Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title two-dimensional hydrogen-bonded coordination com­pounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The mol­ecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4-methyl-1H-imidazole (4-MeIM) mol­ecules and two O atoms from two 3-carboxy­benzoate (HBDC) anions in a square-planar geometry. Adjacent mol­ecules are linked through inter­molecular N—H...O and O—H...O hydrogen bonds into a two-dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry-independent mol­ecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4-MeIM mol­ecules and two O atoms from two 3-methyl­benzoate (3-MeBC) anions in a square-planar coordination. Two neutral complex mol­ecules are held together via N—H...O(carboxyl­ate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water mol­ecules into a two-dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109048203/ku3016sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109048203/ku3016Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109048203/ku3016IIsup3.hkl
Contains datablock II

CCDC references: 733209; 733210

Comment top

Hydrogen bonds having good directionality and flexibility and suitable strength are very important and have been widely studied in physics, chemistry and biology (Beatty, 2003). To our knowledge, most reported work has mainly been concentrated on organic crystal engineering (Rambaran et al., 2009; Koshima et al., 2005; Childs & Hardcastle, 2007; Aakeröy et al., 2007). It is well known that crystal engineering with coordination bonds is a popular research area because of the stable coordination bonds and versatile coordination modes of metal ions, especially transition metals. However, transition metal coordination compounds assembled by hydrogen-bonding interactions have been less well studied (Liu et al., 2007; Beatty, 2001; Larsson & Öhrström, 2003; Aakeröy et al., 1998, 2004). Therefore, our focus is on arranging transition metal cationic centres through hydrogen bonds, attempting to construct structures with interesting dimensions and topologies. Here, we present the two title two-dimensional hydrogen-bonded coordination networks, (I) and (II).

The molecular structure for (I) is shown in Fig. 1. The Cu2+ ion is coordinated by two 4-methyl-1H-imidazole (4-MeIM) molecules and two 3-carboxybenzoate (HBDC-) anions and is located on an inversion centre, giving an approximate square-planar arrangement [Cu1—O = 1.9451 (14) Å and Cu1—N = 1.9761 (19) Å]. Each 4-MeIM molecule and HBDC- anion binds to the metal centre through one N atom and one O atom. Obviously, the HBDC- anion coordinates as a monodentate ligand to the Cu2+ ion. The other carboxyl group does not lose its H atom, so each [Cu(4-MeIM)2(HBDC)2] molecular unit simultaneously possesses two N—H donors and two O—H donors.

Adjacent 4-MeIM molecules in (I) are linked by two pairs of N2—H2A···O2 hydrogen bonds into a one-dimensional chain along the [100] direction. Similarly, adjacent 4-MeIM units are held together through two sets of O4—H4···O2 hydrogen bonds, forming a one-dimensional chain substructure along the [010] direction. This combination of [100] and [010] chains results in a two-dimensional sheet parallel to the (001) plane (Fig. 2, Table 1), and thus each [Cu(4-MeIM)2(HBDC)2] unit interacts with four neighbouring units through hydrogen-bonding contacts. Therefore, each [Cu(4-MeIM)2(HBDC)2] unit can be considered as a four-connected node, generating a (4,4) net (Öhrström & Larsson, 2005) with dimensions of 7.319 × 8.585 Å (Fig. 3). The connectivity for each node is four, corresponding to four four-membered circuits. Connections between adjacent units are further reinforced by ππ interactions, with distances between the ring centroids of 3.4178 (17) and 3.7520 (18) Å [For which rings?], respectively (Table 2). These two rings are strictly parallel.

When H2BDC in (I) is replaced with 3-methylbenzoate (3-HMeBC), compound (II) is produced wherein an analogous two-dimensional hydrogen-bonded structure on the (001) plane is formed. Compound (II) crystallizes in the monoclinic P21/c space group with two symmetry-independent molecules in the asymmetric unit, which is thus composed of two Cu2+ ions, four 4-MeIM molecules, four 3-MeBC- anions and two isolated water molecules. Each Cu2+ centre is coordinated by two N atoms and two O atoms in a square-planar arrangement with an identical coordination environment to that in (I) [Cu—O and Cu—N distances in the ranges 1.9534 (19)–2.011 (2) and 1.982 (2)–1.990 (2) Å, respectively].

In the structure of (II), two neutral [Cu(4-MeIM)2(3-MeBC)2] molecules are held together via N4—H4···O5 and N6—H6A···O4 hydrogen bonds, leading to a dimeric pair, which links two discrete water molecules O1W and O2W through O1W–H1WA···O5 and N8—H8···O2W hydrogen bonds to form the asymmetric unit (Fig. 4). In fact, each [Cu(4-MeIM)2(3-MeBC)2]2 dimeric pair interacts with six surrounding water molecules, while each water molecule bridges three dimeric units to form a two-dimensional (001) sheet (Fig. 5). In addition, there are complex strong ππ interactions to stabilize the crystal stacking (Table 2). If the dimeric pairs and water molecules are considered as six- and three-connected nodes, respectively, compound (II) can be simplified as a two-dimensional (43)2(46, 66, 83) net (Öhrström & Larsson, 2005) (Fig. 6) and the connectivities are 3 and 6. For each three-connected node, there are three four-membered circuits; for each three-connected node, there are six four-membered, six six-membered and three eight-membered circuits simultaneously, with stoichiometry coefficients of 2:1.

We conclude that 4-MeIM coordinates to the Cu2+ ion as a monodentate ligand because the steric hindrance of the methyl group leads the N—H donor to interact with other hydrogen-bond acceptors via hydrogen bonds, while H2BDC and 3-MeBC carboxylate ligands not only have strong coordination abilities but also are good hydrogen-bond acceptors. The successful combination of their metal-coordinating ability and hydrogen-bonding function results in two two-dimensional frameworks. Thus, a rational change of the substituent group in the organic ligand can construct similar hydrogen-bonded networks with different topologies.

Experimental top

CuCl2.2H2O (0.17 g, 1.0 mmol) was slowly added to an aqueous solution (15 ml) of H2BDC (0.16 g, 1.0 mmol) and NaOH (0.04 g, 1.0 mmol) and the mixture was refluxed for 30 min. An ethanol solution (10 ml) containing 4-MeIM (0.08 g, 1.0 mmol) was then added slowly with continuous stirring. The resulting solution was refluxed for 3 h, filtered and left to stand for crystallization. After 10 d, blue crystals of (I) suitable for single-crystal X-ray diffraction were obtained.

Compound (II) was synthesized similarly to compound (I), but the H2BDC was replaced with 3-MeBC (0.14 g, 1.0 mmol). After 4 d, blue crystals of (II) were obtained.

Refinement top

For both compounds, H atoms bonded to N atoms, carboxyl O atoms and water O atoms were located in difference maps and refined isotropically, with distances restrained to N—H = 0.86 (3) Å, O—H = 0.82 (3) Å and H···H = 1.34 (3) Å. All remaining H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and refined as riding, with Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and TOPOS (Blatov et al., 2000); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry transformation (-x + 1, -y + 2, -z + 1).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional structure in the (001) plane. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The (4,4) net of (I).
[Figure 4] Fig. 4. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of the two-dimensional structure parallel to the (001) plane. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 6] Fig. 6. The (43)2(46, 66, 83) net of (II).
(I) bis(3-carboxybenzoato-κO)bis(4-methyl-1H-imidazole- κN3)copper(II) top
Crystal data top
[Cu(C8H5O4)2(C4H6N2)2]Z = 1
Mr = 558.01F(000) = 287
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3188 (6) ÅCell parameters from 2266 reflections
b = 8.5847 (7) Åθ = 2.5–28.0°
c = 10.1033 (8) ŵ = 0.99 mm1
α = 96.487 (1)°T = 292 K
β = 98.756 (2)°Block, blue
γ = 107.620 (1)°0.23 × 0.20 × 0.15 mm
V = 589.37 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2290 independent reflections
Radiation source: sealed tube2155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 98
Tmin = 0.805, Tmax = 0.866k = 910
3304 measured reflectionsl = 912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.4865P]
where P = (Fo2 + 2Fc2)/3
2290 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.33 e Å3
14 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu(C8H5O4)2(C4H6N2)2]γ = 107.620 (1)°
Mr = 558.01V = 589.37 (8) Å3
Triclinic, P1Z = 1
a = 7.3188 (6) ÅMo Kα radiation
b = 8.5847 (7) ŵ = 0.99 mm1
c = 10.1033 (8) ÅT = 292 K
α = 96.487 (1)°0.23 × 0.20 × 0.15 mm
β = 98.756 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2290 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2155 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.866Rint = 0.011
3304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02814 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.33 e Å3
2290 reflectionsΔρmin = 0.26 e Å3
178 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.50000.02581 (12)
N10.2441 (3)0.9069 (2)0.55176 (17)0.0302 (4)
N20.0108 (3)0.8966 (2)0.6415 (2)0.0367 (4)
H2A0.081 (4)0.929 (3)0.684 (3)0.0404 (8)*
O10.4157 (2)0.83152 (17)0.33760 (14)0.0314 (3)
O20.3075 (2)1.00692 (18)0.22997 (16)0.0379 (4)
O30.2011 (3)0.1880 (2)0.08798 (18)0.0574 (5)
O40.2902 (3)0.2760 (2)0.13449 (18)0.0481 (4)
H40.297 (4)0.184 (3)0.141 (3)0.0465 (14)*
C10.1736 (3)0.9837 (3)0.6417 (2)0.0338 (5)
H1A0.24321.08480.69750.041*
C20.0662 (3)0.7544 (3)0.5469 (2)0.0354 (5)
C30.0940 (3)0.7624 (3)0.4924 (2)0.0334 (5)
H3A0.10170.68260.42510.040*
C40.2662 (4)0.6312 (4)0.5187 (3)0.0523 (7)
H4A0.30120.60200.60250.078*
H4B0.26890.53370.46050.078*
H4C0.35760.67820.47470.078*
C50.2944 (3)0.7491 (2)0.1030 (2)0.0262 (4)
C60.2939 (3)0.5892 (3)0.1132 (2)0.0285 (4)
H6A0.32430.56170.19840.034*
C70.2487 (3)0.4698 (3)0.0020 (2)0.0303 (4)
C80.2087 (4)0.5132 (3)0.1287 (2)0.0394 (5)
H8A0.17970.43450.20670.047*
C90.2117 (4)0.6726 (3)0.1393 (2)0.0453 (6)
H9A0.18670.70120.22470.054*
C100.2515 (4)0.7905 (3)0.0241 (2)0.0360 (5)
H10A0.24950.89690.03200.043*
C110.3406 (3)0.8732 (2)0.2306 (2)0.0267 (4)
C120.2436 (3)0.2968 (3)0.0079 (2)0.0353 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0347 (2)0.02360 (19)0.01970 (18)0.01288 (14)0.00338 (14)0.00096 (13)
N10.0375 (10)0.0305 (9)0.0239 (9)0.0144 (8)0.0054 (7)0.0017 (7)
N20.0409 (8)0.0391 (8)0.0374 (8)0.0199 (7)0.0136 (7)0.0085 (7)
O10.0439 (9)0.0271 (7)0.0225 (7)0.0141 (6)0.0034 (6)0.0014 (6)
O20.0561 (10)0.0265 (8)0.0372 (9)0.0214 (7)0.0120 (7)0.0038 (6)
O30.0985 (16)0.0334 (9)0.0396 (10)0.0259 (10)0.0126 (10)0.0074 (8)
O40.0816 (12)0.0302 (8)0.0382 (9)0.0269 (8)0.0106 (8)0.0064 (7)
C10.0450 (13)0.0332 (11)0.0276 (11)0.0188 (10)0.0091 (9)0.0038 (9)
C20.0392 (12)0.0368 (12)0.0335 (11)0.0157 (10)0.0061 (9)0.0112 (9)
C30.0391 (12)0.0317 (11)0.0286 (11)0.0131 (9)0.0030 (9)0.0020 (9)
C40.0427 (15)0.0534 (16)0.0576 (17)0.0087 (12)0.0103 (12)0.0149 (13)
C50.0298 (10)0.0241 (10)0.0249 (10)0.0100 (8)0.0049 (8)0.0017 (8)
C60.0375 (11)0.0277 (10)0.0218 (10)0.0138 (9)0.0047 (8)0.0035 (8)
C70.0362 (11)0.0267 (10)0.0276 (10)0.0118 (9)0.0053 (9)0.0001 (8)
C80.0558 (15)0.0379 (12)0.0224 (10)0.0179 (11)0.0023 (10)0.0034 (9)
C90.0699 (17)0.0450 (14)0.0223 (11)0.0245 (13)0.0005 (11)0.0066 (10)
C100.0496 (14)0.0310 (11)0.0302 (11)0.0182 (10)0.0042 (10)0.0075 (9)
C110.0308 (10)0.0236 (10)0.0260 (10)0.0089 (8)0.0080 (8)0.0016 (8)
C120.0456 (13)0.0291 (11)0.0333 (12)0.0148 (10)0.0114 (10)0.0009 (9)
Geometric parameters (Å, º) top
Cu1—O1i1.9442 (13)C3—H3A0.9300
Cu1—O11.9442 (13)C4—H4A0.9600
Cu1—N11.9763 (18)C4—H4B0.9600
Cu1—N1i1.9763 (18)C4—H4C0.9600
N1—C11.319 (3)C5—C61.387 (3)
N1—C31.382 (3)C5—C101.387 (3)
N2—C11.330 (3)C5—C111.500 (3)
N2—C21.374 (3)C6—C71.387 (3)
N2—H2A0.81 (2)C6—H6A0.9300
O1—C111.274 (2)C7—C81.387 (3)
O2—C111.243 (2)C7—C121.490 (3)
O3—C121.199 (3)C8—C91.378 (3)
O4—C121.319 (3)C8—H8A0.9300
O4—H40.82 (2)C9—C101.384 (3)
C1—H1A0.9300C9—H9A0.9300
C2—C31.356 (3)C10—H10A0.9300
C2—C41.487 (3)
O1i—Cu1—O1180.000 (1)H4A—C4—H4C109.5
O1i—Cu1—N190.05 (7)H4B—C4—H4C109.5
O1—Cu1—N189.95 (7)C6—C5—C10119.53 (19)
O1i—Cu1—N1i89.95 (7)C6—C5—C11118.92 (18)
O1—Cu1—N1i90.05 (7)C10—C5—C11121.55 (18)
N1—Cu1—N1i180.0C5—C6—C7120.80 (19)
C1—N1—C3105.68 (19)C5—C6—H6A119.6
C1—N1—Cu1125.31 (16)C7—C6—H6A119.6
C3—N1—Cu1128.54 (14)C8—C7—C6119.16 (19)
C1—N2—C2108.99 (19)C8—C7—C12119.58 (19)
C1—N2—H2A124.4 (19)C6—C7—C12121.25 (19)
C2—N2—H2A126.3 (19)C9—C8—C7120.2 (2)
C11—O1—Cu1115.63 (12)C9—C8—H8A119.9
C12—O4—H4114 (2)C7—C8—H8A119.9
N1—C1—N2110.6 (2)C8—C9—C10120.6 (2)
N1—C1—H1A124.7C8—C9—H9A119.7
N2—C1—H1A124.7C10—C9—H9A119.7
C3—C2—N2104.8 (2)C9—C10—C5119.6 (2)
C3—C2—C4132.5 (2)C9—C10—H10A120.2
N2—C2—C4122.7 (2)C5—C10—H10A120.2
C2—C3—N1109.9 (2)O2—C11—O1123.23 (18)
C2—C3—H3A125.0O2—C11—C5121.51 (18)
N1—C3—H3A125.0O1—C11—C5115.26 (17)
C2—C4—H4A109.5O3—C12—O4123.5 (2)
C2—C4—H4B109.5O3—C12—C7124.0 (2)
H4A—C4—H4B109.5O4—C12—C7112.47 (18)
C2—C4—H4C109.5
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.81 (2)2.16 (2)2.965 (3)170 (2)
O4—H4···O2iii0.82 (2)1.86 (2)2.632 (2)156 (3)
Symmetry codes: (ii) x, y+2, z+1; (iii) x, y1, z.
(II) bis(3-methylbenzoato-κN)bis(4-methyl-1H-imidazole- κN3)copper(II) monohydrate top
Crystal data top
[Cu(C8H7O2)2(C4H6N2)2]·H2OF(000) = 2152
Mr = 516.04Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3676 reflections
a = 14.3860 (2) Åθ = 2.3–22.0°
b = 15.2620 (4) ŵ = 0.92 mm1
c = 24.6922 (5) ÅT = 292 K
β = 113.288 (2)°Block, blue
V = 4979.71 (18) Å30.28 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
9780 independent reflections
Radiation source: sealed tube5859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
0.3° wide ω exposures scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1717
Tmin = 0.783, Tmax = 0.838k = 1818
27494 measured reflectionsl = 1230
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
9780 reflections(Δ/σ)max = 0.003
653 parametersΔρmax = 0.50 e Å3
38 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C8H7O2)2(C4H6N2)2]·H2OV = 4979.71 (18) Å3
Mr = 516.04Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.3860 (2) ŵ = 0.92 mm1
b = 15.2620 (4) ÅT = 292 K
c = 24.6922 (5) Å0.28 × 0.25 × 0.20 mm
β = 113.288 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
9780 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5859 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.838Rint = 0.048
27494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04738 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.50 e Å3
9780 reflectionsΔρmin = 0.28 e Å3
653 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.01541 (3)0.48340 (2)0.250539 (15)0.04663 (12)
Cu20.47403 (3)0.24525 (2)0.259132 (15)0.04463 (12)
O10.05721 (16)0.60261 (14)0.32491 (9)0.0644 (6)
O20.05913 (15)0.45999 (14)0.33727 (9)0.0541 (5)
O30.02634 (14)0.51213 (13)0.16714 (8)0.0507 (5)
O40.01921 (15)0.36976 (14)0.14832 (9)0.0615 (6)
O50.50141 (14)0.35576 (14)0.35324 (9)0.0603 (6)
O60.51484 (14)0.21236 (14)0.34233 (8)0.0504 (5)
O70.43313 (15)0.28299 (14)0.17636 (9)0.0531 (5)
O80.43613 (17)0.13910 (15)0.16738 (10)0.0714 (7)
O1W0.63066 (19)0.47523 (17)0.32971 (12)0.0730 (7)
H1WA0.5886 (18)0.4392 (16)0.3288 (13)0.0750 (9)*
H1WB0.609 (2)0.5241 (10)0.3315 (13)0.0750 (9)*
N10.12886 (18)0.47597 (16)0.23917 (11)0.0495 (6)
N20.2644 (2)0.47562 (18)0.25915 (14)0.0566 (7)
H20.295 (2)0.475 (2)0.2820 (11)0.068 (11)*
N30.15883 (17)0.48069 (16)0.26013 (11)0.0484 (6)
N40.3190 (2)0.44839 (17)0.29268 (12)0.0545 (7)
H40.3709 (13)0.4173 (14)0.3104 (11)0.0525 (9)*
N50.32926 (17)0.24047 (15)0.24777 (11)0.0456 (6)
N60.1678 (2)0.27165 (18)0.21464 (12)0.0563 (7)
H6A0.1136 (13)0.2975 (17)0.1940 (11)0.056 (10)*
N70.61906 (18)0.25282 (15)0.27226 (11)0.0470 (6)
N80.7564 (2)0.25719 (18)0.25403 (13)0.0543 (7)
H80.794 (2)0.262 (2)0.2350 (14)0.092 (14)*
C10.0729 (2)0.5375 (2)0.35786 (14)0.0492 (8)
C20.1054 (2)0.5496 (2)0.42318 (13)0.0478 (8)
C30.1095 (2)0.4797 (2)0.45979 (14)0.0519 (8)
H30.09330.42390.44370.062*
C40.1374 (2)0.4910 (2)0.52023 (15)0.0549 (9)
C50.1629 (2)0.5742 (2)0.54252 (15)0.0645 (10)
H50.18250.58310.58280.077*
C60.1604 (3)0.6441 (2)0.50745 (16)0.0744 (11)
H60.17870.69950.52400.089*
C70.1306 (2)0.6326 (2)0.44711 (14)0.0618 (9)
H70.12750.68030.42300.074*
C80.1378 (3)0.4155 (2)0.55880 (14)0.0706 (10)
H8A0.19550.41980.59560.106*
H8B0.14110.36160.53950.106*
H8C0.07700.41640.56610.106*
C90.0392 (2)0.4476 (2)0.13210 (14)0.0458 (8)
C100.0829 (2)0.4702 (2)0.06751 (13)0.0455 (7)
C110.0808 (2)0.5561 (2)0.04899 (13)0.0513 (8)
H110.05260.59960.07710.062*
C120.1193 (2)0.5786 (2)0.01013 (15)0.0604 (9)
C130.1632 (3)0.5145 (3)0.05112 (16)0.0750 (11)
H130.18990.52850.09100.090*
C140.1684 (3)0.4293 (3)0.03392 (17)0.0809 (12)
H140.19970.38680.06230.097*
C150.1271 (2)0.4063 (2)0.02546 (15)0.0657 (10)
H150.12930.34850.03680.079*
C160.1132 (3)0.6721 (2)0.02862 (16)0.0898 (13)
H16A0.06190.67660.04420.135*
H16B0.09660.71010.00490.135*
H16C0.17740.68910.05830.135*
C170.1632 (2)0.4750 (2)0.28140 (15)0.0562 (8)
H170.12240.47400.32150.067*
C180.2989 (2)0.4760 (2)0.19946 (15)0.0523 (8)
C190.2153 (2)0.4761 (2)0.18759 (14)0.0544 (8)
H190.21550.47610.14990.065*
C200.4093 (2)0.4777 (2)0.16067 (16)0.0758 (11)
H20A0.43760.53280.16510.114*
H20B0.44300.43100.17170.114*
H20C0.41810.47020.12030.114*
C210.2346 (2)0.4421 (2)0.30223 (13)0.0537 (8)
H210.22980.41400.33450.064*
C220.2990 (2)0.49339 (19)0.24162 (14)0.0510 (8)
C230.1987 (2)0.5131 (2)0.22183 (14)0.0527 (8)
H230.16240.54390.18740.063*
C240.3755 (2)0.5113 (2)0.21629 (16)0.0707 (10)
H24A0.39620.45710.20480.106*
H24B0.43320.53980.24530.106*
H24C0.34630.54860.18240.106*
C250.5237 (2)0.2802 (2)0.37427 (14)0.0479 (8)
C260.5643 (2)0.2662 (2)0.43961 (13)0.0494 (8)
C270.5757 (2)0.3368 (2)0.47743 (15)0.0622 (9)
H270.55680.39250.46160.075*
C280.6151 (2)0.3258 (3)0.53865 (17)0.0699 (10)
C290.6433 (3)0.2424 (3)0.56000 (17)0.0854 (13)
H290.67060.23330.60050.102*
C300.6324 (3)0.1726 (3)0.52343 (17)0.0822 (12)
H300.65170.11700.53930.099*
C310.5934 (2)0.1837 (2)0.46336 (14)0.0621 (9)
H310.58650.13580.43870.074*
C320.6273 (3)0.4023 (3)0.57857 (18)0.1162 (17)
H32A0.58450.39480.59980.174*
H32B0.60870.45510.55560.174*
H32C0.69660.40630.60600.174*
C330.4205 (2)0.2129 (2)0.14528 (13)0.0491 (8)
C340.3869 (2)0.2244 (2)0.08004 (14)0.0550 (9)
C350.3823 (2)0.3067 (3)0.05616 (15)0.0645 (10)
H350.39930.35540.08080.077*
C360.3519 (3)0.3182 (3)0.00569 (19)0.0796 (12)
C370.3258 (3)0.2429 (4)0.03957 (19)0.0926 (15)
H370.30490.24830.08020.111*
C380.3290 (3)0.1617 (4)0.0168 (2)0.0995 (15)
H380.31010.11310.04150.119*
C390.3607 (3)0.1518 (3)0.04327 (16)0.0757 (11)
H390.36450.09610.05930.091*
C400.3512 (3)0.4061 (3)0.03010 (19)0.1225 (18)
H40A0.40760.41190.04130.184*
H40B0.35620.44940.00090.184*
H40C0.28930.41440.06410.184*
C410.2897 (2)0.21060 (19)0.28695 (13)0.0486 (8)
H410.32650.18160.32210.058*
C420.1899 (2)0.22929 (19)0.26720 (14)0.0482 (8)
C430.2523 (2)0.2770 (2)0.20483 (14)0.0543 (8)
H430.25640.30320.17180.065*
C440.1144 (2)0.2147 (2)0.29388 (14)0.0674 (10)
H44A0.09660.26980.30580.101*
H44B0.14310.17710.32760.101*
H44C0.05490.18770.26530.101*
C450.7048 (2)0.2509 (2)0.32460 (14)0.0543 (8)
H450.70400.24800.36200.065*
C460.7889 (2)0.25386 (19)0.31367 (15)0.0517 (8)
C470.6559 (2)0.2568 (2)0.23110 (14)0.0547 (8)
H470.61630.25910.19090.066*
C480.8994 (2)0.2526 (2)0.35311 (15)0.0746 (11)
H48A0.90710.24700.39340.112*
H48B0.93040.30610.34830.112*
H48C0.93130.20380.34280.112*
O2W0.86386 (19)0.25847 (16)0.18570 (12)0.0709 (7)
H2WA0.9047 (18)0.2948 (16)0.1851 (13)0.0739 (9)*
H2WB0.881 (2)0.2088 (10)0.1817 (13)0.0738 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0457 (2)0.0539 (2)0.0372 (2)0.00492 (18)0.01310 (18)0.00106 (18)
Cu20.0445 (2)0.0517 (2)0.0348 (2)0.00415 (17)0.01262 (17)0.00448 (17)
O10.0812 (16)0.0574 (15)0.0469 (15)0.0020 (12)0.0170 (12)0.0035 (11)
O20.0609 (14)0.0565 (14)0.0432 (13)0.0012 (11)0.0187 (11)0.0030 (10)
O30.0480 (12)0.0628 (14)0.0384 (13)0.0073 (10)0.0140 (10)0.0023 (11)
O40.0570 (13)0.0565 (15)0.0685 (16)0.0081 (11)0.0223 (12)0.0147 (12)
O50.0470 (12)0.0647 (15)0.0611 (15)0.0045 (11)0.0127 (11)0.0167 (12)
O60.0473 (12)0.0661 (15)0.0359 (12)0.0065 (10)0.0146 (10)0.0080 (11)
O70.0558 (13)0.0594 (14)0.0399 (13)0.0008 (11)0.0143 (10)0.0036 (11)
O80.0859 (17)0.0620 (16)0.0591 (16)0.0032 (13)0.0209 (13)0.0079 (12)
O1W0.0734 (9)0.0733 (9)0.0762 (9)0.0003 (6)0.0337 (8)0.0006 (7)
N10.0504 (15)0.0572 (16)0.0428 (17)0.0043 (12)0.0205 (13)0.0004 (13)
N20.0541 (18)0.0609 (18)0.064 (2)0.0013 (14)0.0327 (17)0.0044 (15)
N30.0454 (14)0.0527 (15)0.0404 (16)0.0103 (12)0.0098 (13)0.0011 (12)
N40.0506 (10)0.0535 (10)0.0549 (10)0.0049 (8)0.0159 (9)0.0014 (8)
N50.0404 (14)0.0530 (16)0.0389 (15)0.0035 (11)0.0107 (12)0.0029 (12)
N60.0382 (16)0.0696 (19)0.0498 (19)0.0089 (14)0.0052 (15)0.0024 (15)
N70.0456 (15)0.0555 (16)0.0394 (15)0.0036 (12)0.0164 (13)0.0034 (12)
N80.0490 (17)0.0641 (19)0.0549 (19)0.0037 (14)0.0259 (16)0.0021 (14)
C10.0411 (18)0.061 (2)0.043 (2)0.0007 (16)0.0138 (15)0.0067 (17)
C20.0409 (17)0.062 (2)0.042 (2)0.0023 (15)0.0176 (15)0.0036 (16)
C30.0447 (18)0.059 (2)0.050 (2)0.0037 (15)0.0163 (16)0.0052 (17)
C40.0465 (19)0.071 (2)0.048 (2)0.0059 (16)0.0202 (16)0.0002 (17)
C50.070 (2)0.078 (3)0.042 (2)0.007 (2)0.0176 (18)0.0086 (19)
C60.094 (3)0.072 (3)0.054 (3)0.022 (2)0.026 (2)0.016 (2)
C70.072 (2)0.065 (2)0.045 (2)0.0123 (18)0.0202 (18)0.0058 (17)
C80.076 (2)0.081 (3)0.061 (2)0.013 (2)0.033 (2)0.013 (2)
C90.0297 (16)0.060 (2)0.048 (2)0.0010 (15)0.0158 (14)0.0034 (17)
C100.0345 (15)0.060 (2)0.0413 (19)0.0021 (14)0.0141 (14)0.0038 (16)
C110.0501 (19)0.054 (2)0.044 (2)0.0002 (15)0.0117 (15)0.0032 (16)
C120.051 (2)0.078 (3)0.050 (2)0.0011 (18)0.0161 (17)0.0112 (19)
C130.070 (2)0.104 (3)0.042 (2)0.001 (2)0.0121 (19)0.005 (2)
C140.082 (3)0.099 (3)0.050 (3)0.019 (2)0.014 (2)0.028 (2)
C150.067 (2)0.067 (2)0.059 (3)0.0091 (18)0.0204 (19)0.0130 (19)
C160.083 (3)0.099 (3)0.077 (3)0.006 (2)0.020 (2)0.036 (2)
C170.053 (2)0.064 (2)0.052 (2)0.0030 (16)0.0211 (17)0.0012 (17)
C180.0502 (19)0.0514 (19)0.057 (2)0.0026 (15)0.0233 (17)0.0025 (16)
C190.0519 (19)0.064 (2)0.044 (2)0.0069 (16)0.0160 (17)0.0026 (16)
C200.048 (2)0.094 (3)0.081 (3)0.0019 (19)0.021 (2)0.004 (2)
C210.056 (2)0.056 (2)0.044 (2)0.0067 (16)0.0146 (17)0.0007 (16)
C220.0461 (18)0.0474 (19)0.056 (2)0.0010 (15)0.0162 (16)0.0065 (15)
C230.0480 (19)0.055 (2)0.051 (2)0.0038 (15)0.0154 (16)0.0023 (16)
C240.0480 (19)0.078 (3)0.086 (3)0.0030 (17)0.026 (2)0.000 (2)
C250.0292 (16)0.062 (2)0.051 (2)0.0042 (15)0.0147 (15)0.0103 (18)
C260.0371 (17)0.074 (2)0.0379 (19)0.0005 (15)0.0160 (14)0.0023 (17)
C270.050 (2)0.076 (3)0.060 (3)0.0038 (17)0.0214 (18)0.007 (2)
C280.050 (2)0.105 (3)0.056 (3)0.015 (2)0.0219 (19)0.021 (2)
C290.069 (3)0.143 (4)0.041 (2)0.006 (3)0.018 (2)0.006 (3)
C300.089 (3)0.103 (3)0.049 (3)0.017 (2)0.022 (2)0.023 (2)
C310.063 (2)0.074 (3)0.046 (2)0.0060 (18)0.0184 (17)0.0099 (18)
C320.113 (4)0.152 (5)0.092 (4)0.032 (3)0.050 (3)0.056 (3)
C330.0369 (17)0.070 (2)0.0377 (19)0.0022 (16)0.0115 (14)0.0056 (18)
C340.0383 (18)0.086 (3)0.041 (2)0.0048 (17)0.0163 (15)0.0001 (19)
C350.0423 (19)0.094 (3)0.053 (2)0.0015 (18)0.0147 (17)0.012 (2)
C360.050 (2)0.123 (4)0.067 (3)0.003 (2)0.025 (2)0.033 (3)
C370.062 (3)0.161 (5)0.053 (3)0.004 (3)0.022 (2)0.014 (3)
C380.090 (3)0.142 (5)0.072 (3)0.022 (3)0.037 (3)0.032 (3)
C390.065 (2)0.116 (3)0.048 (2)0.014 (2)0.0228 (19)0.019 (2)
C400.104 (3)0.164 (5)0.105 (4)0.037 (3)0.047 (3)0.078 (4)
C410.0467 (18)0.054 (2)0.0411 (19)0.0007 (15)0.0128 (15)0.0057 (15)
C420.0417 (18)0.053 (2)0.047 (2)0.0043 (14)0.0146 (16)0.0042 (15)
C430.050 (2)0.066 (2)0.042 (2)0.0062 (16)0.0125 (17)0.0034 (16)
C440.0482 (19)0.082 (3)0.070 (3)0.0064 (18)0.0213 (18)0.0019 (19)
C450.0477 (19)0.072 (2)0.0410 (19)0.0058 (16)0.0154 (16)0.0077 (16)
C460.0460 (19)0.055 (2)0.055 (2)0.0079 (15)0.0198 (17)0.0057 (16)
C470.051 (2)0.068 (2)0.045 (2)0.0013 (16)0.0197 (17)0.0014 (16)
C480.045 (2)0.100 (3)0.073 (3)0.0140 (18)0.0175 (19)0.009 (2)
O2W0.0727 (9)0.0731 (9)0.0731 (9)0.0004 (6)0.0352 (8)0.0000 (7)
Geometric parameters (Å, º) top
Cu1—N11.985 (2)C15—H150.9300
Cu1—N31.982 (2)C16—H16A0.9600
Cu1—O31.9534 (19)C16—H16B0.9600
Cu2—N51.990 (2)C16—H16C0.9600
Cu2—N71.984 (2)C17—H170.9300
Cu1—O22.011 (2)C18—C191.346 (4)
Cu2—O61.9654 (19)C18—C201.496 (4)
Cu2—O71.9759 (19)C19—H190.9300
O1—C11.247 (3)C20—H20A0.9600
O2—C11.272 (3)C20—H20B0.9600
O3—C91.275 (3)C20—H20C0.9600
O4—C91.251 (3)C21—H210.9300
O5—C251.253 (3)C22—C231.361 (4)
O6—C251.277 (4)C22—C241.491 (4)
O7—C331.287 (4)C23—H230.9300
O8—C331.233 (3)C24—H24A0.9600
O1W—H1WA0.81 (3)C24—H24B0.9600
O1W—H1WB0.816 (10)C24—H24C0.9600
N1—C171.319 (4)C25—C261.498 (4)
N1—C191.384 (3)C26—C311.383 (4)
N2—C171.337 (4)C26—C271.392 (4)
N2—C181.356 (4)C27—C281.399 (4)
N2—H20.84 (3)C27—H270.9300
N3—C211.311 (3)C28—C291.377 (5)
N3—C231.377 (4)C28—C321.493 (5)
N4—C211.329 (4)C29—C301.365 (5)
N4—C221.363 (4)C29—H290.9300
N4—H40.846 (10)C30—C311.373 (4)
N5—C431.316 (3)C30—H300.9300
N5—C411.380 (4)C31—H310.9300
N6—C431.333 (4)C32—H32A0.9600
N6—C421.370 (4)C32—H32B0.9600
N6—H6A0.842 (10)C32—H32C0.9600
N7—C471.321 (4)C33—C341.498 (4)
N7—C451.390 (3)C34—C351.378 (4)
N8—C471.328 (4)C34—C391.387 (4)
N8—C461.359 (4)C35—C361.423 (5)
N8—H80.85 (3)C35—H350.9300
C1—C21.502 (4)C36—C371.383 (6)
C2—C31.384 (4)C36—C401.469 (5)
C2—C71.384 (4)C37—C381.353 (6)
C3—C41.395 (4)C37—H370.9300
C3—H30.9300C38—C391.378 (5)
C4—C51.374 (4)C38—H380.9300
C4—C81.495 (4)C39—H390.9300
C5—C61.366 (4)C40—H40A0.9600
C5—H50.9300C40—H40B0.9600
C6—C71.389 (4)C40—H40C0.9600
C6—H60.9300C41—C421.352 (4)
C7—H70.9300C41—H410.9300
C8—H8A0.9600C42—C441.493 (4)
C8—H8B0.9600C43—H430.9300
C8—H8C0.9600C44—H44A0.9600
C9—C101.505 (4)C44—H44B0.9600
C10—C151.383 (4)C44—H44C0.9600
C10—C111.392 (4)C45—C461.340 (4)
C11—C121.384 (4)C45—H450.9300
C11—H110.9300C46—C481.500 (4)
C12—C131.370 (5)C47—H470.9300
C12—C161.512 (4)C48—H48A0.9600
C13—C141.379 (5)C48—H48B0.9600
C13—H130.9300C48—H48C0.9600
C14—C151.392 (4)O2W—H2WA0.81 (3)
C14—H140.9300O2W—H2WB0.815 (10)
O3—Cu1—N189.73 (9)C18—C20—H20B109.5
O3—Cu1—N390.14 (9)H20A—C20—H20B109.5
O2—Cu1—O3177.26 (9)C18—C20—H20C109.5
N1—Cu1—N3175.37 (10)H20A—C20—H20C109.5
N1—Cu1—O290.56 (9)H20B—C20—H20C109.5
N3—Cu1—O289.80 (9)N3—C21—N4111.0 (3)
O6—Cu2—O7177.84 (9)N3—C21—H21124.5
O6—Cu2—N590.08 (9)N4—C21—H21124.5
O6—Cu2—N789.07 (9)C23—C22—N4104.5 (3)
O7—Cu2—N589.87 (9)C23—C22—C24131.5 (3)
O7—Cu2—N790.91 (9)N4—C22—C24124.0 (3)
N5—Cu2—N7178.27 (10)C22—C23—N3110.1 (3)
C1—O2—Cu1101.20 (19)C22—C23—H23124.9
C9—O3—Cu1116.35 (19)N3—C23—H23124.9
C25—O6—Cu2110.73 (19)C22—C24—H24A109.5
C33—O7—Cu2106.77 (19)C22—C24—H24B109.5
H1WA—O1W—H1WB109 (3)H24A—C24—H24B109.5
C17—N1—C19104.3 (3)C22—C24—H24C109.5
C17—N1—Cu1125.9 (2)H24A—C24—H24C109.5
C19—N1—Cu1129.7 (2)H24B—C24—H24C109.5
C17—N2—C18108.5 (3)O5—C25—O6122.9 (3)
C17—N2—H2120 (2)O5—C25—C26120.3 (3)
C18—N2—H2131 (2)O6—C25—C26116.8 (3)
C21—N3—C23105.4 (3)C31—C26—C27119.0 (3)
C21—N3—Cu1127.1 (2)C31—C26—C25120.7 (3)
C23—N3—Cu1127.4 (2)C27—C26—C25120.3 (3)
C21—N4—C22109.1 (3)C26—C27—C28121.5 (3)
C21—N4—H4123.3 (19)C26—C27—H27119.3
C22—N4—H4126 (2)C28—C27—H27119.3
C43—N5—C41104.8 (3)C29—C28—C27117.2 (4)
C43—N5—Cu2126.7 (2)C29—C28—C32122.1 (4)
C41—N5—Cu2127.8 (2)C27—C28—C32120.8 (4)
C43—N6—C42108.3 (2)C30—C29—C28122.0 (4)
C43—N6—H6A124 (2)C30—C29—H29119.0
C42—N6—H6A127 (2)C28—C29—H29119.0
C47—N7—C45103.7 (3)C29—C30—C31120.6 (4)
C47—N7—Cu2126.4 (2)C29—C30—H30119.7
C45—N7—Cu2129.8 (2)C31—C30—H30119.7
C47—N8—C46108.2 (3)C30—C31—C26119.8 (3)
C47—N8—H8126 (3)C30—C31—H31120.1
C46—N8—H8126 (3)C26—C31—H31120.1
O1—C1—O2121.4 (3)C28—C32—H32A109.5
O1—C1—C2120.1 (3)C28—C32—H32B109.5
O2—C1—C2118.5 (3)H32A—C32—H32B109.5
C3—C2—C7119.3 (3)C28—C32—H32C109.5
C3—C2—C1121.4 (3)H32A—C32—H32C109.5
C7—C2—C1119.3 (3)H32B—C32—H32C109.5
C2—C3—C4121.6 (3)O8—C33—O7122.5 (3)
C2—C3—H3119.2O8—C33—C34120.5 (3)
C4—C3—H3119.2O7—C33—C34117.0 (3)
C5—C4—C3117.5 (3)C35—C34—C39119.6 (3)
C5—C4—C8121.6 (3)C35—C34—C33120.5 (3)
C3—C4—C8120.9 (3)C39—C34—C33119.9 (3)
C6—C5—C4122.1 (3)C34—C35—C36120.9 (4)
C6—C5—H5118.9C34—C35—H35119.5
C4—C5—H5118.9C36—C35—H35119.5
C5—C6—C7120.0 (3)C37—C36—C35116.2 (4)
C5—C6—H6120.0C37—C36—C40123.7 (4)
C7—C6—H6120.0C35—C36—C40120.2 (5)
C2—C7—C6119.4 (3)C38—C37—C36123.6 (4)
C2—C7—H7120.3C38—C37—H37118.2
C6—C7—H7120.3C36—C37—H37118.2
C4—C8—H8A109.5C37—C38—C39119.4 (4)
C4—C8—H8B109.5C37—C38—H38120.3
H8A—C8—H8B109.5C39—C38—H38120.3
C4—C8—H8C109.5C38—C39—C34120.4 (4)
H8A—C8—H8C109.5C38—C39—H39119.8
H8B—C8—H8C109.5C34—C39—H39119.8
O4—C9—O3124.3 (3)C36—C40—H40A109.5
O4—C9—C10120.3 (3)C36—C40—H40B109.5
O3—C9—C10115.5 (3)H40A—C40—H40B109.5
C15—C10—C11118.7 (3)C36—C40—H40C109.5
C15—C10—C9120.6 (3)H40A—C40—H40C109.5
C11—C10—C9120.6 (3)H40B—C40—H40C109.5
C12—C11—C10121.9 (3)C42—C41—N5110.6 (3)
C12—C11—H11119.1C42—C41—H41124.7
C10—C11—H11119.1N5—C41—H41124.7
C13—C12—C11118.5 (3)C41—C42—N6104.9 (3)
C13—C12—C16121.1 (3)C41—C42—C44131.6 (3)
C11—C12—C16120.4 (3)N6—C42—C44123.5 (3)
C12—C13—C14120.8 (3)N5—C43—N6111.4 (3)
C12—C13—H13119.6N5—C43—H43124.3
C14—C13—H13119.6N6—C43—H43124.3
C13—C14—C15120.6 (3)C42—C44—H44A109.5
C13—C14—H14119.7C42—C44—H44B109.5
C15—C14—H14119.7H44A—C44—H44B109.5
C10—C15—C14119.4 (3)C42—C44—H44C109.5
C10—C15—H15120.3H44A—C44—H44C109.5
C14—C15—H15120.3H44B—C44—H44C109.5
C12—C16—H16A109.5C46—C45—N7110.6 (3)
C12—C16—H16B109.5C46—C45—H45124.7
H16A—C16—H16B109.5N7—C45—H45124.7
C12—C16—H16C109.5C45—C46—N8105.6 (3)
H16A—C16—H16C109.5C45—C46—C48132.7 (3)
H16B—C16—H16C109.5N8—C46—C48121.7 (3)
N1—C17—N2111.3 (3)N7—C47—N8111.9 (3)
N1—C17—H17124.4N7—C47—H47124.0
N2—C17—H17124.4N8—C47—H47124.0
C19—C18—N2105.2 (3)C46—C48—H48A109.5
C19—C18—C20132.4 (3)C46—C48—H48B109.5
N2—C18—C20122.3 (3)H48A—C48—H48B109.5
C18—C19—N1110.8 (3)C46—C48—H48C109.5
C18—C19—H19124.6H48A—C48—H48C109.5
N1—C19—H19124.6H48B—C48—H48C109.5
C18—C20—H20A109.5H2WA—O2W—H2WB112 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.81 (3)2.04 (3)2.824 (3)163 (3)
O1W—H1WB···O8i0.81 (3)1.88 (1)2.690 (3)176 (3)
N2—H2···O1Wii0.84 (3)1.88 (3)2.719 (4)177 (3)
N4—H4···O50.85 (1)1.99 (1)2.832 (3)174 (3)
N6—H6A···O40.84 (1)2.11 (1)2.946 (3)175 (3)
N8—H8···O2W0.85 (3)1.86 (3)2.701 (4)171 (4)
O2W—H2WA···O4iii0.81 (3)2.03 (2)2.792 (3)156 (3)
O2W—H2WB···O1iv0.82 (1)1.89 (1)2.693 (3)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C8H5O4)2(C4H6N2)2][Cu(C8H7O2)2(C4H6N2)2]·H2O
Mr558.01516.04
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)292292
a, b, c (Å)7.3188 (6), 8.5847 (7), 10.1033 (8)14.3860 (2), 15.2620 (4), 24.6922 (5)
α, β, γ (°)96.487 (1), 98.756 (2), 107.620 (1)90, 113.288 (2), 90
V3)589.37 (8)4979.71 (18)
Z18
Radiation typeMo KαMo Kα
µ (mm1)0.990.92
Crystal size (mm)0.23 × 0.20 × 0.150.28 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.805, 0.8660.783, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
3304, 2290, 2155 27494, 9780, 5859
Rint0.0110.048
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.00 0.047, 0.108, 0.98
No. of reflections22909780
No. of parameters178653
No. of restraints1438
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.260.50, 0.28

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and TOPOS (Blatov et al., 2000), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.81 (2)2.16 (2)2.965 (3)170 (2)
O4—H4···O2ii0.82 (2)1.86 (2)2.632 (2)156 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z.
Selected geometric parameters (Å, º) for (II) top
Cu1—N11.985 (2)Cu2—N71.984 (2)
Cu1—N31.982 (2)Cu1—O22.011 (2)
Cu1—O31.9534 (19)Cu2—O61.9654 (19)
Cu2—N51.990 (2)Cu2—O71.9759 (19)
O3—Cu1—N189.73 (9)O6—Cu2—O7177.84 (9)
O3—Cu1—N390.14 (9)O6—Cu2—N590.08 (9)
O2—Cu1—O3177.26 (9)O6—Cu2—N789.07 (9)
N1—Cu1—N3175.37 (10)O7—Cu2—N589.87 (9)
N1—Cu1—O290.56 (9)O7—Cu2—N790.91 (9)
N3—Cu1—O289.80 (9)N5—Cu2—N7178.27 (10)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.81 (3)2.04 (3)2.824 (3)163 (3)
O1W—H1WB···O8i0.81 (3)1.876 (11)2.690 (3)176 (3)
N2—H2···O1Wii0.84 (3)1.88 (3)2.719 (4)177 (3)
N4—H4···O50.846 (10)1.989 (11)2.832 (3)174 (3)
N6—H6A···O40.842 (10)2.106 (11)2.946 (3)175 (3)
N8—H8···O2W0.85 (3)1.86 (3)2.701 (4)171 (4)
O2W—H2WA···O4iii0.81 (3)2.028 (16)2.792 (3)156 (3)
O2W—H2WB···O1iv0.815 (10)1.887 (12)2.693 (3)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2.
Geometry of ππ stacking interactions (°, Å) for compounds (I) and (II) top
Cgi···CgjCg···CgαβγCgi_perpCgj_perp
(I)
Cg3···Cg3i3.4184 (15)0.0018.9818.983.2333.233
Cg4···Cg4ii3.7528 (16)0.0019.5819.583.5363.536
(II)
Cg1···Cg8iii3.8847 (18)2.2829.8031.953.2963.371
Cg2···Cg73.5422 (18)2.1524.2722.273.2783.229
Cg4···Cg4iv3.733 (2)0.0014.4614.463.6153.615
Cg7···Cg23.5421 (18)2.1722.2824.273.2293.278
Cg8···Cg1v3.8848 (18)2.2831.9529.803.3713.296
Cg9···Cg10vi3.783 (2)5.0514.7214.533.6623.659
Cg10···Cg9vii3.783 (2)5.0514.5314.723.6593.662
In (I), Cg3 and Cg4 are the centroids of the N1/C1/N2/C2–C3 and C5–C10 rings, respectively. In (II), Cg1, Cg2, Cg4, Cg7, Cg8, Cg9 and Cg10 are the centroids of the rings N1/C17/N2/C18/C19, N3/C21/N4/C22/C23, C10–C15, N5/C41/C42/N6/C43, N7/C45/C46/N8/C47, C26–C30 and C34–C39, respectively. Cg···Cg is the distance between ring centroids i and j. α is the dihedral angle between planes i and j. β is the angle between Cgi-->Cgj and the normal to the plane i. γ is the angle between Cgi-->Cgj and the normal to the plane j. Cgi_perp is the perpendicular distance of Cgi from ring j. Cgj_perp is the perpendicular distance of Cgj from ring i. Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x, -y + 1, -z; (iii) -1 + x, y, z; (iv) -x, 1 - y, -z; (v) 1 + x, y, z; (vi) x, 1/2 - y, 1/2 + z; (vii) x, 1/2 - y, -1/2 + z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds