Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
6,6′-Dimeth­oxy­gossypolone (systematic name: 7,7′-dihy­droxy-5,5′-diisopropyl-6,6′-dimeth­oxy-3,3′-dimethyl-1,1′,4,4′-tetraoxo-2,2′-binaphthalene-8,8′-dicarbaldehyde), C32H30O10, is a dimeric mol­ecule formed by oxidation of 6,6′-dimeth­oxy­gossypol. When crystallized from acetone, 6,6′-dimeth­oxy­gossypolone has monoclinic (P21/c) symmetry, and there are two mol­ecules within the asymmetric unit. Of the four independent quinoid rings, three display flattened boat conformations and one displays a flattened chair/half-chair conformation. The angles between the planes of the two bridged naphtho­quinone structures are fairly acute, with values of about 68 and 69°. The structure has several intra­molecular O—H...O and C—H...O hydrogen bonds and several weak inter­molecular C—H...O hydrogen bonds, but no inter­molecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110036541/ku3027sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110036541/ku3027Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270110036541/ku3027sup3.pdf
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270110036541/ku3027sup4.pdf
Supplementary material

CCDC reference: 798604

Comment top

Gossypol is a disesquiterpene of the cotton plant that is of research interest because of its wide sphere of bioactivity (Wang et al., 2009). Gossypolone is prepared from gossypol by mild oxidation with ferric chloride (Haas & Shirley, 1965). Like its parent compound, gossypolone exhibits anticancer and antifungal effects (Paizieva et al., 1977; Dao et al., 2000). As part of an effort to generate related compounds of this family, 6,6'-dimethoxygossypol was isolated from cotton roots (Dowd & Pelitire, 2006) and oxidized to prepare 6,6'-dimethoxygossypolone, (I), which was then crystallized and studied by X-ray diffraction (Fig. 1).

Like gossypol and gossypolone, (I) exists in the aldehyde tautomeric form. The aldehyde groups are oriented coplanar with the extended naphthyl ring planes, which allows for the formation of O—H···O hydrogen bonds between the O3 and O8 hydroxyl H atoms and the carbonyl O atoms (Table 1), and the formation of C—H···O hydrogen bonds between the formyl H atoms and quinoid ring atoms O1 and O6. This tautomerization, orientation and basic pattern of hydrogen bonding are also observed in related gossypol and gossypolone crystal structures (Talipov et al., 1995; Gdaniec et al., 1996). The isopropyl groups of (I) are oriented with the single H atoms of the ternary C atoms lying close to the extended naphthyl ring planes, and such that the methyl groups are directed outward and away from the center of the molecule. This orientation gives torsion angles involving the H atoms of the ternary C atoms close to either 0 or 180°, depending on the naphthalene ring atom used to define the angle (Table 1). This orientation is supported by intramolecular C—H···O hydrogen bonds formed between the H atoms of the ternary C atoms and quinoid ring atoms O5 and O10, as well as by several C—H···O interactions formed between the H atoms of the isopropyl methyl groups and the methoxy O atoms at the 6 and 6' positions. A similar orientation of the isopropyl groups is observed in the crystal structures of hemigossypolone and gossypolone. It is also observed in most, but not all, gossypol crystal forms (Talipov et al., 1995; Gdaniec et al., 1996).

Compound (I) also exhibits structural differences with gossypol, gossypolone and other substituted 1,4-naphthoquinones. All gossypol and most 1,4-naphthoquinone structures, including the bridged 2,2'-binaphtho-1,4-quinone (Ammon et al., 1969), have their naphthalene or naphthoquinone rings in close to planar conformations. In contrast, the quinoid rings in gossypolone-type structures exhibit a modest degree of puckering. In hemigossypolone, the quinoid ring has a flattened boat conformation, with a Cremer–Pople (Cremer & Pople, 1975) puckering amplitude (Q) of 0.222 (6) Å and orientation θ and ψ angles of 109 (1) and 15 (2)°, respectively. In gossypolone, the quinoid rings also have flattened boat conformations, with Q = 0.213 (4) Å and θ and ψ angles of 104 (1) and 356 (1)°, respectively. In the Cremer–Pople system for describing six-atom ring puckering, Q is a measure of the average displacement of the ring atoms away from a best-fit plane, ψ describes where the puckering occurs around the ring and θ is an inversion angle that accounts for the possibility of inverted ring forms. In this system, boat conformers have θ angles near 90°, with ψ angles near 0, 60, 120, 180, 240 or 300°. In (I), three of the four quinoid rings are found in a flattened boat conformation (Fig. 2), with Q values between 0.25 and 0.31 Å, θ angles between 83 and 92°, and ϕ angles near either 0 or 180° (Table 3). The fourth ring, however, has a different conformation. This ring has an angle of 35.0 (6)°, which is between that of an ideal chair form with θ = 0° and an ideal half-chair form with θ = 40.8° (Cremer & Szabo, 1995). The observed ring puckering appears to occur because of 1,3-steric interactions between the O atoms of the quinoid rings and the formyl and isopropyl groups at the naphthyl 5- and 8-positions.

In related 1,4-naphthoquinone structures, specific substitutions at both the 5- and 8-positions appear to be necessary to observe puckering within the quinoid ring. A single C-, N- or Cl-atom substituent at either of these positions, e.g. as found in 5-chloro-1,4-naphthoquinone (Scheringer, 1973), 5-acetamide-2,3-dimethyl-1,4-naphthoquinone (Feldman et al., 2007) or dimethyl-7-hydroxy-1,4,-naphthoquinone-6,8-dicarboxylate (Furuichi et al., 1992), results in little quinoid ring puckering. O-atom substituents at both the 5- and 8-positions result in variable puckering. If one or both O-atom substituents are part of hydroxy groups, intramolecular hydrogen bonds form with the quinoid O atoms at the 1- or 4-positions. This added stabilization appears to negate the steric effects and minimal ring puckering is observed, e.g. as found in 2,5-dihydroxy-3,8-dimethoxy-7-methyl-1,4-naphthoquinone (Cannon et al., 1980). Derivatized hydroxyl groups, however, lose this additional stabilization and some puckering is observed, as in 2,5,8-triacetoxy-3-methoxy-6-methyl-1,4-naphthoquinone (Cannon et al., 1987), which has a flattened-boat conformation with a puckering amplitude of 0.113 (3) Å. Structures with two C- or larger atom substituents at the 5- and 8-positions generally exhibit puckering of the quinoid rings. Examples include 5,8-bi(2-thienyl)-1,4-naphthoquinone (Jones, 2004), with a puckering amplitude of 0.309 (3) Å, and 5-(p-methoxyphenyl)-8-(p-cyanophenyl)-1,4-naphthoquinone (Jones & Dix, 2004), with a puckering amplitude of 0.104 (3) Å. When puckering occurs, a flattened-boat conformation is usually observed. The exception to this appears to be the chair/half-chair ring form found in (I).

Additionally, the naphthoquinoid rings of (I) are oriented less close to perpendicular than they are in gossypolone and most related structures. From the best-fit planes of the ten atoms of each naphthoquinoid ring, the dihedral angles for the two bridged ring systems in the asymmetric unit are 67.69 (4) and 68.87 (4)° (Fig. 3). The same angle is 84.6° (Fig. 3) in the gossypolone structure (Talipov et al., 1995), and the range reported for gossypol structures is 70–110° (Gdaniec et al., 1996). Because of the shorter CO bonds of gossypolone compared with the longer C—OH bonds of gossypol, rotation about the inter-naphthyl bridge bond should be less restricted in 2,2'-binaphthoquinone-based structures than for comparable 2,2'-binaphthalene-based structures. Hence, these compounds should be more likely to exhibit smaller angles between the bridged rings. The effect has, in essence, been observed both experimentally, in that gossypolone Schiff bases are more prone to isomerization at room temperature than are gossypol Schiff bases (Dao et al., 2004), and computationally from MM3 modeling studies, which indicate that the binapthyl rotational barrier is lower for gossypolone than it is for gossypol (Beisel et al., 2005).

In gossypol and gossypolone crystal structures, the 6-position hydroxyl groups donate to the O atoms of the hydroxyl groups at the 5-position. However, these intramolecular interactions are weak, and these hydroxyl groups often also donate into intermolecular hydrogen bonds (Gdaniec et al., 1996). For both hemigossypolone and gossypolone, these intermolecular interactions result in column-like assemblies (Talipov et al., 1995). Because methylation of the 6-position hydroxyl groups in (I) eliminates these donating groups, no intermolecular O—H···O hydrogen bonding is possible. However, several weak intermolecular C—H···O interactions are present.

An intramolecular C—H···O hydrogen bond exists between the aldehyde H27_1 atom and the carbonyl O6_2 atom of a neighbouring molecule at (x+1, -y+1, -z+1) (supplementary Fig. S1A). This interaction ties together pairs of molecules of (I) into dimeric units that are also supported by hydrophobic stacking interactions between both pairs of naphthoquinone rings. This dimer is tied to an adjacent dimer (formed from a pair of molecules of the opposite chirality) through an additional pair of C—H···O interactions between atom H32A_1 and the carbonyl O6_1 atom of the molecule at (-x+2, -y+1 -z+1) (supplementary Fig. S1B). These four-molecule assemblies then pack into layers that are supported by three additional weak C—H···O interactions. The alignment of these groups is slightly offset, such that the layers formed are skewed relative to the long axis of the individual molecules and the assemblies (supplementary Fig. S2). Adjacent layers are held together only by hydrophobic interactions between molecules from opposing layers.

Experimental top

A mixture of gossypol, 6-methoxygossypol and 6,6'-dimethoxygossypol was isolated from the root bark of Gossypium barbadense St. Vincent Sea Island cotton, as described previously by Dowd & Pelitire (2006). The mixture was oxidized to form the equivalent gossypolone compounds by the method of Haas & Shirley (1965). Compound (I) was separated by preparative reverse-phase high-performance liquid chromatography, with a mobile phase of acetonitrile and aqueous phosphate buffer. A single crystal was prepared by dissolving a few milligrams of (I) in acetone and allowing petroleum ether to diffuse into the solution over a period of several weeks.

Refinement top

Hydroxyl H-atom positions were refined, but their isotropic displacement parameters were constrained to 1.5Ueq(O). The remaining H atoms were placed in idealized positions, with C—H = 0.98 Å [Please check added text], and allowed to ride on their parent C atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for H atoms on ternary C and carbonyl atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering of the two independent molecules of (I). Displacement ellipsoids are drawn at the 50% probability level. Intramolecular O—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The puckering of the four independent quinoid rings in the crystal structure of (I).
[Figure 3] Fig. 3. Views along the bridge bond, showing the relative orientations of the naphthoquinoid rings of (I) and gossypolone (Talipov et al., 1995).
7,7'-dihydroxy-5,5'-diisopropyl-6,6'-dimethoxy-3,3'-dimethyl- 1,1',4,4'-tetraoxo-2,2'-binaphthalene-8,8'-dicarbaldehyde top
Crystal data top
C32H30O10F(000) = 2416
Mr = 574.56Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9418 reflections
a = 17.8278 (10) Åθ = 2.4–28.4°
b = 26.2103 (16) ŵ = 0.11 mm1
c = 12.2116 (7) ÅT = 100 K
β = 108.069 (1)°Plate, orange
V = 5424.7 (5) Å30.60 × 0.40 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
13486 independent reflections
Radiation source: fine-focus sealed tube11234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
h = 2323
Tmin = 0.940, Tmax = 0.990k = 3535
88778 measured reflectionsl = 169
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0633P)2 + 2.866P]
where P = (Fo2 + 2Fc2)/3
13486 reflections(Δ/σ)max = 0.001
785 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C32H30O10V = 5424.7 (5) Å3
Mr = 574.56Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.8278 (10) ŵ = 0.11 mm1
b = 26.2103 (16) ÅT = 100 K
c = 12.2116 (7) Å0.60 × 0.40 × 0.10 mm
β = 108.069 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
13486 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
11234 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.990Rint = 0.032
88778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.47 e Å3
13486 reflectionsΔρmin = 0.22 e Å3
785 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1_10.81494 (7)0.52986 (5)0.79170 (11)0.0159 (2)
O1_10.84972 (6)0.56914 (4)0.78312 (9)0.0206 (2)
C2_10.85000 (7)0.48002 (5)0.77695 (11)0.0160 (2)
O2_10.74032 (6)0.66087 (4)0.92291 (10)0.0253 (2)
C3_10.80623 (8)0.43732 (5)0.76033 (11)0.0181 (2)
O3_10.60663 (6)0.61884 (4)0.90052 (10)0.0233 (2)
H3_10.6435 (12)0.6424 (8)0.9180 (19)0.035*
C4_10.71979 (8)0.44161 (5)0.74642 (12)0.0187 (2)
O4_10.51307 (5)0.53704 (4)0.84777 (9)0.0216 (2)
C5_10.61423 (7)0.48770 (5)0.80909 (11)0.0167 (2)
O5_10.67622 (6)0.40844 (4)0.69051 (10)0.0284 (2)
C6_10.58676 (7)0.53426 (5)0.83582 (11)0.0171 (2)
O6_10.88604 (5)0.51753 (4)0.58820 (8)0.01958 (19)
C7_10.63560 (7)0.57775 (5)0.86249 (11)0.0169 (2)
O7_10.98587 (6)0.62288 (4)0.45321 (10)0.0281 (2)
C8_10.71244 (7)0.57610 (5)0.85479 (11)0.0152 (2)
O8_11.13021 (6)0.60246 (4)0.52150 (9)0.0207 (2)
H8_11.0852 (12)0.6165 (8)0.4849 (18)0.031*
C9_10.73808 (7)0.53054 (5)0.81551 (11)0.0154 (2)
O9_11.25211 (5)0.54482 (4)0.65614 (8)0.01910 (19)
C10_10.69042 (7)0.48701 (5)0.79385 (11)0.0160 (2)
O10_11.13135 (6)0.45897 (5)0.93276 (9)0.0284 (2)
C11_10.94345 (7)0.50993 (5)0.67270 (11)0.0157 (2)
C12_10.93272 (7)0.48290 (5)0.77380 (11)0.0164 (2)
C13_10.99468 (8)0.46204 (5)0.85369 (11)0.0177 (2)
C14_11.07642 (8)0.47055 (5)0.84809 (11)0.0179 (2)
C15_11.16519 (7)0.50027 (5)0.73316 (11)0.0155 (2)
C16_11.17717 (7)0.53678 (5)0.65690 (11)0.0153 (2)
C17_11.11394 (7)0.56654 (5)0.58860 (11)0.0155 (2)
C18_11.03654 (7)0.55850 (5)0.59214 (11)0.0152 (2)
C19_11.02462 (7)0.52309 (5)0.67259 (11)0.0147 (2)
C20_11.08882 (7)0.49714 (5)0.74712 (11)0.0151 (2)
C21_10.83444 (9)0.38541 (5)0.74122 (13)0.0236 (3)
H21A_10.88730.38800.73320.035*
H21B_10.79820.37070.67090.035*
H21C_10.83630.36350.80700.035*
C22_10.76461 (8)0.61976 (5)0.89941 (12)0.0186 (2)
H22_10.81950.61600.91060.022*
C23_10.56466 (8)0.43987 (5)0.80409 (13)0.0212 (3)
H23_10.59780.41020.79610.025*
C24_10.49117 (10)0.43977 (7)0.69774 (15)0.0335 (4)
H24A_10.45560.46730.70440.050*
H24B_10.46400.40690.69230.050*
H24C_10.50690.44500.62850.050*
C25_10.54454 (10)0.43196 (6)0.91637 (14)0.0279 (3)
H25A_10.59330.43150.98160.042*
H25B_10.51680.39940.91290.042*
H25C_10.51070.45990.92640.042*
C26_10.98874 (8)0.43185 (6)0.95492 (13)0.0235 (3)
H26A_10.93620.43640.96300.035*
H26B_11.02880.44381.02500.035*
H26C_10.99740.39560.94290.035*
C27_10.97411 (8)0.59187 (5)0.52199 (12)0.0202 (3)
H27_10.92280.58950.52980.024*
C28_11.23144 (7)0.46335 (5)0.79168 (11)0.0178 (2)
H28_11.20850.43710.83150.021*
C29_11.26143 (9)0.43494 (6)0.70359 (13)0.0251 (3)
H29A_11.21670.41980.64440.038*
H29B_11.29800.40800.74260.038*
H29C_11.28870.45890.66750.038*
C30_11.29848 (8)0.48951 (6)0.88448 (12)0.0242 (3)
H30A_11.31980.51750.84980.036*
H30B_11.34030.46470.91840.036*
H30C_11.27820.50310.94460.036*
C31_10.45975 (9)0.57186 (7)0.77045 (18)0.0349 (4)
H31A_10.47970.60680.78700.052*
H31B_10.40760.56940.78090.052*
H31C_10.45570.56310.69080.052*
C32_11.26957 (8)0.55469 (5)0.55027 (12)0.0202 (3)
H32A_11.22860.53930.48570.030*
H32B_11.32090.53980.55490.030*
H32C_11.27110.59160.53830.030*
C1_20.00138 (7)0.31135 (5)0.30576 (11)0.0172 (2)
O1_20.03129 (6)0.34501 (4)0.26395 (9)0.0221 (2)
C2_20.05224 (7)0.27071 (5)0.37578 (12)0.0173 (2)
O2_20.16125 (6)0.39876 (4)0.05202 (10)0.0288 (2)
C3_20.02896 (8)0.24518 (5)0.45454 (12)0.0184 (2)
O3_20.26968 (6)0.37473 (4)0.13699 (9)0.0231 (2)
H3_20.2451 (12)0.3903 (8)0.0972 (19)0.035*
C4_20.05019 (8)0.25623 (5)0.46709 (12)0.0195 (3)
O4_20.32048 (5)0.31660 (4)0.28147 (9)0.0215 (2)
C5_20.19283 (8)0.28029 (5)0.36143 (12)0.0176 (2)
O5_20.06106 (6)0.24532 (4)0.55807 (10)0.0280 (2)
C6_20.24377 (7)0.31246 (5)0.28205 (12)0.0179 (2)
O6_20.17518 (6)0.33520 (4)0.49354 (9)0.0217 (2)
C7_20.21703 (8)0.34394 (5)0.20832 (11)0.0177 (2)
O7_20.31180 (6)0.44714 (4)0.45276 (9)0.0244 (2)
C8_20.13795 (7)0.34131 (5)0.20897 (11)0.0170 (2)
O8_20.42407 (6)0.40243 (4)0.40817 (9)0.0210 (2)
H8_20.3962 (12)0.4273 (8)0.4304 (18)0.031*
C9_20.08483 (7)0.31075 (5)0.29347 (11)0.0164 (2)
O9_20.48367 (6)0.31890 (4)0.34043 (9)0.0231 (2)
C10_20.11112 (8)0.28186 (5)0.37037 (12)0.0171 (2)
O10_20.27576 (6)0.17962 (4)0.34149 (10)0.0282 (2)
C11_20.18893 (7)0.30788 (5)0.42112 (11)0.0159 (2)
C12_20.13326 (7)0.26633 (5)0.36663 (11)0.0170 (2)
C13_20.16006 (8)0.22497 (5)0.32538 (12)0.0194 (3)
C14_20.24586 (8)0.22173 (5)0.33635 (12)0.0194 (3)
C15_20.36570 (8)0.27191 (5)0.32462 (12)0.0187 (3)
C16_20.41035 (7)0.31599 (5)0.35520 (11)0.0182 (2)
C17_20.38033 (7)0.36009 (5)0.39309 (11)0.0166 (2)
C18_20.30569 (7)0.35908 (5)0.40976 (11)0.0156 (2)
C19_20.26317 (7)0.31281 (5)0.38960 (11)0.0151 (2)
C20_20.29194 (7)0.27027 (5)0.34691 (11)0.0168 (2)
C21_20.08031 (8)0.20962 (6)0.54191 (13)0.0248 (3)
H21A_20.13190.20680.52960.037*
H21B_20.05550.17590.53390.037*
H21C_20.08720.22290.61940.037*
C22_20.11690 (8)0.36826 (5)0.11726 (12)0.0222 (3)
H22_20.06680.36180.10800.027*
C23_20.22403 (8)0.24510 (5)0.43677 (13)0.0219 (3)
H23_20.18140.21970.47120.026*
C24_20.29757 (9)0.21436 (6)0.37215 (17)0.0323 (3)
H24A_20.30460.18620.42080.048*
H24B_20.29120.20060.30090.048*
H24C_20.34400.23660.35340.048*
C25_20.23586 (9)0.27546 (6)0.53752 (14)0.0276 (3)
H25A_20.27370.30310.50750.041*
H25B_20.18530.28990.58390.041*
H25C_20.25620.25280.58550.041*
C26_20.11245 (9)0.17853 (6)0.27785 (15)0.0295 (3)
H26A_20.12970.15020.33220.044*
H26B_20.11990.16940.20410.044*
H26C_20.05650.18560.26610.044*
C27_20.27335 (8)0.40738 (5)0.43612 (11)0.0187 (2)
H27_20.22110.40790.44050.022*
C28_20.39484 (9)0.22823 (6)0.26552 (14)0.0271 (3)
H28_20.35190.20210.24520.033*
C29_20.46744 (12)0.20222 (7)0.34682 (18)0.0403 (4)
H29A_20.48330.17380.30680.060*
H29B_20.45490.18930.41440.060*
H29C_20.51070.22690.37150.060*
C30_20.40659 (10)0.24520 (6)0.15215 (15)0.0312 (3)
H30A_20.44770.27140.16770.047*
H30B_20.35700.25920.10130.047*
H30C_20.42250.21580.11490.047*
C31_20.38104 (8)0.30437 (7)0.17555 (15)0.0305 (3)
H31A_20.38030.32950.11650.046*
H31B_20.43270.30500.18830.046*
H31C_20.37130.27030.14980.046*
C32_20.54795 (9)0.32766 (7)0.44458 (15)0.0318 (3)
H32A_20.53980.36010.47900.048*
H32B_20.59770.32900.42640.048*
H32C_20.55010.29990.49910.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1_10.0141 (5)0.0191 (6)0.0142 (5)0.0012 (4)0.0039 (4)0.0007 (4)
O1_10.0183 (4)0.0201 (5)0.0246 (5)0.0038 (4)0.0083 (4)0.0001 (4)
C2_10.0144 (5)0.0196 (6)0.0145 (5)0.0001 (4)0.0050 (4)0.0010 (4)
O2_10.0228 (5)0.0197 (5)0.0342 (6)0.0026 (4)0.0102 (4)0.0055 (4)
C3_10.0179 (6)0.0202 (6)0.0172 (6)0.0003 (5)0.0069 (5)0.0005 (5)
O3_10.0189 (5)0.0207 (5)0.0327 (6)0.0008 (4)0.0117 (4)0.0043 (4)
C4_10.0179 (6)0.0194 (6)0.0200 (6)0.0023 (5)0.0076 (5)0.0010 (5)
O4_10.0148 (4)0.0262 (5)0.0263 (5)0.0003 (4)0.0101 (4)0.0031 (4)
C5_10.0147 (6)0.0209 (6)0.0141 (6)0.0038 (5)0.0037 (4)0.0000 (4)
O5_10.0231 (5)0.0277 (5)0.0356 (6)0.0084 (4)0.0109 (4)0.0131 (4)
C6_10.0126 (5)0.0238 (6)0.0157 (6)0.0021 (5)0.0056 (4)0.0029 (5)
O6_10.0158 (4)0.0236 (5)0.0174 (4)0.0008 (4)0.0024 (3)0.0001 (4)
C7_10.0162 (6)0.0182 (6)0.0164 (6)0.0007 (5)0.0053 (5)0.0018 (5)
O7_10.0251 (5)0.0304 (5)0.0293 (6)0.0070 (4)0.0092 (4)0.0136 (4)
C8_10.0135 (5)0.0171 (6)0.0142 (5)0.0007 (4)0.0031 (4)0.0018 (4)
O8_10.0210 (5)0.0201 (5)0.0235 (5)0.0026 (4)0.0104 (4)0.0070 (4)
C9_10.0134 (5)0.0180 (6)0.0141 (5)0.0006 (4)0.0034 (4)0.0015 (4)
O9_10.0142 (4)0.0268 (5)0.0171 (4)0.0017 (4)0.0059 (3)0.0029 (4)
C10_10.0149 (6)0.0185 (6)0.0145 (6)0.0019 (4)0.0043 (4)0.0002 (4)
O10_10.0173 (5)0.0475 (7)0.0203 (5)0.0045 (4)0.0057 (4)0.0121 (5)
C11_10.0153 (6)0.0162 (6)0.0160 (6)0.0013 (4)0.0053 (4)0.0006 (4)
C12_10.0152 (6)0.0182 (6)0.0167 (6)0.0009 (4)0.0063 (5)0.0012 (4)
C13_10.0165 (6)0.0211 (6)0.0167 (6)0.0003 (5)0.0069 (5)0.0017 (5)
C14_10.0156 (6)0.0220 (6)0.0167 (6)0.0016 (5)0.0061 (5)0.0022 (5)
C15_10.0142 (5)0.0179 (6)0.0139 (5)0.0001 (4)0.0035 (4)0.0010 (4)
C16_10.0142 (5)0.0175 (6)0.0146 (6)0.0010 (4)0.0052 (4)0.0027 (4)
C17_10.0187 (6)0.0140 (5)0.0146 (5)0.0002 (4)0.0062 (5)0.0004 (4)
C18_10.0161 (6)0.0152 (5)0.0140 (5)0.0005 (4)0.0043 (4)0.0007 (4)
C19_10.0151 (5)0.0157 (5)0.0138 (5)0.0000 (4)0.0050 (4)0.0018 (4)
C20_10.0151 (6)0.0164 (5)0.0140 (5)0.0004 (4)0.0046 (4)0.0003 (4)
C21_10.0237 (7)0.0196 (6)0.0291 (7)0.0005 (5)0.0106 (6)0.0026 (5)
C22_10.0170 (6)0.0197 (6)0.0190 (6)0.0017 (5)0.0053 (5)0.0001 (5)
C23_10.0190 (6)0.0212 (6)0.0249 (7)0.0068 (5)0.0088 (5)0.0030 (5)
C24_10.0287 (8)0.0399 (9)0.0283 (8)0.0149 (7)0.0039 (6)0.0058 (7)
C25_10.0351 (8)0.0248 (7)0.0271 (7)0.0109 (6)0.0146 (6)0.0001 (6)
C26_10.0197 (6)0.0303 (7)0.0218 (7)0.0013 (5)0.0082 (5)0.0095 (5)
C27_10.0191 (6)0.0195 (6)0.0207 (6)0.0028 (5)0.0044 (5)0.0018 (5)
C28_10.0140 (5)0.0211 (6)0.0185 (6)0.0025 (5)0.0051 (5)0.0043 (5)
C29_10.0267 (7)0.0243 (7)0.0269 (7)0.0068 (5)0.0122 (6)0.0033 (5)
C30_10.0170 (6)0.0358 (8)0.0180 (6)0.0008 (5)0.0025 (5)0.0046 (5)
C31_10.0164 (6)0.0351 (8)0.0532 (11)0.0039 (6)0.0107 (7)0.0137 (7)
C32_10.0199 (6)0.0247 (6)0.0180 (6)0.0016 (5)0.0090 (5)0.0013 (5)
C1_20.0161 (6)0.0186 (6)0.0186 (6)0.0021 (5)0.0078 (5)0.0034 (5)
O1_20.0198 (5)0.0229 (5)0.0265 (5)0.0032 (4)0.0115 (4)0.0014 (4)
C2_20.0137 (5)0.0189 (6)0.0202 (6)0.0019 (4)0.0064 (5)0.0054 (5)
O2_20.0265 (5)0.0318 (6)0.0309 (6)0.0045 (4)0.0130 (4)0.0112 (4)
C3_20.0161 (6)0.0184 (6)0.0203 (6)0.0012 (5)0.0052 (5)0.0027 (5)
O3_20.0186 (5)0.0264 (5)0.0254 (5)0.0037 (4)0.0083 (4)0.0046 (4)
C4_20.0179 (6)0.0189 (6)0.0234 (7)0.0007 (5)0.0087 (5)0.0003 (5)
O4_20.0136 (4)0.0272 (5)0.0256 (5)0.0002 (4)0.0091 (4)0.0027 (4)
C5_20.0176 (6)0.0158 (6)0.0219 (6)0.0020 (5)0.0099 (5)0.0034 (5)
O5_20.0259 (5)0.0354 (6)0.0260 (5)0.0043 (4)0.0127 (4)0.0084 (4)
C6_20.0143 (6)0.0194 (6)0.0220 (6)0.0020 (5)0.0086 (5)0.0048 (5)
O6_20.0208 (5)0.0240 (5)0.0236 (5)0.0025 (4)0.0117 (4)0.0070 (4)
C7_20.0164 (6)0.0183 (6)0.0185 (6)0.0004 (5)0.0054 (5)0.0033 (5)
O7_20.0288 (5)0.0189 (5)0.0279 (5)0.0016 (4)0.0123 (4)0.0025 (4)
C8_20.0173 (6)0.0167 (6)0.0191 (6)0.0014 (4)0.0085 (5)0.0018 (5)
O8_20.0178 (4)0.0226 (5)0.0239 (5)0.0034 (4)0.0084 (4)0.0007 (4)
C9_20.0153 (6)0.0162 (6)0.0196 (6)0.0016 (4)0.0080 (5)0.0031 (5)
O9_20.0150 (4)0.0318 (5)0.0254 (5)0.0021 (4)0.0105 (4)0.0023 (4)
C10_20.0170 (6)0.0156 (6)0.0201 (6)0.0009 (4)0.0079 (5)0.0018 (5)
O10_20.0297 (5)0.0198 (5)0.0389 (6)0.0031 (4)0.0162 (5)0.0013 (4)
C11_20.0133 (5)0.0174 (6)0.0174 (6)0.0014 (4)0.0055 (4)0.0008 (4)
C12_20.0140 (5)0.0198 (6)0.0176 (6)0.0003 (4)0.0055 (4)0.0005 (5)
C13_20.0183 (6)0.0208 (6)0.0196 (6)0.0019 (5)0.0068 (5)0.0025 (5)
C14_20.0213 (6)0.0193 (6)0.0196 (6)0.0007 (5)0.0091 (5)0.0019 (5)
C15_20.0188 (6)0.0205 (6)0.0188 (6)0.0059 (5)0.0088 (5)0.0026 (5)
C16_20.0138 (6)0.0244 (6)0.0182 (6)0.0042 (5)0.0075 (5)0.0046 (5)
C17_20.0151 (6)0.0205 (6)0.0138 (5)0.0002 (5)0.0039 (4)0.0018 (4)
C18_20.0151 (5)0.0177 (6)0.0145 (6)0.0017 (4)0.0053 (4)0.0011 (4)
C19_20.0133 (5)0.0183 (6)0.0143 (5)0.0021 (4)0.0050 (4)0.0005 (4)
C20_20.0164 (6)0.0174 (6)0.0172 (6)0.0016 (4)0.0060 (5)0.0009 (4)
C21_20.0209 (6)0.0277 (7)0.0250 (7)0.0029 (5)0.0062 (5)0.0044 (6)
C22_20.0207 (6)0.0245 (7)0.0236 (7)0.0015 (5)0.0102 (5)0.0020 (5)
C23_20.0204 (6)0.0189 (6)0.0313 (7)0.0001 (5)0.0151 (6)0.0036 (5)
C24_20.0262 (7)0.0242 (7)0.0496 (10)0.0065 (6)0.0164 (7)0.0008 (7)
C25_20.0307 (7)0.0290 (7)0.0295 (8)0.0048 (6)0.0187 (6)0.0057 (6)
C26_20.0254 (7)0.0256 (7)0.0382 (9)0.0060 (6)0.0109 (6)0.0125 (6)
C27_20.0202 (6)0.0196 (6)0.0178 (6)0.0017 (5)0.0080 (5)0.0004 (5)
C28_20.0296 (7)0.0239 (7)0.0342 (8)0.0065 (6)0.0190 (6)0.0012 (6)
C29_20.0443 (10)0.0330 (9)0.0489 (11)0.0224 (8)0.0221 (8)0.0074 (8)
C30_20.0336 (8)0.0334 (8)0.0323 (8)0.0028 (6)0.0187 (7)0.0084 (6)
C31_20.0148 (6)0.0437 (9)0.0323 (8)0.0039 (6)0.0063 (6)0.0067 (7)
C32_20.0156 (6)0.0461 (9)0.0331 (8)0.0046 (6)0.0065 (6)0.0048 (7)
Geometric parameters (Å, º) top
C1_1—O1_11.2228 (16)C1_2—O1_21.2216 (16)
C1_1—C2_11.4832 (18)C1_2—C2_21.4856 (19)
C1_1—C9_11.4865 (17)C1_2—C9_21.4972 (17)
C2_1—C3_11.3432 (18)C2_2—C3_21.3389 (19)
C2_1—C12_11.4890 (17)C2_2—C12_21.4873 (17)
O2_1—C22_11.2281 (17)O2_2—C22_21.2281 (18)
C3_1—C21_11.4939 (19)C3_2—C4_21.4942 (18)
C3_1—C4_11.5014 (18)C3_2—C21_21.4964 (19)
O3_1—C7_11.3384 (16)O3_2—C7_21.3357 (16)
O3_1—H3_10.88 (2)O3_2—H3_20.85 (2)
C4_1—O5_11.2232 (17)C4_2—O5_21.2195 (18)
C4_1—C10_11.4878 (18)C4_2—C10_21.4935 (19)
O4_1—C6_11.3681 (15)O4_2—C6_21.3696 (15)
O4_1—C31_11.4392 (19)O4_2—C31_21.4406 (18)
C5_1—C6_11.3908 (19)C5_2—C6_21.3890 (19)
C5_1—C10_11.4271 (17)C5_2—C10_21.4271 (17)
C5_1—C23_11.5242 (18)C5_2—C23_21.5246 (18)
C6_1—C7_11.4099 (18)C6_2—C7_21.4089 (19)
O6_1—C11_11.2235 (16)O6_2—C11_21.2204 (16)
C7_1—C8_11.4026 (17)C7_2—C8_21.4091 (17)
O7_1—C27_11.2326 (17)O7_2—C27_21.2292 (17)
C8_1—C9_11.4145 (18)C8_2—C9_21.4131 (18)
C8_1—C22_11.4686 (17)C8_2—C22_21.4679 (18)
O8_1—C17_11.3377 (15)O8_2—C17_21.3360 (16)
O8_1—H8_10.87 (2)O8_2—H8_20.91 (2)
C9_1—C10_11.3980 (17)C9_2—C10_21.3958 (18)
O9_1—C16_11.3554 (15)O9_2—C16_21.3759 (15)
O9_1—C32_11.4439 (16)O9_2—C32_21.4421 (19)
O10_1—C14_11.2216 (16)O10_2—C14_21.2187 (17)
C11_1—C12_11.4865 (18)C11_2—C12_21.4846 (17)
C11_1—C19_11.4881 (17)C11_2—C19_21.4943 (17)
C12_1—C13_11.3425 (18)C12_2—C13_21.3440 (18)
C13_1—C14_11.4966 (17)C13_2—C26_21.4946 (19)
C13_1—C26_11.4988 (18)C13_2—C14_21.4959 (18)
C14_1—C20_11.4913 (18)C14_2—C20_21.4982 (18)
C15_1—C16_11.3973 (18)C15_2—C16_21.3869 (19)
C15_1—C20_11.4260 (17)C15_2—C20_21.4238 (18)
C15_1—C28_11.5226 (17)C15_2—C28_21.5278 (19)
C16_1—C17_11.4112 (17)C16_2—C17_21.4108 (18)
C17_1—C18_11.4097 (17)C17_2—C18_21.4074 (17)
C18_1—C19_11.4145 (17)C18_2—C19_21.4107 (17)
C18_1—C27_11.4650 (17)C18_2—C27_21.4675 (18)
C19_1—C20_11.3982 (17)C19_2—C20_21.3942 (17)
C21_1—H21A_10.9800C21_2—H21A_20.9800
C21_1—H21B_10.9800C21_2—H21B_20.9800
C21_1—H21C_10.9800C21_2—H21C_20.9800
C22_1—H22_10.9500C22_2—H22_20.9500
C23_1—C24_11.532 (2)C23_2—C24_21.533 (2)
C23_1—C25_11.535 (2)C23_2—C25_21.534 (2)
C23_1—H23_11.0000C23_2—H23_21.0000
C24_1—H24A_10.9800C24_2—H24A_20.9800
C24_1—H24B_10.9800C24_2—H24B_20.9800
C24_1—H24C_10.9800C24_2—H24C_20.9800
C25_1—H25A_10.9800C25_2—H25A_20.9800
C25_1—H25B_10.9800C25_2—H25B_20.9800
C25_1—H25C_10.9800C25_2—H25C_20.9800
C26_1—H26A_10.9800C26_2—H26A_20.9800
C26_1—H26B_10.9800C26_2—H26B_20.9800
C26_1—H26C_10.9800C26_2—H26C_20.9800
C27_1—H27_10.9500C27_2—H27_20.9500
C28_1—C30_11.5305 (19)C28_2—C29_21.526 (2)
C28_1—C29_11.5344 (19)C28_2—C30_21.529 (2)
C28_1—H28_11.0000C28_2—H28_21.0000
C29_1—H29A_10.9800C29_2—H29A_20.9800
C29_1—H29B_10.9800C29_2—H29B_20.9800
C29_1—H29C_10.9800C29_2—H29C_20.9800
C30_1—H30A_10.9800C30_2—H30A_20.9800
C30_1—H30B_10.9800C30_2—H30B_20.9800
C30_1—H30C_10.9800C30_2—H30C_20.9800
C31_1—H31A_10.9800C31_2—H31A_20.9800
C31_1—H31B_10.9800C31_2—H31B_20.9800
C31_1—H31C_10.9800C31_2—H31C_20.9800
C32_1—H32A_10.9800C32_2—H32A_20.9800
C32_1—H32B_10.9800C32_2—H32B_20.9800
C32_1—H32C_10.9800C32_2—H32C_20.9800
O1_1—C1_1—C2_1119.16 (11)O1_2—C1_2—C2_2119.39 (12)
O1_1—C1_1—C9_1121.96 (12)O1_2—C1_2—C9_2122.22 (12)
C2_1—C1_1—C9_1118.89 (11)C2_2—C1_2—C9_2118.33 (11)
C3_1—C2_1—C1_1120.35 (11)C3_2—C2_2—C1_2120.12 (11)
C3_1—C2_1—C12_1124.89 (12)C3_2—C2_2—C12_2122.69 (12)
C1_1—C2_1—C12_1114.62 (11)C1_2—C2_2—C12_2116.47 (11)
C2_1—C3_1—C21_1125.06 (12)C2_2—C3_2—C4_2119.33 (12)
C2_1—C3_1—C4_1118.86 (12)C2_2—C3_2—C21_2124.47 (12)
C21_1—C3_1—C4_1115.72 (11)C4_2—C3_2—C21_2115.85 (12)
C7_1—O3_1—H3_1108.0 (14)C7_2—O3_2—H3_2106.2 (14)
O5_1—C4_1—C10_1123.14 (12)O5_2—C4_2—C10_2122.94 (12)
O5_1—C4_1—C3_1117.49 (12)O5_2—C4_2—C3_2118.03 (12)
C10_1—C4_1—C3_1119.25 (11)C10_2—C4_2—C3_2118.98 (12)
C6_1—O4_1—C31_1115.12 (11)C6_2—O4_2—C31_2117.13 (11)
C6_1—C5_1—C10_1117.41 (11)C6_2—C5_2—C10_2117.83 (12)
C6_1—C5_1—C23_1119.28 (11)C6_2—C5_2—C23_2120.42 (11)
C10_1—C5_1—C23_1123.22 (12)C10_2—C5_2—C23_2121.75 (12)
O4_1—C6_1—C5_1119.44 (11)O4_2—C6_2—C5_2119.17 (12)
O4_1—C6_1—C7_1118.48 (12)O4_2—C6_2—C7_2119.05 (12)
C5_1—C6_1—C7_1121.77 (11)C5_2—C6_2—C7_2121.59 (12)
O3_1—C7_1—C8_1122.56 (12)O3_2—C7_2—C6_2117.51 (12)
O3_1—C7_1—C6_1116.98 (11)O3_2—C7_2—C8_2122.19 (12)
C8_1—C7_1—C6_1120.37 (12)C6_2—C7_2—C8_2120.27 (12)
C7_1—C8_1—C9_1118.28 (11)C7_2—C8_2—C9_2118.33 (12)
C7_1—C8_1—C22_1118.06 (11)C7_2—C8_2—C22_2117.66 (12)
C9_1—C8_1—C22_1123.33 (11)C9_2—C8_2—C22_2123.91 (12)
C17_1—O8_1—H8_1105.7 (13)C17_2—O8_2—H8_2106.7 (12)
C10_1—C9_1—C8_1120.78 (11)C10_2—C9_2—C8_2120.66 (12)
C10_1—C9_1—C1_1119.75 (11)C10_2—C9_2—C1_2119.13 (12)
C8_1—C9_1—C1_1119.40 (11)C8_2—C9_2—C1_2120.13 (11)
C16_1—O9_1—C32_1121.37 (10)C16_2—O9_2—C32_2114.88 (11)
C9_1—C10_1—C5_1120.81 (12)C9_2—C10_2—C5_2120.80 (12)
C9_1—C10_1—C4_1117.37 (11)C9_2—C10_2—C4_2117.54 (11)
C5_1—C10_1—C4_1121.67 (11)C5_2—C10_2—C4_2121.49 (12)
O6_1—C11_1—C12_1119.25 (11)O6_2—C11_2—C12_2119.91 (11)
O6_1—C11_1—C19_1121.39 (12)O6_2—C11_2—C19_2121.94 (11)
C12_1—C11_1—C19_1119.14 (11)C12_2—C11_2—C19_2118.06 (11)
C13_1—C12_1—C11_1120.59 (11)C13_2—C12_2—C11_2119.59 (11)
C13_1—C12_1—C2_1123.98 (12)C13_2—C12_2—C2_2123.83 (12)
C11_1—C12_1—C2_1115.42 (11)C11_2—C12_2—C2_2116.07 (11)
C12_1—C13_1—C14_1119.96 (12)C12_2—C13_2—C26_2125.27 (12)
C12_1—C13_1—C26_1124.17 (12)C12_2—C13_2—C14_2119.00 (12)
C14_1—C13_1—C26_1115.80 (11)C26_2—C13_2—C14_2115.48 (12)
O10_1—C14_1—C20_1122.04 (12)O10_2—C14_2—C13_2118.35 (12)
O10_1—C14_1—C13_1117.42 (12)O10_2—C14_2—C20_2123.04 (12)
C20_1—C14_1—C13_1120.24 (11)C13_2—C14_2—C20_2118.52 (11)
C16_1—C15_1—C20_1117.91 (11)C16_2—C15_2—C20_2117.43 (12)
C16_1—C15_1—C28_1119.43 (11)C16_2—C15_2—C28_2120.04 (12)
C20_1—C15_1—C28_1122.53 (11)C20_2—C15_2—C28_2122.49 (12)
O9_1—C16_1—C15_1117.77 (11)O9_2—C16_2—C15_2120.00 (12)
O9_1—C16_1—C17_1121.23 (11)O9_2—C16_2—C17_2118.05 (12)
C15_1—C16_1—C17_1120.87 (11)C15_2—C16_2—C17_2121.76 (12)
O8_1—C17_1—C18_1121.62 (11)O8_2—C17_2—C18_2122.24 (12)
O8_1—C17_1—C16_1117.76 (11)O8_2—C17_2—C16_2117.46 (11)
C18_1—C17_1—C16_1120.62 (11)C18_2—C17_2—C16_2120.26 (12)
C17_1—C18_1—C19_1118.60 (11)C17_2—C18_2—C19_2118.15 (11)
C17_1—C18_1—C27_1117.78 (11)C17_2—C18_2—C27_2117.96 (11)
C19_1—C18_1—C27_1123.19 (11)C19_2—C18_2—C27_2123.61 (11)
C20_1—C19_1—C18_1120.15 (11)C20_2—C19_2—C18_2120.84 (11)
C20_1—C19_1—C11_1119.12 (11)C20_2—C19_2—C11_2119.02 (11)
C18_1—C19_1—C11_1120.55 (11)C18_2—C19_2—C11_2120.02 (11)
C19_1—C20_1—C15_1120.89 (11)C19_2—C20_2—C15_2121.07 (12)
C19_1—C20_1—C14_1117.66 (11)C19_2—C20_2—C14_2117.12 (11)
C15_1—C20_1—C14_1121.17 (11)C15_2—C20_2—C14_2121.56 (11)
C3_1—C21_1—H21A_1109.5C3_2—C21_2—H21A_2109.5
C3_1—C21_1—H21B_1109.5C3_2—C21_2—H21B_2109.5
H21A_1—C21_1—H21B_1109.5H21A_2—C21_2—H21B_2109.5
C3_1—C21_1—H21C_1109.5C3_2—C21_2—H21C_2109.5
H21A_1—C21_1—H21C_1109.5H21A_2—C21_2—H21C_2109.5
H21B_1—C21_1—H21C_1109.5H21B_2—C21_2—H21C_2109.5
O2_1—C22_1—C8_1122.80 (12)O2_2—C22_2—C8_2122.87 (13)
O2_1—C22_1—H22_1118.6O2_2—C22_2—H22_2118.6
C8_1—C22_1—H22_1118.6C8_2—C22_2—H22_2118.6
C5_1—C23_1—C24_1111.60 (12)C5_2—C23_2—C24_2114.92 (13)
C5_1—C23_1—C25_1111.63 (11)C5_2—C23_2—C25_2109.68 (11)
C24_1—C23_1—C25_1112.44 (12)C24_2—C23_2—C25_2112.17 (12)
C5_1—C23_1—H23_1106.9C5_2—C23_2—H23_2106.5
C24_1—C23_1—H23_1106.9C24_2—C23_2—H23_2106.5
C25_1—C23_1—H23_1106.9C25_2—C23_2—H23_2106.5
C23_1—C24_1—H24A_1109.5C23_2—C24_2—H24A_2109.5
C23_1—C24_1—H24B_1109.5C23_2—C24_2—H24B_2109.5
H24A_1—C24_1—H24B_1109.5H24A_2—C24_2—H24B_2109.5
C23_1—C24_1—H24C_1109.5C23_2—C24_2—H24C_2109.5
H24A_1—C24_1—H24C_1109.5H24A_2—C24_2—H24C_2109.5
H24B_1—C24_1—H24C_1109.5H24B_2—C24_2—H24C_2109.5
C23_1—C25_1—H25A_1109.5C23_2—C25_2—H25A_2109.5
C23_1—C25_1—H25B_1109.5C23_2—C25_2—H25B_2109.5
H25A_1—C25_1—H25B_1109.5H25A_2—C25_2—H25B_2109.5
C23_1—C25_1—H25C_1109.5C23_2—C25_2—H25C_2109.5
H25A_1—C25_1—H25C_1109.5H25A_2—C25_2—H25C_2109.5
H25B_1—C25_1—H25C_1109.5H25B_2—C25_2—H25C_2109.5
C13_1—C26_1—H26A_1109.5C13_2—C26_2—H26A_2109.5
C13_1—C26_1—H26B_1109.5C13_2—C26_2—H26B_2109.5
H26A_1—C26_1—H26B_1109.5H26A_2—C26_2—H26B_2109.5
C13_1—C26_1—H26C_1109.5C13_2—C26_2—H26C_2109.5
H26A_1—C26_1—H26C_1109.5H26A_2—C26_2—H26C_2109.5
H26B_1—C26_1—H26C_1109.5H26B_2—C26_2—H26C_2109.5
O7_1—C27_1—C18_1122.23 (13)O7_2—C27_2—C18_2122.06 (12)
O7_1—C27_1—H27_1118.9O7_2—C27_2—H27_2119.0
C18_1—C27_1—H27_1118.9C18_2—C27_2—H27_2119.0
C15_1—C28_1—C30_1112.13 (11)C29_2—C28_2—C15_2111.81 (14)
C15_1—C28_1—C29_1111.57 (11)C29_2—C28_2—C30_2113.10 (13)
C30_1—C28_1—C29_1112.01 (11)C15_2—C28_2—C30_2111.83 (12)
C15_1—C28_1—H28_1106.9C29_2—C28_2—H28_2106.5
C30_1—C28_1—H28_1106.9C15_2—C28_2—H28_2106.5
C29_1—C28_1—H28_1106.9C30_2—C28_2—H28_2106.5
C28_1—C29_1—H29A_1109.5C28_2—C29_2—H29A_2109.5
C28_1—C29_1—H29B_1109.5C28_2—C29_2—H29B_2109.5
H29A_1—C29_1—H29B_1109.5H29A_2—C29_2—H29B_2109.5
C28_1—C29_1—H29C_1109.5C28_2—C29_2—H29C_2109.5
H29A_1—C29_1—H29C_1109.5H29A_2—C29_2—H29C_2109.5
H29B_1—C29_1—H29C_1109.5H29B_2—C29_2—H29C_2109.5
C28_1—C30_1—H30A_1109.5C28_2—C30_2—H30A_2109.5
C28_1—C30_1—H30B_1109.5C28_2—C30_2—H30B_2109.5
H30A_1—C30_1—H30B_1109.5H30A_2—C30_2—H30B_2109.5
C28_1—C30_1—H30C_1109.5C28_2—C30_2—H30C_2109.5
H30A_1—C30_1—H30C_1109.5H30A_2—C30_2—H30C_2109.5
H30B_1—C30_1—H30C_1109.5H30B_2—C30_2—H30C_2109.5
O4_1—C31_1—H31A_1109.5O4_2—C31_2—H31A_2109.5
O4_1—C31_1—H31B_1109.5O4_2—C31_2—H31B_2109.5
H31A_1—C31_1—H31B_1109.5H31A_2—C31_2—H31B_2109.5
O4_1—C31_1—H31C_1109.5O4_2—C31_2—H31C_2109.5
H31A_1—C31_1—H31C_1109.5H31A_2—C31_2—H31C_2109.5
H31B_1—C31_1—H31C_1109.5H31B_2—C31_2—H31C_2109.5
O9_1—C32_1—H32A_1109.5O9_2—C32_2—H32A_2109.5
O9_1—C32_1—H32B_1109.5O9_2—C32_2—H32B_2109.5
H32A_1—C32_1—H32B_1109.5H32A_2—C32_2—H32B_2109.5
O9_1—C32_1—H32C_1109.5O9_2—C32_2—H32C_2109.5
H32A_1—C32_1—H32C_1109.5H32A_2—C32_2—H32C_2109.5
H32B_1—C32_1—H32C_1109.5H32B_2—C32_2—H32C_2109.5
O1_1—C1_1—C2_1—C3_1165.15 (13)O1_2—C1_2—C2_2—C3_2155.85 (13)
C9_1—C1_1—C2_1—C3_114.32 (18)C9_2—C1_2—C2_2—C3_221.44 (18)
O1_1—C1_1—C2_1—C12_110.63 (17)O1_2—C1_2—C2_2—C12_214.71 (18)
C9_1—C1_1—C2_1—C12_1169.90 (11)C9_2—C1_2—C2_2—C12_2168.01 (11)
C1_1—C2_1—C3_1—C21_1178.21 (13)C1_2—C2_2—C3_2—C4_22.97 (19)
C12_1—C2_1—C3_1—C21_12.9 (2)C12_2—C2_2—C3_2—C4_2172.92 (12)
C1_1—C2_1—C3_1—C4_15.40 (19)C1_2—C2_2—C3_2—C21_2169.95 (13)
C12_1—C2_1—C3_1—C4_1169.92 (12)C12_2—C2_2—C3_2—C21_20.0 (2)
C2_1—C3_1—C4_1—O5_1153.00 (14)C2_2—C3_2—C4_2—O5_2158.03 (13)
C21_1—C3_1—C4_1—O5_120.47 (19)C21_2—C3_2—C4_2—O5_215.49 (19)
C2_1—C3_1—C4_1—C10_123.11 (18)C2_2—C3_2—C4_2—C10_219.55 (18)
C21_1—C3_1—C4_1—C10_1163.43 (12)C21_2—C3_2—C4_2—C10_2166.94 (12)
C31_1—O4_1—C6_1—C5_1120.71 (15)C31_2—O4_2—C6_2—C5_2122.28 (14)
C31_1—O4_1—C6_1—C7_165.59 (17)C31_2—O4_2—C6_2—C7_262.68 (17)
C10_1—C5_1—C6_1—O4_1178.04 (11)C10_2—C5_2—C6_2—O4_2171.82 (11)
C23_1—C5_1—C6_1—O4_15.35 (18)C23_2—C5_2—C6_2—O4_27.55 (19)
C10_1—C5_1—C6_1—C7_18.48 (19)C10_2—C5_2—C6_2—C7_23.09 (19)
C23_1—C5_1—C6_1—C7_1168.13 (12)C23_2—C5_2—C6_2—C7_2177.54 (12)
O4_1—C6_1—C7_1—O3_11.45 (18)O4_2—C6_2—C7_2—O3_23.20 (18)
C5_1—C6_1—C7_1—O3_1172.09 (12)C5_2—C6_2—C7_2—O3_2178.12 (12)
O4_1—C6_1—C7_1—C8_1178.07 (11)O4_2—C6_2—C7_2—C8_2178.57 (11)
C5_1—C6_1—C7_1—C8_14.53 (19)C5_2—C6_2—C7_2—C8_23.66 (19)
O3_1—C7_1—C8_1—C9_1178.84 (12)O3_2—C7_2—C8_2—C9_2175.02 (12)
C6_1—C7_1—C8_1—C9_12.41 (18)C6_2—C7_2—C8_2—C9_26.84 (19)
O3_1—C7_1—C8_1—C22_15.18 (19)O3_2—C7_2—C8_2—C22_28.43 (19)
C6_1—C7_1—C8_1—C22_1171.25 (12)C6_2—C7_2—C8_2—C22_2169.70 (12)
C7_1—C8_1—C9_1—C10_15.08 (18)C7_2—C8_2—C9_2—C10_23.30 (19)
C22_1—C8_1—C9_1—C10_1168.22 (12)C22_2—C8_2—C9_2—C10_2173.01 (12)
C7_1—C8_1—C9_1—C1_1171.95 (11)C7_2—C8_2—C9_2—C1_2173.22 (11)
C22_1—C8_1—C9_1—C1_114.75 (19)C22_2—C8_2—C9_2—C1_210.47 (19)
O1_1—C1_1—C9_1—C10_1162.56 (12)O1_2—C1_2—C9_2—C10_2160.07 (13)
C2_1—C1_1—C9_1—C10_116.90 (17)C2_2—C1_2—C9_2—C10_217.13 (17)
O1_1—C1_1—C9_1—C8_114.50 (19)O1_2—C1_2—C9_2—C8_216.51 (19)
C2_1—C1_1—C9_1—C8_1166.05 (11)C2_2—C1_2—C9_2—C8_2166.29 (12)
C8_1—C9_1—C10_1—C5_11.00 (19)C8_2—C9_2—C10_2—C5_23.48 (19)
C1_1—C9_1—C10_1—C5_1176.02 (11)C1_2—C9_2—C10_2—C5_2179.96 (11)
C8_1—C9_1—C10_1—C4_1176.61 (12)C8_2—C9_2—C10_2—C4_2171.83 (12)
C1_1—C9_1—C10_1—C4_10.41 (17)C1_2—C9_2—C10_2—C4_24.73 (18)
C6_1—C5_1—C10_1—C9_15.72 (18)C6_2—C5_2—C10_2—C9_26.65 (19)
C23_1—C5_1—C10_1—C9_1170.74 (12)C23_2—C5_2—C10_2—C9_2173.99 (12)
C6_1—C5_1—C10_1—C4_1169.70 (12)C6_2—C5_2—C10_2—C4_2168.48 (12)
C23_1—C5_1—C10_1—C4_113.84 (19)C23_2—C5_2—C10_2—C4_210.89 (19)
O5_1—C4_1—C10_1—C9_1155.70 (14)O5_2—C4_2—C10_2—C9_2154.23 (14)
C3_1—C4_1—C10_1—C9_120.17 (18)C3_2—C4_2—C10_2—C9_223.22 (18)
O5_1—C4_1—C10_1—C5_119.9 (2)O5_2—C4_2—C10_2—C5_221.0 (2)
C3_1—C4_1—C10_1—C5_1164.27 (12)C3_2—C4_2—C10_2—C5_2161.50 (12)
O6_1—C11_1—C12_1—C13_1162.19 (13)O6_2—C11_2—C12_2—C13_2153.28 (14)
C19_1—C11_1—C12_1—C13_112.53 (18)C19_2—C11_2—C12_2—C13_223.21 (18)
O6_1—C11_1—C12_1—C2_116.43 (17)O6_2—C11_2—C12_2—C2_218.86 (18)
C19_1—C11_1—C12_1—C2_1168.85 (11)C19_2—C11_2—C12_2—C2_2164.66 (11)
C3_1—C2_1—C12_1—C13_169.29 (19)C3_2—C2_2—C12_2—C13_272.60 (19)
C1_1—C2_1—C12_1—C13_1115.15 (14)C1_2—C2_2—C12_2—C13_2117.11 (15)
C3_1—C2_1—C12_1—C11_1109.27 (15)C3_2—C2_2—C12_2—C11_299.16 (15)
C1_1—C2_1—C12_1—C11_166.28 (15)C1_2—C2_2—C12_2—C11_271.13 (15)
C11_1—C12_1—C13_1—C14_16.40 (19)C11_2—C12_2—C13_2—C26_2174.44 (14)
C2_1—C12_1—C13_1—C14_1175.10 (12)C2_2—C12_2—C13_2—C26_23.0 (2)
C11_1—C12_1—C13_1—C26_1176.73 (13)C11_2—C12_2—C13_2—C14_20.5 (2)
C2_1—C12_1—C13_1—C26_11.8 (2)C2_2—C12_2—C13_2—C14_2171.02 (12)
C12_1—C13_1—C14_1—O10_1166.98 (14)C12_2—C13_2—C14_2—O10_2152.30 (14)
C26_1—C13_1—C14_1—O10_110.15 (19)C26_2—C13_2—C14_2—O10_222.25 (19)
C12_1—C13_1—C14_1—C20_16.88 (19)C12_2—C13_2—C14_2—C20_224.45 (19)
C26_1—C13_1—C14_1—C20_1175.99 (12)C26_2—C13_2—C14_2—C20_2161.00 (13)
C32_1—O9_1—C16_1—C15_1142.20 (12)C32_2—O9_2—C16_2—C15_2119.98 (15)
C32_1—O9_1—C16_1—C17_141.88 (17)C32_2—O9_2—C16_2—C17_264.96 (16)
C20_1—C15_1—C16_1—O9_1170.58 (11)C20_2—C15_2—C16_2—O9_2177.12 (12)
C28_1—C15_1—C16_1—O9_113.40 (17)C28_2—C15_2—C16_2—O9_24.98 (19)
C20_1—C15_1—C16_1—C17_15.35 (18)C20_2—C15_2—C16_2—C17_28.00 (19)
C28_1—C15_1—C16_1—C17_1170.66 (12)C28_2—C15_2—C16_2—C17_2169.89 (13)
O9_1—C16_1—C17_1—O8_11.08 (18)O9_2—C16_2—C17_2—O8_22.37 (18)
C15_1—C16_1—C17_1—O8_1176.88 (11)C15_2—C16_2—C17_2—O8_2172.60 (12)
O9_1—C16_1—C17_1—C18_1178.60 (11)O9_2—C16_2—C17_2—C18_2179.87 (11)
C15_1—C16_1—C17_1—C18_12.81 (19)C15_2—C16_2—C17_2—C18_25.2 (2)
O8_1—C17_1—C18_1—C19_1174.34 (11)O8_2—C17_2—C18_2—C19_2178.79 (11)
C16_1—C17_1—C18_1—C19_15.33 (18)C16_2—C17_2—C18_2—C19_21.14 (18)
O8_1—C17_1—C18_1—C27_11.69 (18)O8_2—C17_2—C18_2—C27_24.64 (18)
C16_1—C17_1—C18_1—C27_1177.98 (12)C16_2—C17_2—C18_2—C27_2173.01 (12)
C17_1—C18_1—C19_1—C20_10.45 (18)C17_2—C18_2—C19_2—C20_24.25 (18)
C27_1—C18_1—C19_1—C20_1171.78 (12)C27_2—C18_2—C19_2—C20_2169.54 (12)
C17_1—C18_1—C19_1—C11_1174.63 (11)C17_2—C18_2—C19_2—C11_2171.79 (11)
C27_1—C18_1—C19_1—C11_113.14 (19)C27_2—C18_2—C19_2—C11_214.42 (19)
O6_1—C11_1—C19_1—C20_1155.12 (12)O6_2—C11_2—C19_2—C20_2153.37 (13)
C12_1—C11_1—C19_1—C20_119.48 (17)C12_2—C11_2—C19_2—C20_223.04 (17)
O6_1—C11_1—C19_1—C18_120.02 (19)O6_2—C11_2—C19_2—C18_222.74 (19)
C12_1—C11_1—C19_1—C18_1165.38 (11)C12_2—C11_2—C19_2—C18_2160.85 (12)
C18_1—C19_1—C20_1—C15_18.82 (18)C18_2—C19_2—C20_2—C15_21.28 (19)
C11_1—C19_1—C20_1—C15_1166.33 (11)C11_2—C19_2—C20_2—C15_2174.79 (12)
C18_1—C19_1—C20_1—C14_1165.16 (11)C18_2—C19_2—C20_2—C14_2175.63 (11)
C11_1—C19_1—C20_1—C14_119.69 (17)C11_2—C19_2—C20_2—C14_20.45 (18)
C16_1—C15_1—C20_1—C19_111.19 (18)C16_2—C15_2—C20_2—C19_24.81 (19)
C28_1—C15_1—C20_1—C19_1164.69 (12)C28_2—C15_2—C20_2—C19_2173.03 (13)
C16_1—C15_1—C20_1—C14_1162.57 (12)C16_2—C15_2—C20_2—C14_2169.29 (12)
C28_1—C15_1—C20_1—C14_121.54 (18)C28_2—C15_2—C20_2—C14_212.9 (2)
O10_1—C14_1—C20_1—C19_1159.91 (13)O10_2—C14_2—C20_2—C19_2152.55 (14)
C13_1—C14_1—C20_1—C19_113.66 (18)C13_2—C14_2—C20_2—C19_224.04 (18)
O10_1—C14_1—C20_1—C15_114.0 (2)O10_2—C14_2—C20_2—C15_221.8 (2)
C13_1—C14_1—C20_1—C15_1172.38 (12)C13_2—C14_2—C20_2—C15_2161.65 (12)
C7_1—C8_1—C22_1—O2_113.9 (2)C7_2—C8_2—C22_2—O2_211.4 (2)
C9_1—C8_1—C22_1—O2_1172.80 (13)C9_2—C8_2—C22_2—O2_2172.24 (14)
C6_1—C5_1—C23_1—C24_172.03 (16)C6_2—C5_2—C23_2—C24_247.99 (17)
C10_1—C5_1—C23_1—C24_1111.57 (15)C10_2—C5_2—C23_2—C24_2132.66 (14)
C6_1—C5_1—C23_1—C25_154.74 (17)C6_2—C5_2—C23_2—C25_279.46 (16)
C10_1—C5_1—C23_1—C25_1121.67 (14)C10_2—C5_2—C23_2—C25_299.89 (15)
C17_1—C18_1—C27_1—O7_16.9 (2)C17_2—C18_2—C27_2—O7_25.85 (19)
C19_1—C18_1—C27_1—O7_1179.20 (13)C19_2—C18_2—C27_2—O7_2179.65 (13)
C16_1—C15_1—C28_1—C30_172.39 (15)C16_2—C15_2—C28_2—C29_268.91 (18)
C20_1—C15_1—C28_1—C30_1111.79 (14)C20_2—C15_2—C28_2—C29_2113.31 (16)
C16_1—C15_1—C28_1—C29_154.18 (16)C16_2—C15_2—C28_2—C30_259.07 (18)
C20_1—C15_1—C28_1—C29_1121.64 (13)C20_2—C15_2—C28_2—C30_2118.71 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3_1—H3_1···O2_10.88 (2)1.78 (2)2.5622 (14)148 (2)
O8_1—H8_1···O7_10.87 (2)1.70 (2)2.5044 (15)153 (2)
O3_2—H3_2···O2_20.85 (2)1.76 (2)2.5405 (15)151 (2)
O8_2—H8_2···O7_20.91 (2)1.69 (2)2.5203 (14)149.6 (18)
C22_1—H22_1···O1_10.952.182.7232 (18)115
C23_1—H23_1···O5_11.002.182.8756 (19)126
C24_1—H24A_1···O4_10.982.523.093 (2)117
C25_1—H25C_1···O4_10.982.242.8828 (19)122
C26_1—H26A_1···O2_2i0.982.523.3579 (19)144
C27_1—H27_1···O6_10.952.192.7754 (17)119
C27_1—H27_1···O6_2ii0.952.593.2343 (18)125
C28_1—H28_1···O10_11.002.192.8412 (17)121
C29_1—H29C_1···O9_10.982.342.9322 (19)118
C30_1—H30A_1···O9_10.982.413.0216 (17)120
C31_1—H31A_1···O3_10.982.282.884 (2)119
C32_1—H32A_1···O6_1iii0.982.463.3509 (17)150
C21_2—H21A_2···O2_1iv0.982.483.3453 (19)147
C22_2—H22_2···O1_20.952.192.7612 (18)117
C23_2—H23_2···O5_21.002.182.8224 (19)120
C24_2—H24C_2···O4_20.982.362.8798 (19)112
C26_2—H26B_2···O7_1v0.982.553.177 (2)122
C27_2—H27_2···O6_20.952.252.8098 (18)117
C28_2—H28_2···O10_21.002.142.866 (2)128
C29_2—H29C_2···O9_20.982.473.075 (2)120
C30_2—H30A_2···O9_20.982.362.991 (2)122
C31_2—H31A_2···O3_20.982.252.854 (2)119
C32_2—H32A_2···O8_20.982.262.882 (2)120
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H30O10
Mr574.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.8278 (10), 26.2103 (16), 12.2116 (7)
β (°) 108.069 (1)
V3)5424.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.40 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2005)
Tmin, Tmax0.940, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
88778, 13486, 11234
Rint0.032
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.09
No. of reflections13486
No. of parameters785
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3_1—H3_1···O2_10.88 (2)1.78 (2)2.5622 (14)148 (2)
O8_1—H8_1···O7_10.87 (2)1.70 (2)2.5044 (15)153 (2)
O3_2—H3_2···O2_20.85 (2)1.76 (2)2.5405 (15)151 (2)
O8_2—H8_2···O7_20.91 (2)1.69 (2)2.5203 (14)149.6 (18)
Selected torsion angles (°) top
TorsionMolecule 1Molecule 2
C6—C5—C23—H23-171.3165.7
C10—C5—C23—H235.1-1.5
C16—C15—C28—H28-170.7-175.0
C20—C15—C28—H285.12.7
Cremer–Pople ring-puckering parametersa for gossypolone structures (Å, °) top
StructureMoleculeQuinoid ring shapeQθψ
(I)1B1,40.246 (2)83.6 (3)173.7 (3)
(I)111C14/E190.145 (1)35.1 (6)296.1 (10)
(I)21,4B0.271 (2)92.1 (3)8.9 (3)
(I)2B11,140.312 (2)88.9 (3)180.1 (3)
Gossypoloneb1,4B0.213 (4)104.4 (11)356.1 (12)
Hemigossypoloneb1,4B0.222 (6)109.4 (16)15.2 (15)
Notes: (a) parameters calculated with PLATON (Spek, 2009); (b) from Talipov et al. (1995).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds