Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Self-assembled growth of Ge quantum dot lattices in oxide matrices prepared by the quite simple magnetron sputtering deposition method allows the preparation of a variety of structures tunable by their shape, size and arrangement. The driving mechanism for the self-assembly was attributed to the surface morphology features originating from the quantum dots' growth. Here it is shown specifically that the matrix type is another critical factor that enables the control of the self-assembly process and the tuning of the ordering type and degree of regularity of quantum dot systems. The effectiveness of the matrix factor is demonstrated through the analysis of quantum dot arrangements in amorphous silica, alumina and mullite matrices. Using the same deposition conditions, different ordering types and degrees of disorder were found in the quantum dot systems based on different matrices. The matrix factor is shown to be driven by different matrix tendencies to smooth the surface during the growth of the films. The obtained results are relevant for understanding and tailoring of the self-assembled growth of quantum dot lattices in amorphous systems.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds