Download citation
Download citation
link to html
For a symmetry-consistent theoretical description of the multiferroic phase of Ba2CoGe2O7 a precise knowledge of its crystal structure is a prerequisite. In a previous synchrotron X-ray diffraction experiment on multiferroic Ba2CoGe2O7 at room temperature, forbidden reflections were found that favour the tetragonal-to-orthorhombic symmetry lowering of the compound [Hutanu, Sazonov, Murakawa, Tokura, Náfrádi & Chernyshov (2011), Phys. Rev. B, 84, 212101]. Here, the results are reported of room-temperature single-crystal diffraction studies with both hot and cold neutrons to differentiate between genuine symmetry lowering and multiple diffraction (the Renninger effect). A comparison of the experimental multiple diffraction patterns with simulated ones rules out symmetry lowering. Thus, the structural model based on the tetragonal space group P\overline{4}2_{1}m was selected to describe the Ba2CoGe2O7 symmetry at room temperature. The precise structural parameters from neutron diffraction at 300 K are presented and compared with the previous X-ray diffraction results.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576716002405/ks5497sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576716002405/ks5497Isup2.hkl
Contains datablock I

CCDC reference: 1452233

Computing details top

(I) top
Crystal data top
Ba2CoGe2O7Z = 2
Mr = 590.81Dx = 5.010 Mg m3
Tetragonal, P421mNeutron radiation, λ = 0.793 Å
Hall symbol: P -4 2abµ = 0.01 mm1
a = 8.392 (1) ÅT = 300 K
c = 5.561 (1) ÅCylinder, blue
V = 391.64 (12) Å34 × 2 (radius) mm
Data collection top
Four-circle
diffractometer
θmax = 49.7°, θmin = 3.8°
1746 measured reflectionsh = 016
552 independent reflectionsk = 016
552 reflections with I > 3σ(I)l = 1010
Rint = 0.024
Refinement top
Refinement on F20 constraints
R[F2 > 2σ(F2)] = 0.016Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F2) = 0.042(Δ/σ)max = 0.003
S = 1.68Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
551 reflectionsExtinction coefficient: 24200 (700)
35 parametersAbsolute structure: 0 of Friedel pairs used in the refinement
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0.33479 (7)0.16521 (7)0.49267 (17)0.00731 (12)
Co0000.0063 (3)
Ge0.14053 (5)0.35947 (5)0.03986 (9)0.00520 (8)
O100.50.1581 (2)0.00968 (18)
O20.13843 (8)0.36157 (8)0.72982 (15)0.01017 (12)
O30.07949 (9)0.18468 (7)0.18715 (14)0.00997 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.00743 (18)0.00743 (18)0.0071 (2)0.00247 (19)0.00058 (16)0.00058 (16)
Co0.0055 (4)0.0055 (4)0.0080 (8)000
Ge0.00514 (11)0.00514 (11)0.00532 (17)0.00053 (13)0.00002 (8)0.00002 (8)
O10.0108 (2)0.0108 (2)0.0074 (4)0.0059 (3)00
O20.01205 (19)0.01205 (19)0.0064 (2)0.0023 (3)0.00043 (14)0.00043 (14)
O30.0133 (3)0.0066 (2)0.01005 (17)0.00288 (15)0.00213 (18)0.00046 (16)
Geometric parameters (Å, º) top
Ba—Bai3.9213 (9)Ba—O32.7392 (11)
Ba—Baii4.4315 (9)Ba—O3vi2.7392 (11)
Ba—Baiii4.4315 (9)Co—O31.9825 (7)
Ba—Baiv4.4315 (9)Co—O3vii1.9825 (7)
Ba—Bav4.4315 (9)Co—O3viii1.9825 (7)
Ba—Ge3.4141 (9)Co—O3ix1.9825 (7)
Ba—O1ii2.7595 (12)Ge—O11.7928 (6)
Ba—O22.6777 (10)Ge—O2x1.7244 (10)
Ba—O2ii2.8415 (10)Ge—O31.7563 (8)
Ba—O2v2.8415 (10)Ge—O3vi1.7563 (8)
Bai—Ba—Baii63.741 (15)Ge—Ba—O330.748 (18)
Bai—Ba—Baiii153.72 (2)Ge—Ba—O3vi30.748 (18)
Bai—Ba—Baiv153.72 (2)O1ii—Ba—O2105.77 (4)
Bai—Ba—Bav63.741 (15)O1ii—Ba—O2ii79.41 (3)
Bai—Ba—Ge132.48 (3)O1ii—Ba—O2v79.41 (3)
Bai—Ba—O1ii44.72 (3)O1ii—Ba—O3149.25 (3)
Bai—Ba—O2150.49 (4)O1ii—Ba—O3vi149.25 (3)
Bai—Ba—O2ii46.37 (2)O2—Ba—O2ii144.58 (3)
Bai—Ba—O2v46.37 (2)O2—Ba—O2v144.58 (3)
Bai—Ba—O3126.53 (3)O2—Ba—O377.73 (3)
Bai—Ba—O3vi126.53 (3)O2—Ba—O3vi77.73 (3)
Baii—Ba—Baiii142.471 (19)O2ii—Ba—O2v70.65 (3)
Baii—Ba—Baiv89.981 (16)O2ii—Ba—O381.10 (3)
Baii—Ba—Bav127.432 (18)O2ii—Ba—O3vi115.85 (4)
Baii—Ba—Ge108.20 (2)O2v—Ba—O3115.85 (4)
Baii—Ba—O1ii70.895 (18)O2v—Ba—O3vi81.10 (3)
Baii—Ba—O2112.09 (3)O3—Ba—O3vi61.44 (3)
Baii—Ba—O2ii35.35 (2)O3—Co—O3vii116.67 (3)
Baii—Ba—O2v102.78 (2)O3—Co—O3viii106.00 (3)
Baii—Ba—O379.44 (2)O3—Co—O3ix106.00 (3)
Baii—Ba—O3vi137.12 (3)O3vii—Co—O3viii106.00 (3)
Baiii—Ba—Baiv52.519 (13)O3vii—Co—O3ix106.00 (3)
Baiii—Ba—Bav89.981 (16)O3viii—Co—O3ix116.67 (3)
Baiii—Ba—Ge53.707 (16)Ba—Ge—O1110.95 (4)
Baiii—Ba—O1ii128.62 (3)Ba—Ge—O2x138.35 (3)
Baiii—Ba—O237.87 (2)Ba—Ge—O352.88 (3)
Baiii—Ba—O2ii151.94 (3)Ba—Ge—O3vi52.88 (3)
Baiii—Ba—O2v111.77 (2)O1—Ge—O2x110.69 (5)
Baiii—Ba—O372.77 (2)O1—Ge—O3100.74 (4)
Baiii—Ba—O3vi41.55 (2)O1—Ge—O3vi100.74 (4)
Baiv—Ba—Bav142.471 (19)O2x—Ge—O3118.15 (4)
Baiv—Ba—Ge53.707 (16)O2x—Ge—O3vi118.15 (4)
Baiv—Ba—O1ii128.62 (3)O3—Ge—O3vi105.64 (4)
Baiv—Ba—O237.87 (2)Baiii—O1—Baiv90.55 (4)
Baiv—Ba—O2ii111.77 (2)Baiii—O1—Ge104.96 (3)
Baiv—Ba—O2v151.94 (3)Baiii—O1—Gexi104.96 (3)
Baiv—Ba—O341.55 (2)Baiv—O1—Ge104.96 (3)
Baiv—Ba—O3vi72.77 (2)Baiv—O1—Gexi104.96 (3)
Bav—Ba—Ge108.20 (2)Ge—O1—Gexi136.95 (8)
Bav—Ba—O1ii70.895 (18)Ba—O2—Baiii106.78 (3)
Bav—Ba—O2112.09 (3)Ba—O2—Baiv106.78 (3)
Bav—Ba—O2ii102.78 (2)Ba—O2—Gexii118.68 (4)
Bav—Ba—O2v35.35 (2)Baiii—O2—Baiv87.26 (3)
Bav—Ba—O3137.12 (3)Baiii—O2—Gexii116.34 (4)
Bav—Ba—O3vi79.44 (2)Baiv—O2—Gexii116.34 (4)
Ge—Ba—O1ii177.20 (4)Ba—O3—Co122.83 (3)
Ge—Ba—O277.03 (2)Ba—O3—Ge96.37 (4)
Ge—Ba—O2ii98.33 (3)Co—O3—Ge120.41 (4)
Ge—Ba—O2v98.33 (3)
Symmetry codes: (i) x+1, y, z; (ii) y, x, z+1; (iii) y, x+1, z+1; (iv) y, x, z+1; (v) y+1, x, z+1; (vi) y+1/2, x+1/2, z; (vii) x, y, z; (viii) y, x, z; (ix) y, x, z; (x) x, y, z1; (xi) x, y+1, z; (xii) x, y, z+1.
 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds