. Crystal-detector distance = 40.0 mm. Measuring time = 60 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07784 (3)0.03893 (3)0.398789 (9)0.04405 (12)
N10.2271 (2)0.0879 (2)0.33569 (6)0.0409 (3)
N20.5020 (3)0.0000 (3)0.36643 (10)0.0702 (6)
H2A0.45160.0610.38740.105*
H2B0.61560.00120.36620.105*
O10.22478 (18)0.23160 (17)0.40337 (6)0.0486 (3)
O20.10398 (19)0.1450 (2)0.35520 (6)0.0562 (4)
O30.09963 (19)0.1254 (2)0.40743 (7)0.0591 (4)
O40.23590 (19)0.04686 (18)0.45306 (6)0.0475 (3)
C10.3114 (4)0.5023 (3)0.39822 (12)0.0661 (6)
H1A0.36490.49060.4320.099*
H1B0.25270.60480.39510.099*
H1C0.40130.49640.37440.099*
C20.1796 (3)0.3704 (2)0.38762 (8)0.0462 (4)
C30.0169 (3)0.4067 (3)0.36155 (11)0.0620 (6)
H30.00660.51450.35410.074*
C40.1107 (3)0.2957 (3)0.34605 (9)0.0550 (5)
C50.2744 (4)0.3510 (5)0.31499 (13)0.0878 (10)
H5A0.27480.30610.28150.132*
H5B0.27460.46660.31290.132*
H5C0.3780.31560.33090.132*
C60.2640 (4)0.3218 (4)0.44775 (14)0.0815 (9)
H6A0.3650.26090.43480.122*
H6B0.27850.35130.48230.122*
H6C0.25330.41750.42770.122*
C70.0995 (3)0.2211 (3)0.44522 (10)0.0529 (5)
C80.0367 (3)0.2384 (3)0.48251 (9)0.0546 (5)
H80.02030.31190.50840.065*
C90.1963 (3)0.1546 (2)0.48432 (7)0.0434 (4)
C100.3358 (4)0.1924 (3)0.52566 (9)0.0631 (6)
H10A0.38830.2950.51910.095*
H10B0.2830.19620.55760.095*
H10C0.42540.11040.52670.095*
C110.4032 (3)0.0939 (2)0.33389 (7)0.0439 (4)
C120.4844 (3)0.1913 (3)0.29876 (9)0.0603 (6)
H120.60720.19540.29860.072*
C130.3816 (4)0.2794 (4)0.26515 (11)0.0743 (8)
H130.43340.34410.24150.089*
C140.1996 (4)0.2728 (4)0.26605 (11)0.0743 (8)
H140.12670.33160.2430.089*
C150.1296 (3)0.1771 (3)0.30193 (9)0.0551 (5)
H150.0070.17380.30290.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02998 (15)0.04331 (17)0.05809 (19)0.00603 (8)0.00254 (10)0.00696 (10)
N10.0365 (8)0.0398 (8)0.0454 (8)0.0034 (6)0.0043 (6)0.0003 (6)
N20.0333 (9)0.0991 (16)0.0780 (14)0.0080 (10)0.0028 (9)0.0352 (13)
O10.0395 (7)0.0381 (7)0.0674 (9)0.0044 (5)0.0025 (6)0.0033 (6)
O20.0366 (7)0.0603 (9)0.0703 (10)0.0022 (6)0.0064 (6)0.0069 (8)
O30.0374 (7)0.0594 (9)0.0795 (11)0.0148 (7)0.0036 (7)0.0116 (8)
O40.0397 (7)0.0507 (8)0.0515 (8)0.0086 (6)0.0012 (6)0.0076 (6)
C10.0698 (16)0.0430 (11)0.0854 (18)0.0112 (11)0.0058 (13)0.0021 (11)
C20.0475 (10)0.0410 (10)0.0510 (10)0.0014 (8)0.0099 (8)0.0025 (8)
C30.0555 (13)0.0522 (12)0.0782 (15)0.0071 (10)0.0036 (11)0.0167 (11)
C40.0420 (11)0.0651 (14)0.0581 (12)0.0092 (9)0.0054 (9)0.0160 (10)
C50.0573 (15)0.104 (2)0.099 (2)0.0172 (16)0.0144 (14)0.0322 (19)
C60.0515 (14)0.0708 (17)0.123 (3)0.0235 (13)0.0128 (15)0.0149 (17)
C70.0416 (10)0.0420 (10)0.0769 (14)0.0074 (8)0.0163 (10)0.0006 (10)
C80.0545 (12)0.0484 (11)0.0620 (12)0.0066 (9)0.0134 (10)0.0077 (9)
C90.0490 (10)0.0397 (9)0.0424 (9)0.0008 (8)0.0091 (8)0.0036 (7)
C100.0707 (15)0.0657 (14)0.0515 (12)0.0064 (12)0.0051 (11)0.0078 (11)
C110.0409 (10)0.0451 (10)0.0455 (9)0.0025 (8)0.0018 (7)0.0016 (8)
C120.0574 (13)0.0620 (14)0.0636 (13)0.0038 (11)0.0178 (11)0.0036 (11)
C130.094 (2)0.0662 (16)0.0643 (15)0.0007 (15)0.0157 (14)0.0183 (13)
C140.091 (2)0.0650 (16)0.0643 (14)0.0118 (14)0.0108 (14)0.0220 (12)
C150.0516 (12)0.0530 (12)0.0582 (12)0.0069 (9)0.0133 (9)0.0025 (10)
Geometric parameters (Å, º) top
Cu1—O31.9382 (15)C5—H5A0.96
Cu1—O41.9385 (15)C5—H5B0.96
Cu1—O21.9433 (15)C5—H5C0.96
Cu1—O11.9460 (14)C6—C71.505 (3)
Cu1—N12.3287 (17)C6—H6A0.96
N1—C111.337 (3)C6—H6B0.96
N1—C151.341 (3)C6—H6C0.96
N2—C111.348 (3)C7—C81.383 (3)
N2—H2A0.86C8—C91.392 (3)
N2—H2B0.86C8—H80.93
O1—C21.263 (2)C9—C101.499 (3)
O2—C41.273 (3)C10—H10A0.96
O3—C71.275 (3)C10—H10B0.96
O4—C91.267 (2)C10—H10C0.96
C1—C21.494 (3)C11—C121.404 (3)
C1—H1A0.96C12—C131.354 (4)
C1—H1B0.96C12—H120.93
C1—H1C0.96C13—C141.380 (4)
C2—C31.401 (3)C13—H130.93
C3—C41.376 (4)C14—C151.371 (4)
C3—H30.93C14—H140.93
C4—C51.510 (3)C15—H150.93
O3—Cu1—O492.98 (6)H5A—C5—H5C109.5
O3—Cu1—O285.42 (7)H5B—C5—H5C109.5
O4—Cu1—O2168.65 (7)C7—C6—H6A109.5
O3—Cu1—O1165.46 (7)C7—C6—H6B109.5
O4—Cu1—O186.24 (6)H6A—C6—H6B109.5
O2—Cu1—O192.49 (7)C7—C6—H6C109.5
O3—Cu1—N198.10 (7)H6A—C6—H6C109.5
O4—Cu1—N193.37 (6)H6B—C6—H6C109.5
O2—Cu1—N197.98 (7)O3—C7—C8125.66 (19)
O1—Cu1—N196.45 (6)O3—C7—C6115.1 (2)
C11—N1—C15117.42 (19)C8—C7—C6119.2 (2)
C11—N1—Cu1125.14 (13)C7—C8—C9125.1 (2)
C15—N1—Cu1116.98 (15)C7—C8—H8117.5
C11—N2—H2A120C9—C8—H8117.5
C11—N2—H2B120O4—C9—C8125.0 (2)
H2A—N2—H2B120O4—C9—C10115.89 (19)
C2—O1—Cu1125.96 (14)C8—C9—C10119.1 (2)
C4—O2—Cu1125.07 (15)C9—C10—H10A109.5
C7—O3—Cu1124.51 (14)C9—C10—H10B109.5
C9—O4—Cu1125.43 (13)H10A—C10—H10B109.5
C2—C1—H1A109.5C9—C10—H10C109.5
C2—C1—H1B109.5H10A—C10—H10C109.5
H1A—C1—H1B109.5H10B—C10—H10C109.5
C2—C1—H1C109.5N1—C11—N2117.83 (19)
H1A—C1—H1C109.5N1—C11—C12121.8 (2)
H1B—C1—H1C109.5N2—C11—C12120.3 (2)
O1—C2—C3124.5 (2)C13—C12—C11119.1 (2)
O1—C2—C1116.3 (2)C13—C12—H12120.5
C3—C2—C1119.2 (2)C11—C12—H12120.5
C4—C3—C2125.3 (2)C12—C13—C14119.8 (2)
C4—C3—H3117.4C12—C13—H13120.1
C2—C3—H3117.4C14—C13—H13120.1
O2—C4—C3125.6 (2)C15—C14—C13117.9 (2)
O2—C4—C5115.0 (2)C15—C14—H14121
C3—C4—C5119.4 (2)C13—C14—H14121
C4—C5—H5A109.5N1—C15—C14123.9 (2)
C4—C5—H5B109.5N1—C15—H15118
H5A—C5—H5B109.5C14—C15—H15118
C4—C5—H5C109.5
O3—Cu1—N1—C11137.55 (16)O1—C2—C3—C45.2 (4)
O4—Cu1—N1—C1144.05 (16)C1—C2—C3—C4175.0 (3)
O2—Cu1—N1—C11135.98 (16)Cu1—O2—C4—C36.3 (4)
O1—Cu1—N1—C1142.55 (16)Cu1—O2—C4—C5174.41 (19)
O3—Cu1—N1—C1534.41 (16)C2—C3—C4—O23.6 (4)
O4—Cu1—N1—C15127.91 (16)C2—C3—C4—C5175.7 (3)
O2—Cu1—N1—C1552.06 (16)Cu1—O3—C7—C89.0 (3)
O1—Cu1—N1—C15145.50 (16)Cu1—O3—C7—C6171.34 (19)
O3—Cu1—O1—C272.0 (3)O3—C7—C8—C90.6 (4)
O4—Cu1—O1—C2159.40 (18)C6—C7—C8—C9179.1 (2)
O2—Cu1—O1—C29.31 (18)Cu1—O4—C9—C85.3 (3)
N1—Cu1—O1—C2107.63 (17)Cu1—O4—C9—C10175.27 (16)
O3—Cu1—O2—C4155.0 (2)C7—C8—C9—O42.6 (4)
O4—Cu1—O2—C472.7 (4)C7—C8—C9—C10176.8 (2)
O1—Cu1—O2—C410.57 (19)C15—N1—C11—N2177.6 (2)
N1—Cu1—O2—C4107.44 (19)Cu1—N1—C11—N210.5 (3)
O4—Cu1—O3—C712.22 (19)C15—N1—C11—C121.1 (3)
O2—Cu1—O3—C7156.52 (19)Cu1—N1—C11—C12170.87 (16)
O1—Cu1—O3—C774.3 (3)N1—C11—C12—C131.3 (4)
N1—Cu1—O3—C7106.05 (18)N2—C11—C12—C13177.3 (3)
O3—Cu1—O4—C910.53 (17)C11—C12—C13—C140.3 (4)
O2—Cu1—O4—C971.0 (4)C12—C13—C14—C150.7 (5)
O1—Cu1—O4—C9154.92 (17)C11—N1—C15—C140.1 (4)
N1—Cu1—O4—C9108.83 (16)Cu1—N1—C15—C14172.7 (2)
Cu1—O1—C2—C33.5 (3)C13—C14—C15—N10.9 (4)
Cu1—O1—C2—C1176.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.293.054 (3)149
N2—H2B···O2i0.862.483.248 (3)149
N2—H2B···O3i0.862.563.301 (3)144
Symmetry code: (i) x+1, y, z.
(II) (pentane-2,4-dionato-κ2O,O')(pyrimidin-2-amine- κN1)copper(II) top
Crystal data top
[Cu(C5H7O2)2(C4H5N3)]F(000) = 740
Mr = 356.86Dx = 1.462 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3870 reflections
a = 7.5686 (3) Åθ = 0.4–27.5°
b = 8.3504 (3) ŵ = 1.37 mm1
c = 25.6871 (10) ÅT = 293 K
β = 93.081 (1)°Prism, blue
V = 1621.10 (11) Å30.55 × 0.38 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3658 independent reflections
Graphite monochromator3131 reflections with I > 2σ(I)
Detector resolution: 0.055 pixels mm-1Rint = 0.021
ϕ scans + ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.520, Tmax = 0.842k = 1010
6985 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.1 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.8686P]
where P = (Fo2 + 2Fc2)/3
3658 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C5H7O2)2(C4H5N3)]V = 1621.10 (11) Å3
Mr = 356.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5686 (3) ŵ = 1.37 mm1
b = 8.3504 (3) ÅT = 293 K
c = 25.6871 (10) Å0.55 × 0.38 × 0.13 mm
β = 93.081 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3131 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.842Rint = 0.021
6985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.1Δρmax = 0.25 e Å3
3658 reflectionsΔρmin = 0.38 e Å3
203 parameters
Special details top

Experimental. 631 frames in 6 sets of ϕ scans + ω scans. Rotation/frame = 1.1 °. Crystal-detector distance = 55.0 mm. Measuring time = 20 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08123 (3)0.55022 (3)0.901115 (10)0.04168 (11)
N10.2227 (2)0.4135 (2)0.83418 (7)0.0411 (4)
N20.5038 (3)0.4901 (3)0.86093 (9)0.0643 (6)
H2B0.61680.48590.85880.096*
H2A0.45850.55250.88320.096*
N30.4779 (3)0.3046 (3)0.79559 (9)0.0611 (6)
O10.2359 (2)0.73558 (18)0.90285 (7)0.0465 (4)
O20.0965 (2)0.6569 (2)0.85606 (7)0.0521 (4)
O30.0968 (2)0.3882 (2)0.90995 (7)0.0525 (4)
O40.2403 (2)0.46119 (18)0.95510 (6)0.0444 (4)
C100.3427 (3)0.3062 (3)1.02684 (10)0.0564 (6)
H10A0.43010.38961.02920.085*
H10B0.39780.20711.0180.085*
H10C0.28960.29521.05980.085*
C90.2033 (3)0.3480 (3)0.98569 (8)0.0400 (4)
C80.0440 (3)0.2632 (3)0.98319 (10)0.0494 (5)
H80.02950.18531.00850.059*
C70.0938 (3)0.2851 (3)0.94645 (10)0.0456 (5)
C60.2561 (3)0.1817 (4)0.94813 (14)0.0702 (8)
H6A0.25970.10840.91930.105*
H6B0.35980.2480.9460.105*
H6C0.25230.12250.98020.105*
C50.2585 (4)0.8629 (4)0.81288 (13)0.0775 (9)
H5A0.36410.81650.82550.116*
H5B0.24650.83130.77730.116*
H5C0.26570.97750.81490.116*
C40.1002 (3)0.8053 (3)0.84581 (9)0.0510 (6)
C30.0300 (3)0.9143 (3)0.86184 (11)0.0565 (6)
H30.00781.02220.85530.068*
C20.1921 (3)0.8742 (3)0.88710 (9)0.0437 (5)
C10.3282 (4)1.0027 (3)0.89787 (12)0.0620 (7)
H1A0.41121.00240.87090.093*
H1B0.38950.98280.93090.093*
H1C0.27071.10510.89870.093*
C110.3989 (3)0.3995 (3)0.82958 (8)0.0436 (5)
C120.3706 (5)0.2220 (4)0.76369 (12)0.0730 (8)
H120.42010.15490.73950.088*
C130.1878 (5)0.2299 (4)0.76421 (11)0.0712 (8)
H130.11510.17220.74070.085*
C140.1198 (4)0.3268 (3)0.80107 (10)0.0535 (6)
H140.00230.33250.80320.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03054 (14)0.04385 (17)0.04999 (17)0.00804 (10)0.00406 (10)0.00555 (12)
N10.0420 (9)0.0396 (9)0.0409 (9)0.0046 (7)0.0052 (7)0.0008 (7)
N20.0357 (10)0.0872 (16)0.0699 (14)0.0044 (11)0.0020 (9)0.0300 (13)
N30.0691 (14)0.0596 (13)0.0560 (12)0.0023 (11)0.0183 (10)0.0119 (10)
O10.0367 (8)0.0397 (8)0.0624 (10)0.0067 (6)0.0040 (7)0.0046 (7)
O20.0353 (8)0.0595 (10)0.0603 (10)0.0040 (7)0.0071 (7)0.0078 (8)
O30.0350 (8)0.0591 (10)0.0625 (10)0.0156 (7)0.0048 (7)0.0076 (8)
O40.0375 (8)0.0496 (9)0.0455 (8)0.0111 (6)0.0031 (6)0.0067 (7)
C100.0554 (14)0.0634 (16)0.0497 (13)0.0032 (12)0.0049 (11)0.0084 (12)
C90.0422 (11)0.0389 (11)0.0395 (10)0.0012 (9)0.0060 (8)0.0050 (9)
C80.0467 (12)0.0436 (12)0.0587 (13)0.0066 (10)0.0096 (10)0.0067 (10)
C70.0358 (10)0.0398 (11)0.0623 (14)0.0069 (9)0.0119 (9)0.0037 (10)
C60.0451 (14)0.0637 (17)0.102 (2)0.0209 (13)0.0083 (14)0.0072 (16)
C50.0504 (15)0.096 (2)0.084 (2)0.0119 (16)0.0123 (14)0.0251 (18)
C40.0374 (11)0.0663 (16)0.0493 (12)0.0061 (10)0.0037 (9)0.0132 (11)
C30.0501 (13)0.0478 (13)0.0716 (16)0.0033 (11)0.0015 (12)0.0143 (12)
C20.0433 (11)0.0411 (12)0.0473 (11)0.0028 (9)0.0072 (9)0.0026 (10)
C10.0621 (16)0.0450 (13)0.0785 (18)0.0111 (12)0.0010 (14)0.0043 (13)
C110.0455 (12)0.0448 (11)0.0405 (11)0.0013 (9)0.0033 (9)0.0012 (9)
C120.097 (2)0.0664 (18)0.0566 (16)0.0075 (17)0.0158 (15)0.0204 (14)
C130.093 (2)0.0628 (17)0.0561 (16)0.0135 (16)0.0094 (15)0.0192 (13)
C140.0585 (14)0.0484 (13)0.0521 (13)0.0080 (11)0.0123 (11)0.0008 (11)
Geometric parameters (Å, º) top
Cu1—O31.9317 (16)C8—H80.93
Cu1—O41.9352 (15)C7—C61.504 (3)
Cu1—O11.9397 (15)C6—H6A0.96
Cu1—O21.9428 (16)C6—H6B0.96
Cu1—N12.3672 (19)C6—H6C0.96
N1—C141.335 (3)C5—C41.508 (3)
N1—C111.350 (3)C5—H5A0.96
N2—C111.335 (3)C5—H5B0.96
N2—H2B0.86C5—H5C0.96
N2—H2A0.86C4—C31.388 (4)
N3—C121.317 (4)C3—C21.397 (3)
N3—C111.343 (3)C3—H30.93
O1—C21.265 (3)C2—C11.503 (3)
O2—C41.267 (3)C1—H1A0.96
O3—C71.272 (3)C1—H1B0.96
O4—C91.270 (3)C1—H1C0.96
C10—C91.494 (3)C12—C131.385 (5)
C10—H10A0.96C12—H120.93
C10—H10B0.96C13—C141.367 (4)
C10—H10C0.96C13—H130.93
C9—C81.396 (3)C14—H140.93
C8—C71.381 (3)
O3—Cu1—O493.31 (7)H6A—C6—H6B109.5
O3—Cu1—O1168.59 (8)C7—C6—H6C109.5
O4—Cu1—O186.48 (6)H6A—C6—H6C109.5
O3—Cu1—O285.76 (7)H6B—C6—H6C109.5
O4—Cu1—O2170.76 (7)C4—C5—H5A109.5
O1—Cu1—O292.61 (7)C4—C5—H5B109.5
O3—Cu1—N195.35 (7)H5A—C5—H5B109.5
O4—Cu1—N192.69 (7)C4—C5—H5C109.5
O1—Cu1—N196.05 (7)H5A—C5—H5C109.5
O2—Cu1—N196.55 (7)H5B—C5—H5C109.5
C14—N1—C11116.2 (2)O2—C4—C3124.9 (2)
C14—N1—Cu1116.94 (16)O2—C4—C5115.9 (2)
C11—N1—Cu1126.36 (14)C3—C4—C5119.2 (3)
C11—N2—H2B120C4—C3—C2124.9 (2)
C11—N2—H2A120C4—C3—H3117.5
H2B—N2—H2A120C2—C3—H3117.5
C12—N3—C11115.6 (2)O1—C2—C3125.2 (2)
C2—O1—Cu1125.15 (14)O1—C2—C1115.5 (2)
C4—O2—Cu1125.38 (16)C3—C2—C1119.3 (2)
C7—O3—Cu1125.12 (14)C2—C1—H1A109.5
C9—O4—Cu1125.45 (14)C2—C1—H1B109.5
C9—C10—H10A109.5H1A—C1—H1B109.5
C9—C10—H10B109.5C2—C1—H1C109.5
H10A—C10—H10B109.5H1A—C1—H1C109.5
C9—C10—H10C109.5H1B—C1—H1C109.5
H10A—C10—H10C109.5N2—C11—N3117.1 (2)
H10B—C10—H10C109.5N2—C11—N1117.2 (2)
O4—C9—C8124.6 (2)N3—C11—N1125.7 (2)
O4—C9—C10116.2 (2)N3—C12—C13123.5 (3)
C8—C9—C10119.3 (2)N3—C12—H12118.3
C7—C8—C9125.6 (2)C13—C12—H12118.3
C7—C8—H8117.2C14—C13—C12116.6 (3)
C9—C8—H8117.2C14—C13—H13121.7
O3—C7—C8125.2 (2)C12—C13—H13121.7
O3—C7—C6115.3 (2)N1—C14—C13122.3 (3)
C8—C7—C6119.5 (2)N1—C14—H14118.9
C7—C6—H6A109.5C13—C14—H14118.9
C7—C6—H6B109.5
O3—Cu1—N1—C1434.21 (17)C10—C9—C8—C7177.8 (2)
O4—Cu1—N1—C14127.80 (17)Cu1—O3—C7—C85.7 (3)
O1—Cu1—N1—C14145.46 (17)Cu1—O3—C7—C6174.26 (18)
O2—Cu1—N1—C1452.12 (17)C9—C8—C7—O31.4 (4)
O3—Cu1—N1—C11137.68 (18)C9—C8—C7—C6178.6 (2)
O4—Cu1—N1—C1144.10 (18)Cu1—O2—C4—C35.4 (4)
O1—Cu1—N1—C1142.65 (19)Cu1—O2—C4—C5175.71 (19)
O2—Cu1—N1—C11135.98 (18)O2—C4—C3—C26.7 (4)
O3—Cu1—O1—C269.0 (4)C5—C4—C3—C2172.2 (3)
O4—Cu1—O1—C2158.34 (19)Cu1—O1—C2—C35.7 (3)
O2—Cu1—O1—C212.46 (19)Cu1—O1—C2—C1173.44 (17)
N1—Cu1—O1—C2109.33 (19)C4—C3—C2—O16.6 (4)
O3—Cu1—O2—C4156.3 (2)C4—C3—C2—C1174.3 (3)
O1—Cu1—O2—C412.4 (2)C12—N3—C11—N2177.2 (3)
N1—Cu1—O2—C4108.8 (2)C12—N3—C11—N11.6 (4)
O4—Cu1—O3—C78.6 (2)C14—N1—C11—N2177.4 (2)
O1—Cu1—O3—C780.0 (4)Cu1—N1—C11—N210.6 (3)
O2—Cu1—O3—C7162.1 (2)C14—N1—C11—N31.3 (3)
N1—Cu1—O3—C7101.66 (19)Cu1—N1—C11—N3170.61 (18)
O3—Cu1—O4—C97.73 (18)C11—N3—C12—C130.0 (5)
O1—Cu1—O4—C9160.84 (18)N3—C12—C13—C141.6 (5)
N1—Cu1—O4—C9103.26 (17)C11—N1—C14—C130.5 (4)
Cu1—O4—C9—C83.8 (3)Cu1—N1—C14—C13173.2 (2)
Cu1—O4—C9—C10175.92 (16)C12—C13—C14—N11.8 (4)
O4—C9—C8—C72.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.353.116 (3)149

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C5H7O2)2(C5H6N2)][Cu(C5H7O2)2(C4H5N3)]
Mr355.87356.86
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)7.5686 (1), 8.2944 (2), 26.4250 (7)7.5686 (3), 8.3504 (3), 25.6871 (10)
β (°) 93.944 (1) 93.081 (1)
V3)1654.95 (6)1621.10 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.341.37
Crystal size (mm)0.6 × 0.6 × 0.250.55 × 0.38 × 0.13
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.501, 0.7310.520, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
6316, 3572, 3238 6985, 3658, 3131
Rint0.0260.021
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.06 0.033, 0.093, 1.1
No. of reflections35723658
No. of parameters203203
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.480.25, 0.38

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) for (I) top
Cu1—O31.9382 (15)Cu1—O11.9460 (14)
Cu1—O41.9385 (15)Cu1—N12.3287 (17)
Cu1—O21.9433 (15)
O3—Cu1—O492.98 (6)O2—Cu1—O192.49 (7)
O3—Cu1—O285.42 (7)O3—Cu1—N198.10 (7)
O4—Cu1—O2168.65 (7)O4—Cu1—N193.37 (6)
O3—Cu1—O1165.46 (7)O2—Cu1—N197.98 (7)
O4—Cu1—O186.24 (6)O1—Cu1—N196.45 (6)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.293.054 (3)148.9
N2—H2B···O2i0.862.483.248 (3)149.3
N2—H2B···O3i0.862.563.301 (3)144.4
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Cu1—O31.9317 (16)Cu1—O21.9428 (16)
Cu1—O41.9352 (15)Cu1—N12.3672 (19)
Cu1—O11.9397 (15)
O3—Cu1—O493.31 (7)O1—Cu1—O292.61 (7)
O3—Cu1—O1168.59 (8)O3—Cu1—N195.35 (7)
O4—Cu1—O186.48 (6)O4—Cu1—N192.69 (7)
O3—Cu1—O285.76 (7)O1—Cu1—N196.05 (7)
O4—Cu1—O2170.76 (7)O2—Cu1—N196.55 (7)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.353.116 (3)148.6
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds