Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Tris(1-methyl­imidazolium) bis­(1-methyl­imidazole)hexa­cosa­oxidoocta­molybdatesodium, (C4H7N2)3[NaMo8O26(C4H6N2)2], prepared from an aqueous solution containing Na2MoO4 and 1-methyl­imidazole, contains the novel chain-like anion 1[NaMo8O26(mim)2]3 (mim is 1-methyl­imidazole). The [Mo8O26(mim)2]4− building unit, which lies across a center of inversion, is comprised of eight edge-sharing MoO6 and MoO5(Nmim) octa­hedra. These molybdate units are inter­linked by sodium, itself exhibiting a sixfold coordination with O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109045089/ku3013sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109045089/ku3013Isup2.hkl
Contains datablock I

CCDC reference: 763593

Comment top

Polyoxometalates (POMs) are of particular interest because of their fascinating structures, properties and potential applications, such as catalysis, sorption and magnetism (Müller & Pope, 1991; Cheetham, 1994; Proust et al., 2008). The class of materials is characterized by complex building units and a diverse chemical reactivity (Heyns et al., 1991; Wang et al., 1992). Molybdate-based POMs in particular have attracted a lot of attention since some of the largest inorganic clusters have been identified here, for instance, Na48[HxMo368O1032(H2O)240(SO4)48].xH2O with x 1000 (Müller et al., 2002). The fundamental building unit is quite often related to the well known octamolybdate [Mo8O26]4-. With this study, we report a novel chain-like 1[NaMo8O26(mim)2]3- anion (mim = 1-methylimidazole) that is constituted of sodium-interlinked [Mo8O26(mim)2]4- building units. Although, alkali-metal-interlinked chains of octamolybdate units have already been identified (McCann et al., 1994; Jia et al., 1999; Chen et al., 2005; Liu et al., 2006; Yu et al., 2008; Kobayashi et al., 2009), the title compound, (I), when examined in detail shows some significant structural differences.

According to single-crystal structure analysis, (Hmim)3[NaMo8O26(mim)2] contains the chain-like anion 1[NaMo8O26(mim)2]3-, which is oriented in parallel to the crystallographic b axis. The molybdate unit exhibits a center of inversion, resulting in only four crystallographically independent Mo sites. Between the chains, protonated methylimidazole is incorporated as the cation (Fig. 1). In detail, the 1[NaMo8O26(mim)2]3- ion is constituted of eight edge-sharing octahedra. The resulting [Mo8O26(mim)2]4- units are interlinked by sodium cations to form infinite chains. Here, sodium possesses sixfold coordination to the terminal O atoms of two molybdate units (Fig. 2). 1[NaMo8O26(mim)2]3- – or 1[NaMo8O26(Nmim)2]3- when only considering the coordinating N atom – can be compared, firstly, to the well known 1[NaMo8O26]3- building unit (McCann et al., 1994; Chen et al., 2005; Liu et al., 2006; Kobayashi et al., 2009) and, secondly, to [Mo8O28]8-. Both 1[NaMo8O26(Nmim)2]3- and 1[NaMo8O26]3- exhibit a chain-like interlinking of octamolybdate units via Na atoms (Fig. 3). However, because of to the different stoichiometry, the (MoO6) octahedra in 1[NaMo8O26]3- show a higher degree of condensation. Moreover, the coordination between the octamolybdate units and sodium is different. This holds for the coordination number (sixfold and eightfold) as well as for the relative orientation of the octamolybdate unit inside the 1[NaMo8O26(Nmim)2]3- and 1[NaMo8O26]3- chains. [Mo8O28]8-, which is also comparable to [Mo8O26(Nmim)2]4- in the title compound, has been identified both in layer-type structures with a direct Mo—O—Mo interlinking between the octamolybdate units (Evain et al., 2006) and as an individual octamolybdate unit that is interlinked via hydrogen-bridge bonding only (Bharadwaj et al., 1986; You et al., 1989).

Regarding their coordination, the O atoms in 1[NaMo8O26(mim)2]3- can be divided into six categories. First of all, one group of atoms is exclusively coordinated to molybdenum: ten terminal O atoms with bond distances (Mo—Oµ1) ranging from 1.698 (1) to 1.722 (3) Å; six atoms with twofold coordination and distances (Mo—Oµ2) of 1.742 (7)–2.271 (5) Å; two three-coordinated atoms with Mo—Oµ3 = 1.945 (4) Å; and finally two four-coordinated atoms with Mo—Oµ4 = 2.236 (3) Å. In the second group, the O atoms are coordinated to sodium as well as to molybdenum. Here, the Na—O distances average 2.377 (2) Å and the Mo—ONa distances 1.909 (3) Å. All these distances as well as the variation with increasing coordination number are in aggreement with literature data (Evain et al., 2006; Bharadwaj et al., 1986; You et al., 1989). Finally, two Mo atoms are coordinated by 1-methylimidazole, resulting in an Mo—N bond length of 2.229 (9) Å, which is also in accordance with the literature (2.2–2.5 Å; Cotton & Ilsey, 1972; Brisdon & Woolf, 1978; Schrauzer et al., 1982). On the basis of the composition of the compound as well as with regard to coordination and bond distances, all Mo atoms exhibit an oxidation state of +6.

Related literature top

For related literature, see: Bharadwaj et al. (1986); Brisdon & Woolf (1978); Cheetham (1994); Chen et al. (2005); Evain et al. (2006); Heyns et al. (1991); Jia et al. (1999); Kobayashi et al. (2009); Liu et al. (2006); Müller & Pope (1991); Müller et al. (2002); McCann et al. (1994); You et al. (1989); Yu et al. (2008); Zhai et al. (1992).

Experimental top

(Hmim)3[NaMo8O26(mim)2] was prepared from aqueous solutions containing water (5 ml), Na2MoO4 (200 mg, 0.97 mmol) and 1-methylimidazole (1.2 ml). This solution was stirred at room temperature with 30% H2O2 (1.0 ml) added dropwise at 263 K. The resulting dark-red–brown solution was stirred for an additional 2–4 h. During this period of time the red–brown solution turned to light yellow. Finally, the solution was concentrated by evacuation and left for crystallization at room temperature. After a few weeks, rectangular transparent and colorless crystals of the title compound were formed. A crystal suitable for crystal structure analysis was fixed onto a glass filament and coated in perfluorated oil (Kel-F).

Refinement top

H atoms were positioned geometrically [C—H = 0.93–0.96 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N)]. During structure refinement, one of the methylimidazolium cations was found to be disordered (Fig. 1). This was dealt with using split atom positions. When refining the relevant site occupation factors, values near 50% were identified, and these site occupancies were subsequently fixed at 0.5.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Figure 1: The unit cell of (Hmim)3[NaMo8O26(mim)2] with polyhedra indicating the chain-like anion 1[NaMo8O26(mim)2]3- [in the electronic version of the paper (MoO6) octahedra: green; (NaO6) octahedra: blue]. For clarity H atoms have been omitted; the disordered 1-methylimidazolium unit (indicated as *) is shown with one position only.
[Figure 2] Fig. 2. Figure 2: The chain-like anion 1[NaMo8O26(mim)2]3-.
[Figure 3] Fig. 3. Figure 3: Scheme illustrating the different condensation, interlinking and Na+ coordination in 1[NaMo8O26(Nmim)2]3- (a) and 1[NaMo8O26]3- (b).
Tris(1-methylimidazolium) bis(1-methylimidazole)hexacosaoxidooctamolybdatesodium top
Crystal data top
(C4H7N2)3[NaMo8O26(C4H6N2)2]F(000) = 1732
Mr = 1784.29Dx = 2.253 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6846 reflections
a = 11.692 (2) Åθ = 3.0–60.0°
b = 10.298 (2) ŵ = 1.95 mm1
c = 22.190 (4) ÅT = 298 K
β = 100.12 (3)°Rectangular, colorless
V = 2630.2 (9) Å30.4 × 0.2 × 0.2 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
7219 independent reflections
Radiation source: fine-focus sealed tube5717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
imaging plate diffraction system scansθmax = 29.6°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
h = 1616
Tmin = 0.393, Tmax = 0.528k = 1414
22631 measured reflectionsl = 3025
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.002
7219 reflectionsΔρmax = 1.11 e Å3
378 parametersΔρmin = 0.96 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (2)
Crystal data top
(C4H7N2)3[NaMo8O26(C4H6N2)2]V = 2630.2 (9) Å3
Mr = 1784.29Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.692 (2) ŵ = 1.95 mm1
b = 10.298 (2) ÅT = 298 K
c = 22.190 (4) Å0.4 × 0.2 × 0.2 mm
β = 100.12 (3)°
Data collection top
Stoe IPDS II
diffractometer
7219 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
5717 reflections with I > 2σ(I)
Tmin = 0.393, Tmax = 0.528Rint = 0.058
22631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.97Δρmax = 1.11 e Å3
7219 reflectionsΔρmin = 0.96 e Å3
378 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.36916 (3)0.72008 (3)0.579880 (16)0.01950 (9)
Mo20.52428 (3)0.93453 (3)0.373499 (16)0.02093 (9)
Mo30.59280 (3)0.87367 (3)0.533358 (15)0.01805 (9)
Mo40.34864 (3)0.75230 (3)0.432644 (16)0.02078 (9)
Na10.50000.50000.50000.0269 (5)
O10.2793 (3)0.7499 (3)0.63099 (15)0.0293 (6)
O20.3566 (3)0.5555 (3)0.56340 (14)0.0262 (6)
O30.5017 (2)0.7235 (3)0.51633 (13)0.0211 (5)
O40.4645 (2)0.8887 (3)0.59393 (13)0.0204 (5)
O50.2829 (2)0.7866 (3)0.50632 (13)0.0225 (6)
O60.6501 (3)0.9168 (3)0.34484 (17)0.0369 (8)
O70.4207 (3)0.9657 (3)0.31079 (15)0.0331 (7)
O80.5733 (2)1.0579 (3)0.54859 (13)0.0206 (5)
O90.4759 (3)0.7601 (3)0.38683 (14)0.0245 (6)
O100.6536 (2)0.8890 (3)0.46729 (14)0.0240 (6)
O110.7073 (2)0.8319 (3)0.58829 (15)0.0272 (6)
O120.2323 (3)0.8031 (3)0.38030 (15)0.0320 (7)
O130.3395 (3)0.5852 (3)0.43181 (14)0.0269 (6)
N10.5129 (3)0.6509 (3)0.65255 (16)0.0217 (6)
N20.6129 (3)0.5135 (4)0.71659 (17)0.0275 (7)
C10.5821 (3)0.7203 (4)0.6984 (2)0.0254 (8)
H10.58600.81030.70140.030*
C20.6436 (4)0.6349 (4)0.7383 (2)0.0299 (9)
H20.69620.65530.77360.036*
C30.5350 (4)0.5263 (4)0.6652 (2)0.0252 (8)
H30.50090.45740.64150.030*
C40.6617 (6)0.3927 (5)0.7433 (3)0.0483 (15)
H4A0.61800.32090.72350.072*
H4B0.65840.39160.78620.072*
H4C0.74120.38560.73790.072*
N30.0886 (3)0.3841 (4)0.4053 (2)0.0336 (8)
N40.0731 (4)0.3526 (5)0.4999 (2)0.0385 (9)
H40.08990.34860.53920.046*
C50.1431 (4)0.3914 (5)0.4637 (2)0.0360 (10)
H50.21900.41980.47640.043*
C60.1397 (5)0.4139 (6)0.3510 (3)0.0418 (12)
H6A0.18130.33940.34030.063*
H6B0.19230.48580.35980.063*
H6C0.07910.43590.31750.063*
C70.0208 (4)0.3403 (6)0.4051 (3)0.0429 (12)
H7A0.07790.32690.37090.051*
C80.0313 (4)0.3195 (6)0.4651 (3)0.0416 (12)
H80.09660.28880.47920.050*
N50.1214 (4)0.3454 (5)0.6223 (2)0.0450 (11)
C90.0598 (5)0.3210 (7)0.6683 (3)0.0516 (14)
H9A0.01950.30390.66210.062*0.50
H9B0.01060.27690.66390.062*0.50
C10A0.2273 (10)0.3675 (14)0.6494 (6)0.039 (3)*0.50
H10A0.29020.37970.62960.047*0.50
N6A0.2325 (9)0.3701 (12)0.7103 (5)0.045 (2)*0.50
C11A0.1280 (12)0.3249 (16)0.7229 (7)0.048 (3)*0.50
H11A0.10970.30250.76060.058*0.50
C12A0.3307 (13)0.4082 (17)0.7585 (7)0.060 (3)*0.50
H12A0.37750.33330.77150.091*0.50
H12B0.30130.44370.79280.091*0.50
H12C0.37710.47220.74260.091*0.50
C10B0.2161 (11)0.4118 (15)0.6511 (6)0.044 (3)*0.50
H10B0.27210.44600.63060.052*0.50
N6B0.2211 (9)0.4233 (11)0.7108 (5)0.042 (2)*0.50
C11B0.1195 (11)0.3727 (14)0.7223 (6)0.043 (3)*0.50
H11B0.09450.37300.75980.051*0.50
C12B0.3162 (14)0.4805 (17)0.7551 (8)0.064 (4)*0.50
H12D0.38890.44460.74880.096*0.50
H12E0.30470.46130.79590.096*0.50
H12F0.31700.57290.74950.096*0.50
C161.0905 (18)1.022 (2)0.5716 (11)0.048 (4)0.50
H16A1.04831.08010.59350.073*0.50
H16B1.16411.06000.56820.073*0.50
H16C1.10310.94110.59330.073*0.50
N70.8762 (13)0.9657 (19)0.4385 (12)0.050 (4)0.50
H70.80650.95260.41940.060*0.50
C131.0651 (9)0.9887 (13)0.4576 (7)0.050 (3)0.50
H131.14250.99520.45310.060*0.50
C140.9741 (14)0.9677 (14)0.4136 (8)0.057 (3)0.50
H140.97710.95620.37240.068*0.50
N81.0232 (9)0.9987 (15)0.5100 (8)0.047 (3)0.50
C150.9084 (12)0.9879 (13)0.4981 (10)0.057 (4)0.50
H150.85900.99460.52650.069*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01900 (14)0.02007 (15)0.01890 (17)0.00250 (11)0.00188 (11)0.00202 (11)
Mo20.02534 (16)0.01955 (15)0.01828 (17)0.00030 (11)0.00487 (12)0.00039 (12)
Mo30.01766 (14)0.01667 (14)0.01949 (17)0.00037 (10)0.00230 (11)0.00049 (11)
Mo40.02299 (15)0.01944 (15)0.01832 (17)0.00298 (11)0.00077 (12)0.00073 (12)
Na10.0291 (11)0.0209 (10)0.0288 (13)0.0026 (8)0.0003 (9)0.0004 (9)
O10.0252 (13)0.0368 (17)0.0259 (16)0.0020 (12)0.0042 (12)0.0002 (13)
O20.0279 (13)0.0261 (14)0.0223 (15)0.0058 (11)0.0019 (11)0.0046 (11)
O30.0231 (12)0.0168 (12)0.0233 (14)0.0025 (9)0.0036 (10)0.0009 (10)
O40.0222 (12)0.0180 (12)0.0213 (14)0.0038 (9)0.0047 (10)0.0010 (10)
O50.0193 (11)0.0261 (13)0.0210 (14)0.0019 (10)0.0003 (10)0.0038 (11)
O60.0423 (18)0.0338 (17)0.037 (2)0.0039 (14)0.0148 (15)0.0045 (14)
O70.0464 (18)0.0230 (15)0.0268 (17)0.0024 (13)0.0018 (14)0.0014 (12)
O80.0224 (12)0.0163 (12)0.0232 (14)0.0009 (9)0.0042 (10)0.0006 (10)
O90.0314 (14)0.0193 (13)0.0232 (15)0.0003 (10)0.0059 (11)0.0004 (11)
O100.0241 (12)0.0234 (13)0.0250 (15)0.0011 (10)0.0057 (11)0.0003 (11)
O110.0251 (13)0.0259 (14)0.0290 (16)0.0005 (11)0.0004 (12)0.0015 (12)
O120.0324 (15)0.0378 (17)0.0222 (16)0.0035 (13)0.0046 (12)0.0009 (13)
O130.0331 (14)0.0230 (14)0.0233 (15)0.0034 (11)0.0013 (12)0.0027 (11)
N10.0259 (15)0.0204 (15)0.0187 (16)0.0006 (12)0.0034 (12)0.0017 (12)
N20.0322 (17)0.0240 (17)0.0235 (18)0.0026 (13)0.0030 (14)0.0044 (13)
C10.0273 (18)0.0227 (18)0.024 (2)0.0007 (14)0.0001 (15)0.0008 (15)
C20.032 (2)0.028 (2)0.027 (2)0.0038 (16)0.0027 (17)0.0027 (17)
C30.0286 (18)0.0233 (18)0.023 (2)0.0026 (14)0.0024 (15)0.0011 (15)
C40.062 (3)0.030 (2)0.043 (3)0.010 (2)0.019 (3)0.008 (2)
N30.0287 (18)0.036 (2)0.036 (2)0.0029 (15)0.0038 (15)0.0026 (17)
N40.037 (2)0.042 (2)0.037 (2)0.0041 (17)0.0066 (17)0.0017 (18)
C50.0265 (19)0.046 (3)0.035 (3)0.0056 (18)0.0043 (18)0.004 (2)
C60.044 (3)0.049 (3)0.033 (3)0.001 (2)0.009 (2)0.001 (2)
C70.027 (2)0.046 (3)0.052 (3)0.0052 (19)0.001 (2)0.003 (2)
C80.029 (2)0.044 (3)0.052 (3)0.0078 (19)0.008 (2)0.005 (2)
N50.050 (2)0.047 (3)0.040 (3)0.009 (2)0.014 (2)0.004 (2)
C90.040 (3)0.066 (4)0.053 (4)0.002 (3)0.018 (2)0.002 (3)
C160.037 (13)0.042 (7)0.067 (12)0.011 (9)0.011 (10)0.006 (6)
N70.012 (6)0.046 (7)0.093 (13)0.005 (5)0.015 (6)0.010 (7)
C130.025 (5)0.056 (7)0.068 (9)0.002 (4)0.006 (5)0.002 (7)
C140.046 (7)0.053 (8)0.072 (10)0.001 (6)0.012 (7)0.009 (7)
N80.035 (11)0.036 (4)0.072 (13)0.010 (7)0.012 (7)0.015 (6)
C150.035 (7)0.042 (6)0.098 (14)0.004 (5)0.018 (9)0.004 (7)
Geometric parameters (Å, º) top
Mo1—O11.704 (3)N3—C51.342 (6)
Mo1—O21.734 (3)N3—C71.355 (6)
Mo1—O51.890 (3)N3—C61.469 (7)
Mo1—O42.058 (3)N4—C51.306 (7)
Mo1—N12.232 (3)N4—C81.369 (6)
Mo1—O32.271 (3)N4—H40.8600
Mo1—Na13.4017 (7)C5—H50.9300
Mo2—O71.707 (3)C6—H6A0.9600
Mo2—O61.712 (4)C6—H6B0.9600
Mo2—O91.922 (3)C6—H6C0.9600
Mo2—O4i1.954 (3)C7—C81.374 (9)
Mo2—O8i2.233 (3)C7—H7A0.9300
Mo2—O102.394 (3)C8—H80.9300
Mo3—O111.700 (3)N5—C10A1.298 (13)
Mo3—O101.746 (3)N5—C10B1.362 (14)
Mo3—O31.879 (3)N5—C91.372 (8)
Mo3—O81.948 (3)C9—C11A1.328 (15)
Mo3—O42.189 (3)C9—C11B1.383 (15)
Mo3—O8i2.516 (3)C9—H9A0.9300
Mo4—O121.708 (3)C9—H9B0.9300
Mo4—O131.724 (3)C10A—N6A1.343 (17)
Mo4—O91.946 (3)C10A—H10A0.9300
Mo4—O51.957 (3)N6A—C11A1.380 (18)
Mo4—O8i2.166 (3)N6A—C12A1.478 (18)
Mo4—O32.360 (3)C11A—H11A0.9300
Mo4—Na13.3447 (7)C12A—H12A0.9600
Na1—O32.329 (3)C12A—H12B0.9600
Na1—O3ii2.329 (3)C12A—H12C0.9600
Na1—O13ii2.363 (3)C10B—N6B1.321 (17)
Na1—O132.363 (3)C10B—H10B0.9300
Na1—O22.438 (3)N6B—C11B1.362 (16)
Na1—O2ii2.439 (3)N6B—C12B1.471 (18)
Na1—Mo4ii3.3447 (7)C11B—H11B0.9300
Na1—Mo1ii3.4017 (7)C12B—H12D0.9600
O4—Mo2i1.954 (3)C12B—H12E0.9600
O8—Mo4i2.166 (3)C12B—H12F0.9600
O8—Mo2i2.233 (3)C16—N81.47 (3)
O8—Mo3i2.516 (3)C16—H16A0.9600
N1—C31.330 (5)C16—H16B0.9600
N1—C11.381 (5)C16—H16C0.9600
N2—C31.335 (5)N7—C151.33 (3)
N2—C21.365 (6)N7—C141.356 (18)
N2—C41.452 (6)N7—H70.8600
C1—C21.362 (6)C13—C141.33 (2)
C1—H10.9300C13—N81.34 (3)
C2—H20.9300C13—H130.9300
C3—H30.9300C14—H140.9300
C4—H4A0.9600N8—C151.326 (18)
C4—H4B0.9600C15—H150.9300
C4—H4C0.9600
O1—Mo1—O2106.08 (15)Mo4ii—Na1—Mo1122.399 (15)
O1—Mo1—O5102.21 (14)Mo4—Na1—Mo157.603 (15)
O2—Mo1—O599.18 (13)Mo1ii—Na1—Mo1180.0
O1—Mo1—O497.37 (14)Mo1—O2—Na1108.03 (14)
O2—Mo1—O4151.66 (13)Mo3—O3—Mo1108.20 (13)
O5—Mo1—O491.01 (12)Mo3—O3—Na1146.51 (14)
O1—Mo1—N192.91 (14)Mo1—O3—Na195.36 (10)
O2—Mo1—N182.28 (13)Mo3—O3—Mo4112.29 (13)
O5—Mo1—N1163.66 (13)Mo1—O3—Mo489.12 (10)
O4—Mo1—N180.83 (12)Na1—O3—Mo490.99 (9)
O1—Mo1—O3168.04 (13)Mo2i—O4—Mo1147.30 (15)
O2—Mo1—O385.74 (13)Mo2i—O4—Mo3106.52 (12)
O5—Mo1—O377.13 (11)Mo1—O4—Mo3105.00 (12)
O4—Mo1—O370.77 (11)Mo1—O5—Mo4115.30 (14)
N1—Mo1—O386.79 (12)Mo3—O8—Mo4i148.63 (14)
O1—Mo1—Na1148.56 (11)Mo3—O8—Mo2i105.05 (12)
O2—Mo1—Na142.97 (11)Mo4i—O8—Mo2i94.31 (11)
O5—Mo1—Na190.70 (9)Mo3—O8—Mo3i104.27 (11)
O4—Mo1—Na1111.10 (8)Mo4i—O8—Mo3i97.58 (10)
N1—Mo1—Na179.24 (9)Mo2i—O8—Mo3i96.63 (10)
O3—Mo1—Na142.97 (7)Mo2—O9—Mo4113.08 (14)
O7—Mo2—O6104.47 (18)Mo3—O10—Mo2117.35 (14)
O7—Mo2—O996.63 (14)Mo4—O13—Na1108.84 (13)
O6—Mo2—O9104.65 (15)C3—N1—C1106.1 (3)
O7—Mo2—O4i96.79 (14)C3—N1—Mo1123.7 (3)
O6—Mo2—O4i103.33 (15)C1—N1—Mo1129.5 (3)
O9—Mo2—O4i144.70 (13)C3—N2—C2108.0 (3)
O7—Mo2—O8i103.83 (15)C3—N2—C4126.4 (4)
O6—Mo2—O8i151.67 (14)C2—N2—C4125.5 (4)
O9—Mo2—O8i73.10 (11)C2—C1—N1108.6 (4)
O4i—Mo2—O8i72.03 (11)C2—C1—H1125.7
O7—Mo2—O10174.14 (15)N1—C1—H1125.7
O6—Mo2—O1081.32 (14)C1—C2—N2106.6 (4)
O9—Mo2—O1080.88 (11)C1—C2—H2126.7
O4i—Mo2—O1082.51 (11)N2—C2—H2126.7
O8i—Mo2—O1070.40 (10)N1—C3—N2110.7 (4)
O11—Mo3—O10103.85 (15)N1—C3—H3124.6
O11—Mo3—O3106.45 (14)N2—C3—H3124.6
O10—Mo3—O3101.89 (13)N2—C4—H4A109.5
O11—Mo3—O8102.92 (13)N2—C4—H4B109.5
O10—Mo3—O897.76 (13)H4A—C4—H4B109.5
O3—Mo3—O8139.24 (12)N2—C4—H4C109.5
O11—Mo3—O496.66 (13)H4A—C4—H4C109.5
O10—Mo3—O4159.05 (12)H4B—C4—H4C109.5
O3—Mo3—O475.89 (11)C5—N3—C7108.0 (5)
O8—Mo3—O473.17 (11)C5—N3—C6126.0 (4)
O11—Mo3—O8i178.15 (12)C7—N3—C6125.9 (5)
O10—Mo3—O8i75.18 (11)C5—N4—C8108.8 (5)
O3—Mo3—O8i75.34 (10)C5—N4—H4125.6
O8—Mo3—O8i75.73 (11)C8—N4—H4125.6
O4—Mo3—O8i84.19 (10)N4—C5—N3109.5 (4)
O12—Mo4—O13104.93 (15)N4—C5—H5125.2
O12—Mo4—O9102.85 (15)N3—C5—H5125.2
O13—Mo4—O995.02 (14)N3—C6—H6A109.5
O12—Mo4—O597.48 (15)N3—C6—H6B109.5
O13—Mo4—O598.99 (14)H6A—C6—H6B109.5
O9—Mo4—O5151.38 (12)N3—C6—H6C109.5
O12—Mo4—O8i96.48 (14)H6A—C6—H6C109.5
O13—Mo4—O8i157.80 (12)H6B—C6—H6C109.5
O9—Mo4—O8i74.21 (11)N3—C7—C8107.1 (5)
O5—Mo4—O8i83.74 (12)N3—C7—H7A126.5
O12—Mo4—O3167.59 (14)C8—C7—H7A126.5
O13—Mo4—O385.41 (12)N4—C8—C7106.6 (5)
O9—Mo4—O382.68 (12)N4—C8—H8126.7
O5—Mo4—O373.77 (11)C7—C8—H8126.7
O8i—Mo4—O374.14 (10)C10A—N5—C9105.6 (7)
O12—Mo4—Na1146.86 (12)C10B—N5—C9103.4 (7)
O13—Mo4—Na141.97 (10)C11A—C9—N5111.3 (8)
O9—Mo4—Na182.67 (9)N5—C9—C11B108.8 (7)
O5—Mo4—Na191.24 (8)C11A—C9—H9A124.4
O8i—Mo4—Na1116.29 (7)N5—C9—H9A124.4
O3—Mo4—Na144.13 (7)C11B—C9—H9A122.7
O3—Na1—O3ii180.0C11A—C9—H9B119.3
O3—Na1—O13ii106.45 (10)N5—C9—H9B125.6
O3ii—Na1—O13ii73.55 (10)C11B—C9—H9B125.5
O3—Na1—O1373.55 (10)N5—C10A—N6A109.9 (10)
O3ii—Na1—O13106.45 (10)N5—C10A—H10A125.0
O13ii—Na1—O13180.00 (13)N6A—C10A—H10A125.0
O3—Na1—O270.51 (10)C10A—N6A—C11A108.1 (11)
O3ii—Na1—O2109.49 (10)C10A—N6A—C12A128.7 (11)
O13ii—Na1—O2105.48 (11)C11A—N6A—C12A123.1 (12)
O13—Na1—O274.52 (11)C9—C11A—N6A103.8 (12)
O3—Na1—O2ii109.49 (10)C9—C11A—H11A128.1
O3ii—Na1—O2ii70.51 (10)N6A—C11A—H11A128.1
O13ii—Na1—O2ii74.52 (11)N6B—C10B—N5113.9 (11)
O13—Na1—O2ii105.48 (11)N6B—C10B—H10B123.0
O2—Na1—O2ii180.00 (14)N5—C10B—H10B123.0
O3—Na1—Mo4ii135.12 (7)C10B—N6B—C11B105.4 (11)
O3ii—Na1—Mo4ii44.88 (7)C10B—N6B—C12B127.0 (12)
O13ii—Na1—Mo4ii29.19 (7)C11B—N6B—C12B127.6 (12)
O13—Na1—Mo4ii150.81 (7)N6B—C11B—C9108.1 (11)
O2—Na1—Mo4ii106.73 (7)N6B—C11B—H11B126.0
O2ii—Na1—Mo4ii73.27 (7)C9—C11B—H11B126.0
O3—Na1—Mo444.88 (7)N6B—C12B—H12D109.5
O3ii—Na1—Mo4135.12 (7)N6B—C12B—H12E109.5
O13ii—Na1—Mo4150.81 (7)H12D—C12B—H12E109.5
O13—Na1—Mo429.19 (7)N6B—C12B—H12F109.5
O2—Na1—Mo473.27 (7)H12D—C12B—H12F109.5
O2ii—Na1—Mo4106.73 (7)H12E—C12B—H12F109.5
Mo4ii—Na1—Mo4180.0C15—N7—C14106.9 (17)
O3—Na1—Mo1ii138.33 (7)C15—N7—H7126.6
O3ii—Na1—Mo1ii41.67 (7)C14—N7—H7126.6
O13ii—Na1—Mo1ii72.95 (8)C14—C13—N8106.3 (12)
O13—Na1—Mo1ii107.05 (8)C14—C13—H13126.9
O2—Na1—Mo1ii151.01 (7)N8—C13—H13126.9
O2ii—Na1—Mo1ii28.99 (7)C13—C14—N7109.1 (19)
Mo4ii—Na1—Mo1ii57.601 (15)C13—C14—H14125.4
Mo4—Na1—Mo1ii122.397 (15)N7—C14—H14125.4
O3—Na1—Mo141.67 (7)C15—N8—C13109.5 (13)
O3ii—Na1—Mo1138.33 (7)C15—N8—C16123.7 (17)
O13ii—Na1—Mo1107.05 (8)C13—N8—C16126.8 (13)
O13—Na1—Mo172.95 (8)N8—C15—N7108.2 (15)
O2—Na1—Mo129.00 (7)N8—C15—H15125.9
O2ii—Na1—Mo1151.01 (7)N7—C15—H15125.9
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C4H7N2)3[NaMo8O26(C4H6N2)2]
Mr1784.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.692 (2), 10.298 (2), 22.190 (4)
β (°) 100.12 (3)
V3)2630.2 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.393, 0.528
No. of measured, independent and
observed [I > 2σ(I)] reflections
22631, 7219, 5717
Rint0.058
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.095, 0.97
No. of reflections7219
No. of parameters378
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.96

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2009).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds