Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A method for the calculation of a stress-free lattice parameter from the analysis of diffraction data from stressed material is discussed, utilizing the elastic anisotropy of the material. The technique is demonstrated using data obtained during a uniaxial tension test on untextured austenitic (face-centred cubic) steel. The uncertainty in the calculated lattice parameter for various choices of number of diffraction peaks and different number of stress levels available for the calculation is considered. It is shown that when all the data are within the elastic regime, an accurate evaluation of the reference lattice parameter can be made. When some data are in the plastic regime, a more limited evaluation is possible. The use of plots of lattice parameter against Γhkl [= (h2k2 + h2l2 +k2l2)/(h2 + k2 + l2)2] as a method for monitoring plasticity as well as freedom from deviatoric stress is demonstrated.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds