Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A collimator and beam-stop assembly that can be inserted inside a temperature-controlled pressure vessel, to reduce dramatically the parasitic Bragg scattering from the vessel, has been designed and evaluated. High-energy X-ray powder diffraction data, suitable for the Rietveld refinement of simple crystal structures, were collected using this background-reducing internal mask (BRIM). ZrW2O8 was examined at up to 540 K and 124 MPa, using quite large pressure and temperature steps. No pressure dependence of the order–disorder transition temperature of this material was apparent. An orthorhombic to monoclinic phase transition (onset ∼83 MPa) was observed for Al2W3O12. Upon going through the transition, the bulk modulus of the material decreased from 41.8 to 20.8 GPa. Bulk moduli estimated for CaF2 and α-Al2O3, from data collected at up to 280 MPa, were in good agreement with prior literature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889811028925/ks5287sup1.cif
Contains datablocks global, CAF2_P1_publ

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889811028925/ks5287sup2.cif
Contains datablocks global, ZRW2O8_62MPa_324K

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889811028925/ks5287sup3.cif
Contains datablocks global, ZRW2O8_62MPa_483K

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889811028925/ks5287sup5.cif
Contains datablocks global, ALUMINA_P3

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0021889811028925/ks5287sup6.pdf
Orthorhombic and monoclinic phases

Computing details top

Program(s) used to refine structure: GSAS.

(CAF2_P1_publ) top
Crystal data top
CaF2a = 5.47082 (7) Å
Mr = 78.08V = 163.74 (1) Å3
Cubic, Fm3mZ = 4
Data collection top
2θmin = 0.004°, 2θmax = 15.996°, 2θstep = 0.008°
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. #1(GU) = 703.466 #2(GV) = -119.364 #3(GW) = 6.454 #4(GP) = 0.000 #5(LX) = 0.000 #6(LY) = 8.631 #7(S/L) = 0.0005 #8(H/L) = 0.0005 #9(trns) = 0.00 #10(shft)= 0.0000 #11(stec)= 0.00 #12(ptec)= 0.00 #13(sfec)= 0.00 #14(L11) = 0.000 #15(L22) = 0.000 #16(L33) = 0.000 #17(L12) = 0.000 #18(L13) = 0.000 #19(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.03714 parameters
Rwp = 0.0740 restraints
Rexp = 0.098(Δ/σ)max = 0.04
R(F2) = 0.82567Background function: GSAS Background function number 1 with 6 terms. Shifted Chebyshev function of 1st kind 1: 83.8739 2: -18.5157 3: -4.16936 4: 0.249283 5: -2.70281 6: 1.79589
2000 data points
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
CA10.00.00.00.0014 (8)*
F20.250.250.250.0059 (11)*
 
(ZRW2O8_62MPa_324K) top
Crystal data top
O8W2Zra = 9.07371 (4) Å
Mr = 586.91V = 747.06 (1) Å3
Cubic, P213Z = 4
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. #1(GU) = 154.404 #2(GV) = -18.108 #3(GW) = 1.718 #4(GP) = 0.000 #5(LX) = 0.000 #6(LY) = 10.599 #7(S/L) = 0.0005 #8(H/L) = 0.0005 #9(trns) = 0.00 #10(shft)= 0.0000 #11(stec)= 0.00 #12(ptec)= 0.00 #13(sfec)= 0.00 #14(L11) = 0.000 #15(L22) = 0.000 #16(L33) = 0.000 #17(L12) = 0.000 #18(L13) = 0.000 #19(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.02433 parameters
Rwp = 0.0310 restraints
Rexp = 0.006(Δ/σ)max = 0.06
R(F2) = 0.45473Background function: GSAS Background function number 1 with 6 terms. Shifted Chebyshev function of 1st kind 1: 3738.14 2: -1032.15 3: -121.824 4: 171.737 5: -4.78893 6: -53.6707
2048 data points
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.0018 (3)0.0018 (3)0.0018 (3)0.00521
W10.34202 (17)0.34202 (17)0.34202 (17)0.01312
W20.60117 (14)0.60117 (14)0.60117 (14)0.01188
O10.050 (2)0.209 (2)0.058 (3)0.019 (4)*
O20.071 (3)0.056 (2)0.209 (3)0.023 (5)*
O30.514 (3)0.514 (3)0.514 (3)0.028 (9)*
O40.271 (2)0.271 (2)0.271 (2)0.023 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0052 (4)0.0052 (4)0.0052 (4)0.0042 (8)0.0042 (8)0.0042 (8)
W10.0131 (6)0.0131 (6)0.0131 (6)0.0018 (5)0.0018 (5)0.0018 (5)
W20.0119 (5)0.0119 (5)0.0119 (5)0.0023 (5)0.0023 (5)0.0023 (5)
Geometric parameters (Å, º) top
Zr1—O12.04 (2)W2—O2vi1.79 (3)
Zr1—O1i2.04 (2)W2—O2vii1.79 (3)
Zr1—O1ii2.04 (2)W2—O2viii1.79 (3)
Zr1—O22.05 (3)W2—O31.36 (5)
Zr1—O2i2.05 (3)O1—Zr12.04 (2)
Zr1—O2ii2.05 (3)O1—W1ix1.80 (2)
W1—O1iii1.80 (2)O2—Zr12.05 (3)
W1—O1iv1.80 (2)O2—W2x1.79 (3)
W1—O1v1.80 (2)O3—W21.36 (5)
W1—O41.12 (4)O4—W11.12 (4)
O1—Zr1—O1i90.7 (9)O1iii—W1—O1iv115.4 (5)
O1—Zr1—O1ii90.7 (9)O1iii—W1—O1v115.4 (5)
O1—Zr1—O286.3 (10)O1iii—W1—O4102.6 (7)
O1—Zr1—O2i91.1 (8)O1iv—W1—O1v115.4 (5)
O1—Zr1—O2ii176.6 (8)O1iv—W1—O4102.6 (7)
O1i—Zr1—O1ii90.7 (9)O1v—W1—O4102.6 (7)
O1i—Zr1—O2176.6 (8)O2vi—W2—O2vii109.5 (7)
O1i—Zr1—O2i86.3 (10)O2vi—W2—O2viii109.5 (7)
O1i—Zr1—O2ii91.1 (8)O2vi—W2—O3109.5 (7)
O1ii—Zr1—O291.1 (8)O2vii—W2—O2viii109.5 (7)
O1ii—Zr1—O2i176.6 (8)O2vii—W2—O3109.5 (7)
O1ii—Zr1—O2ii86.3 (10)O2viii—W2—O3109.5 (7)
O2—Zr1—O2i91.9 (9)Zr1—O1—W1ix151.8 (13)
O2—Zr1—O2ii91.9 (9)Zr1—O2—W2x171.0 (13)
O2i—Zr1—O2ii91.9 (9)
Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) y, z+1/2, x+1/2; (iv) x+1/2, y, z+1/2; (v) z+1/2, x+1/2, y; (vi) x+1/2, y+1/2, z+1; (vii) z+1, x+1/2, y+1/2; (viii) y+1/2, z+1, x+1/2; (ix) y+1/2, z, x1/2; (x) x1/2, y+1/2, z+1.
 
(ZRW2O8_62MPa_483K) top
Crystal data top
O8.00W2.00Zra = 9.05896 (6) Å
Mr = 586.91V = 743.42 (2) Å3
Cubic, pa3Z = 4
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. #1(GU) = 306.806 #2(GV) = -50.541 #3(GW) = 3.129 #4(GP) = 0.000 #5(LX) = 0.000 #6(LY) = 13.256 #7(S/L) = 0.0005 #8(H/L) = 0.0005 #9(trns) = 0.00 #10(shft)= 0.0000 #11(stec)= 0.00 #12(ptec)= 0.00 #13(sfec)= 0.00 #14(L11) = 0.000 #15(L22) = 0.000 #16(L33) = 0.000 #17(L12) = 0.000 #18(L13) = 0.000 #19(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.01931 parameters
Rwp = 0.0270 restraints
Rexp = 0.006(Δ/σ)max = 0.05
R(F2) = 0.64683Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 5255.04 2: -1957.05 3: -294.410 4: 382.996 5: -146.265 6: -33.5563 7: 29.0338 8: -90.9287 9: 73.8570 10: 45.5314
2048 data points
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr10.00.00.00.01048
W10.33933 (18)0.33933 (18)0.33933 (18)0.017180.5
W20.60289 (18)0.60289 (18)0.60289 (18)0.016260.5
O10.058 (2)0.220 (2)0.063 (2)0.048 (4)*
O20.50550.50550.50550.042 (5)*0.5
O30.241 (3)0.241 (3)0.241 (3)0.028 (7)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0105 (4)0.0105 (4)0.0105 (4)0.0006 (7)0.0006 (7)0.0006 (7)
W10.0172 (5)0.0172 (5)0.0172 (5)0.0021 (6)0.0021 (6)0.0021 (6)
W20.0163 (4)0.0163 (4)0.0163 (4)0.0022 (7)0.0022 (7)0.0022 (7)
Geometric parameters (Å, º) top
Zr1—O12.139 (17)W2—O1xi1.694 (17)
Zr1—O1i2.139 (17)W2—O1xii1.694 (17)
Zr1—O1ii2.139 (17)W2—O21.528 (3)
Zr1—O1iii2.139 (17)W2—O2vi1.701 (3)
Zr1—O1iv2.139 (17)W2—O3vi2.45 (5)
Zr1—O1v2.139 (17)O1—Zr12.139 (17)
W1—W2vi0.907 (3)O1—W1xiii1.679 (16)
W1—O1vii1.679 (16)O1—W2xiv1.694 (17)
W1—O1viii1.679 (16)O2—W12.607 (3)
W1—O1ix1.679 (16)O2—W1vi2.435 (3)
W1—O22.607 (3)O2—W21.528 (3)
W1—O2vi2.435 (3)O2—W2vi1.701 (3)
W1—O31.54 (5)O2—O2vi0.1726
W2—W1vi0.907 (3)O3—W11.54 (5)
W2—O1x1.694 (17)O3—W2vi2.45 (5)
O1—Zr1—O1i92.7 (8)O1viii—W1—O3104.7 (7)
O1—Zr1—O1ii92.7 (8)O1xviii—W1—O3104.7 (7)
O1—Zr1—O1iii180.0W1vi—W2—O1x73.5 (6)
O1—Zr1—O1iv87.3 (8)W1vi—W2—O1xi73.5 (6)
O1—Zr1—O1v87.3 (8)W1vi—W2—O1xii73.5 (6)
O1i—Zr1—O1ii92.7 (8)W1vi—W2—O2180.0
O1i—Zr1—O1iii87.3 (8)W1vi—W2—O2vi180.0
O1i—Zr1—O1iv180.0O1x—W2—O1xi112.3 (5)
O1i—Zr1—O1v87.3 (8)O1x—W2—O1xii112.3 (5)
O1ii—Zr1—O1iii87.3 (8)O1x—W2—O2106.5 (6)
O1ii—Zr1—O1iv87.3 (8)O1x—W2—O2vi106.5 (6)
O1ii—Zr1—O1v180.0O1xi—W2—O1xii112.3 (5)
O1iii—Zr1—O1iv92.7 (8)O1xi—W2—O2106.5 (6)
O1iii—Zr1—O1v92.7 (8)O1xi—W2—O2vi106.5 (6)
O1iv—Zr1—O1v92.7 (8)O1xii—W2—O2106.5 (6)
W2vi—W1—O1xv75.3 (7)O1xii—W2—O2vi106.5 (6)
W2vi—W1—O1xvi75.3 (7)O2—W2—O2vi0.0
W2vi—W1—O1ix75.3 (7)Zr1—O1—W1xiii151.2 (12)
W2vi—W1—O3180.0Zr1—O1—W2xiv177.0 (12)
O1xv—W1—O1xvi113.8 (6)W1xiii—O1—W2xiv31.2 (3)
O1xv—W1—O1ix113.8 (6)W2—O2—W2vi180.0
O1xvii—W1—O3104.7 (7)W2—O2—O2vi180.0
O1xvi—W1—O1ix113.8 (6)W2vi—O2—O2vi0.0
Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) x, y, z; (iv) z, x, y; (v) y, z, x; (vi) x+1, y+1, z+1; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1/2, y+1, z+1/2; (xi) z+1/2, x+1/2, y+1; (xii) y+1, z+1/2, x+1/2; (xiii) y+1/2, z, x1/2; (xiv) x1/2, y1, z+1/2; (xv) x+3/2, y1, z+1/2; (xvi) z+3/2, x+1/2, y1; (xvii) x+1/2, y1, z+3/2; (xviii) y1, z+1/2, x+3/2.
 
(ALUMINA_P3) top
Crystal data top
Al2O3c = 13.0033 (4) Å
Mr = 101.96V = 255.56 (1) Å3
Trigonal, R3cZ = 6
a = 4.76380 (7) Å
Data collection top
2θmin = 0.004°, 2θmax = 15.996°, 2θstep = 0.008°
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. #1(GU) = 1089.390 #2(GV) = -201.843 #3(GW) = 10.669 #4(GP) = 0.000 #5(LX) = 0.000 #6(LY) = 13.865 #7(S/L) = 0.0005 #8(H/L) = 0.0005 #9(trns) = 0.00 #10(shft)= 0.0000 #11(stec)= 0.00 #12(ptec)= 0.00 #13(sfec)= 0.00 #14(L11) = 0.000 #15(L22) = 0.000 #16(L33) = 0.000 #17(L12) = 0.000 #18(L13) = 0.000 #19(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.03117 parameters
Rwp = 0.0520 restraints
Rexp = 0.046(Δ/σ)max = 0.04
R(F2) = 0.40258Background function: GSAS Background function number 1 with 6 terms. Shifted Chebyshev function of 1st kind 1: 371.203 2: -53.3158 3: 1.59218 4: 11.8174 5: -15.0398 6: 6.91125
2000 data points
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.00.00.35184 (14)0.0032 (6)*
O10.3072 (7)0.00.250.0006 (9)*
Geometric parameters (Å, º) top
Al1—Al1i2.649 (4)Al1—O1vii1.856 (2)
Al1—Al1ii2.7922 (6)Al1—O1viii1.856 (2)
Al1—Al1iii2.7922 (6)Al1—O1ix1.856 (2)
Al1—Al1iv2.7922 (6)O1—Al11.974 (3)
Al1—O11.974 (3)O1—Al1i1.974 (3)
Al1—O1v1.974 (3)O1—Al1iii1.856 (2)
Al1—O1vi1.974 (3)O1—Al1x1.856 (2)
Al1i—Al1—Al1iv80.07 (7)Al1xii—Al1—O1vi121.12 (10)
Al1i—Al1—Al1xi80.07 (7)Al1xii—Al1—O1xiii143.91 (10)
Al1i—Al1—Al1xii80.07 (7)Al1xii—Al1—O1xiv44.87 (8)
Al1i—Al1—O147.86 (7)Al1xii—Al1—O1xv97.79 (8)
Al1i—Al1—O1v47.86 (7)O1—Al1—O1v79.90 (11)
Al1i—Al1—O1vi47.86 (7)O1—Al1—O1vi79.90 (11)
Al1i—Al1—O1xiii117.01 (5)O1—Al1—O1xiii86.43 (3)
Al1i—Al1—O1xiv117.01 (5)O1—Al1—O1xiv90.71 (8)
Al1i—Al1—O1xv117.01 (5)O1—Al1—O1xv164.56 (13)
Al1iv—Al1—Al1xi117.09 (4)O1v—Al1—O1vi79.90 (11)
Al1iv—Al1—Al1xii117.09 (4)O1v—Al1—O1xiii164.56 (13)
Al1iv—Al1—O1121.12 (10)O1v—Al1—O1xiv86.43 (3)
Al1iv—Al1—O1v83.36 (5)O1v—Al1—O1xv90.71 (8)
Al1iv—Al1—O1vi41.57 (6)O1vi—Al1—O1xiii90.71 (8)
Al1iv—Al1—O1xiii97.79 (8)O1vi—Al1—O1xiv164.56 (13)
Al1iv—Al1—O1xiv143.91 (10)O1vi—Al1—O1xv86.43 (3)
Al1iv—Al1—O1xv44.87 (8)O1xiii—Al1—O1xiv100.99 (7)
Al1xi—Al1—Al1xii117.09 (4)O1xiii—Al1—O1xv100.99 (7)
Al1xi—Al1—O141.57 (6)O1xiv—Al1—O1xv100.99 (7)
Al1xi—Al1—O1v121.12 (10)Al1—O1—Al1i84.29 (14)
Al1xi—Al1—O1vi83.36 (5)Al1—O1—Al1xi93.57 (3)
Al1xi—Al1—O1xiii44.87 (8)Al1—O1—Al1x132.19 (7)
Al1xi—Al1—O1xiv97.79 (8)Al1i—O1—Al1xi132.19 (7)
Al1xi—Al1—O1xv143.91 (10)Al1i—O1—Al1x93.57 (3)
Al1xii—Al1—O183.36 (5)Al1xi—O1—Al1x120.68 (18)
Al1xii—Al1—O1v41.57 (6)
Symmetry codes: (i) xy, y, z+1/2; (ii) x4/3, y5/3, z2/3; (iii) x1/3, y5/3, z2/3; (iv) x1/3, y2/3, z2/3; (v) y, xy, z; (vi) yx, x, z; (vii) yx+1/3, y1/3, z+1/6; (viii) y+1/3, x+2/3, z+1/6; (ix) x2/3, xy1/3, z+1/6; (x) yx+2/3, y+1/3, z1/6; (xi) x+2/3, y2/3, z2/3; (xii) x+2/3, y+1/3, z2/3; (xiii) yx+1/3, y1/3, z11/6; (xiv) y+1/3, x+2/3, z11/6; (xv) x2/3, xy1/3, z11/6.
 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds