Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Extended X-ray absorption fine structure (EXAFS) spectra near the Si and Ge K-edge for SiO_2 and GeO_2 polymorphs were measured in transmission mode with synchrotron radiation at the Photon Factory, Tsukuba. The local structures and mean-square relative displacements were determined in \alpha-tridymite, \alpha-quartz and stishovite. In stishovite, Si is octahedrally coordinated and the four coplanar Si-O bonds [1.755 (8) Å] are shorter than the other two axial bonds [1.813 (15) Å]. The high-temperature phase tridymite [1.597 (3) Å] has a smaller local bond distance than \alpha-quartz [1.618 (5) Å]. The temperature variation of the local structural parameters for quartz-type GeO_2 (q-GeO_2) and rutile-type GeO_2 (r-GeO_2) have been determined in the temperature range 7-1000 K. The harmonic effective interatomic potential V(u)=\alpha{u}^2/2 was evaluated from the contribution to the thermal vibration, where u is the deviation of the bond distance from the location of the potential minimum. The potential coefficient \alpha for the Ge-O bond of the tetrahedron in q-GeO_2 is 24.6 eV Å-2. The potential coefficients \alpha for the four coplanar Ge-O bonds and the two axial bonds of the octahedron in r-GeO_2 are 12.9 and 14.9 eV Å-2, respectively. The potential coefficient \alpha for the second-nearest Ge-Ge distance in q-GeO_2 is 9.57 eV Å-2. The potential coefficients \alpha for the second- and third-nearest Ge-Ge distances in r-GeO_2 are 11.6 and 7.18 eV Å-2, respectively. The effective interatomic potential is largely influenced by the local structure, particularly by the coordination numbers. The phonon dispersion relations for q-GeO_2 and r-GeO_2 were estimated along [100] by calculating the dynamical matrix using the potential coefficients \alpha for the Ge-O and Ge-Ge motions. The quartz-type structure has a more complex structure with a wide gap between 103 and 141 meV and a highest energy of 149 meV, whereas the rutile-type structure has a continuous distribution and a highest energy of 126 meV.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds