Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Vertically aligned undoped ZnO and Sb-doped ZnO nanowires have been synthesized on a silicon substrate using the vapor-solid technique, without using a catalyst or predeposited buffer layers. The structure and morphology of the as-synthesized nanowires are characterized using X-ray diffraction, scanning and transmission electron microscopies, selected area electron diffraction, and electron dispersive X-ray spectroscopy. The results showed that the use of Si(111) is a critical factor for the growth of vertically aligned nanowires. This is a result of the lattice match on Si(111), which is more favorable with the ZnO lattice structure because the Si(111) surface is hexagonal and has a smaller lattice constant of 3.840 Å. The photoluminescence properties were also investigated at room temperature (300 K). The UV peaks of undoped and Sb-doped ZnO nanowires are located at 3.33 and 3.29 eV, respectively. This redshift of 0.04 eV in the Sb-doped ZnO indicates a reduction of the ZnO band gap caused by the Sb dopant. The temperature-dependent photoluminescence spectra of Sb-doped ZnO nanowires from 10 to 300 K were also examined. This measurement showed that at 10 K several peaks appear, at 3.36, 3.23 and 3.04 eV, which were assigned as acceptor-bound excitons, a donor-acceptor pair and a zinc-vacancy-related peak, respectively. These peaks are shifted with the increase of temperature up to 300 K.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds