Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new method for calculating the total instrumental function of a conventional Bragg-Brentano diffractometer has been developed. The method is based on an exact analytical solution, derived from diffraction optics, for the contribution of each incident ray to the intensity registered by a detector of limited size. Because an incident ray is determined by two points (one is related to the source of the X-rays and the other to the sample) the effects of the coupling of specific instrumental functions, for example, equatorial and axial divergence instrumental functions, are treated together automatically. The intensity at any arbitrary point of the total instrumental profile is calculated by integrating the intensities over two simple rectangular regions: possible point positions on the source and possible point positions on the sample. The effects of Soller slits, a monochromator and sample absorption can also be taken into account. The main difference between the proposed method and the convolutive approach (in which the line profile is synthesized by convolving the specific instrumental functions) lies in the fact that the former provides an exact solution for the total instrumental function (exact solutions for specific instrumental functions can be obtained as special cases), whereas the latter is based on the approximations for the specific instrumental functions, and their coupling effects after the convolution are unknown. Unlike the ray-tracing method, in the proposed method the diffracted rays contributing to the registered intensity are considered as combined (part of the diffracted cone) and, correspondingly, the contribution to the instrumental line profile is obtained analytically for this part of the diffracted cone and not for a diffracted unit ray as in ray-tracing simulations.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds