Download citation
Download citation
link to html
Three-dimensional X-ray diffraction was applied to characterize the strain/stress evolution in individual grains of an Al–0.3 wt% Mn polycrystal deformed in situ at a synchrotron source. Methodological aspects concerning the calibration of the geometrical setup and the evaluation of the strain/stress tensors are discussed. A two-step calibration method separately treating the detector and the rotation axis allows one to determine the centre-of-mass position and crystallographic orientation of grains with standard errors of about 1.5 µm and 0.02°, respectively. Numerical simulations indicate that the error of normal strain components (about 1 × 10−4) is mainly caused by calibration errors, while the error of shear components (about 0.5 × 10−4) is largely influenced by counting statistics and random spot-centre errors due to detector distortion. The importance of monitoring the beam energy is emphasized.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576717008238/ks5560sup1.pdf
Supplementary material


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds