Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An analytical expression for the small-angle neutron scattering intensity of diluted systems of polydisperse spherical particles, with diffusion zones, embedded in a matrix is presented. It is used within a nonlinear regression procedure to analyse small-angle neutron scattering experiments with polarized neutrons on an Fe73.5Si15.5B7CuNb3 alloy. The results for the nuclear and magnetic scattering length densities allow verification of the inhibitor concept introduced for the explanation of the limited sizes of precipitates developing during nanocrystallization. In the case of amorphous Fe73.5Si15.5B7CuNb3 alloy, the observed nanocrystals of the Fe3Si type are surrounded by an Nb-enriched shell, which stops the growth of the precipitates. With the results of polarized neutron scattering experiments, it is shown that magnetic and nuclear small-angle neutron scattering signals have the same origin. Additionally, the precision of the fits is improved by complementary use of polarized neutrons.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds