Download citation
Download citation
link to html
Anisotropic peak broadening in hydrogen-cycled hexagonal LaNi5 and substitutional derivatives has been studied by means of synchrotron powder diffraction. The data have been analysed by a local lattice parameter variation method implemented in a Rietveld code and by an individual profile fitting using a dislocation peak broadening model. Two main dislocation systems, both with Burgers vector 1/3<\bar{2}110>, are activated by misfit of the lattice parameters between the intermetallic compounds and their hydrides. Two types of diffraction peak broadening effect were observed as a function of the substitution in LaNi5: (i) a decrease or disappearance of the broadening related to the decrease of the total dislocation density and (ii) a change in the anisotropy of the broadening related to the change of the nature of the dislocation system involved. The latter effect was attributed to a change in shape of the hydride precipitates.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds