organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1126-o1127

Crystal structure of [(2S)-1-[(3S)-3-carb­oxy-6,7-di­meth­oxy-1,2,3,4-tetra­hydroisoquinolin-2-yl]-1-oxopropan-2-yl][(2S)-1-eth­oxy-1-oxo-4-phenylbutan-2-yl]azanium chloride aceto­nitrile monosolvate

aShenzhen Salubris Pharmaceuticals CO., Ltd, Guangdong Shenzhen 361021, People's Republic of China
*Correspondence e-mail: xjhn0820@163.com

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 14 May 2014; accepted 18 September 2014; online 24 September 2014)

The title compound (trivial name moexipril hydro­chloride) crystallizes as the aceto­nitrile monosolvate, C27H35N2O7+·Cl·C2H3N, with the salt comprising a U-shaped cation and a chloride anion. The conformation of the cation is stabilized by a weak intra­molecular N+—H⋯O hydrogen bond and the tetra­hydro­pyridine ring adopts a boat conformation. The dihedral angle between the planes of the benzene rings is 85.6 (1)°. In the crystal, the cations and anions form tight ionic pairs by strong inter­molecular O—H⋯Cl hydrogen bonds. C—H⋯Cl and C—H⋯N hydrogen bonds link these ionic pairs and the aceto­nitrile solvate mol­ecules into puckered layers parallel to (100).

1. Related literature

For the synthesis of the title compound, see: Klutchko et al. (1986[Klutchko, S., Blankley, C. J., Fleming, R. W., Hinkley, J. M., Werner, A. E., Nordin, I., Holmes, A., Hoefle, M. L., Cohen, D. M., Essenburg, A. D. & Kaplan, H. R. (1986). J. Med. Chem. 29, 1953-1961.]); Yamazaki & Suzuki (1998[Yamazaki, K. & Suzuki, M. (1998). Anal. Sci. 14, 463-464.]). For the structure and applications of related compounds, see: Suzuki et al. (2000[Suzuki, T., Kitaoka, H., Miwa, Y. & Taga, T. (2000). Anal. Sci. 16, 343-344.], 2010[Suzuki, T., Araki, T., Kitaoka, H. & Terada, K. (2010). Int. J. Pharm. 402, 110-116.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C27H35N2O7+·Cl·C2H3N

  • Mr = 576.07

  • Monoclinic, P 21

  • a = 10.9391 (6) Å

  • b = 10.4655 (4) Å

  • c = 13.3159 (5) Å

  • β = 97.419 (4)°

  • V = 1511.68 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.52 mm−1

  • T = 103 K

  • 0.50 × 0.20 × 0.20 mm

2.2. Data collection

  • Agilent Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.516, Tmax = 0.750

  • 11078 measured reflections

  • 5728 independent reflections

  • 5570 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.03

  • 5728 reflections

  • 367 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2620 Friedel pairs

  • Absolute structure parameter: 0.000 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯Cl1i 0.84 2.09 2.924 (3) 171
N1—H1A⋯O3 0.92 2.04 2.587 (2) 117
N1—H1B⋯O4ii 0.92 1.87 2.724 (3) 154
C13—H13⋯Cl1 1.00 2.52 3.459 (2) 157
C14—H14B⋯Cl1iii 0.98 2.71 3.593 (2) 150
C18—H18A⋯N3iv 0.99 2.39 3.367 (4) 168
C29—H29A⋯Cl1iv 0.98 2.74 3.698 (2) 165
Symmetry codes: (i) x, y-1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+2]; (iii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iv) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Moexipril is a nonsulfhydryl containing precursor of the active angiotensin-converting enzyme. It is well known that the polymorphic and pseudo-polymorphic crystals of moexipril show different physico-chemical properties (Klutchko et al., 1986; Suzuki et al., 2010). The crystal structure of the β-form, the monohydrate and the sesquihydrate have been already reported previously (Yamazaki & Suzuki, 1998; Suzuki et al., 2000). In this paper, we report the X-ray crystal structure and stereochemistry of moexipril hydrochloride acetonitrile monosolvate.

Related literature top

For the synthesis of the title compound, see: Klutchko et al. (1986); Yamazaki & Suzuki (1998). For the structure and applications of related compounds, see: Suzuki et al. (2000, 2010).

Experimental top

A solution of 2-[2-[(1-Ethoxycarbonyl-3-phenylpropyl)amino]propanoyl]-6,7-dimethoxy–3,4-dihydro-1H-isoquinoline-3-carboxylic acid in absolute ethanol was treated with hydrochloride in the presence of 5% Pd/C. The resulting mixture was concentrated and stood for 3 h at reduced pressure. The residue obtained was recrystallized from acetonitrile at room temperature to give colourless crystals of I suitable for X-ray diffraction analysis.

Refinement top

The absolute structure of I was objectively determined by the refinement of Flack parameter (2620 (94%) Friedel pairs measured), which has become equal to 0.00 (1). The calculated Hooft parameter is equal to -0.003 (6).

The hydroxyl and amino hydrogen atoms were objectively localized in the difference-Fourier map and include into refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in the calculated positions with C—H distances = 0.95 (aryl-H), 0.98 (methyl-H), 0.99 (methylene-H) and 1.00 (methine-H) Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for the other groups].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius. Dashed lines indicate the intramolecular N—H···O and the intermolecular C—H···Cl hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing showing the puckered layers parallel to (100). Dashed lines indicate the intra- and intermolecular hydrogen bonds.
[(2S)-1-[(3S)-3-carboxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl]-1-oxopropan-2-yl][(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]azanium chloride acetonitrile monosolvate top
Crystal data top
C27H35N2O7+·Cl·C2H3NF(000) = 612
Mr = 576.07Dx = 1.266 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 6099 reflections
a = 10.9391 (6) Åθ = 3.3–71.7°
b = 10.4655 (4) ŵ = 1.52 mm1
c = 13.3159 (5) ÅT = 103 K
β = 97.419 (4)°Block, colourless
V = 1511.68 (12) Å30.50 × 0.20 × 0.20 mm
Z = 2
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
5728 independent reflections
Radiation source: fine-focus sealed tube5570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0971 pixels mm-1θmax = 71.8°, θmin = 3.4°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.516, Tmax = 0.750l = 1616
11078 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.3525P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5728 reflectionsΔρmax = 0.55 e Å3
367 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack (1983), 2620 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (10)
Crystal data top
C27H35N2O7+·Cl·C2H3NV = 1511.68 (12) Å3
Mr = 576.07Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.9391 (6) ŵ = 1.52 mm1
b = 10.4655 (4) ÅT = 103 K
c = 13.3159 (5) Å0.50 × 0.20 × 0.20 mm
β = 97.419 (4)°
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
5728 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5570 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 0.750Rint = 0.021
11078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.55 e Å3
S = 1.03Δρmin = 0.34 e Å3
5728 reflectionsAbsolute structure: Flack (1983), 2620 Friedel pairs
367 parametersAbsolute structure parameter: 0.000 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93335 (4)0.48179 (4)0.82049 (3)0.02184 (10)
O60.52273 (13)0.26128 (14)0.40381 (11)0.0274 (3)
O50.79427 (13)0.28384 (13)0.76776 (12)0.0286 (3)
H50.83740.34720.78870.043*
O30.81278 (12)0.00568 (13)0.94514 (9)0.0204 (3)
O40.96943 (12)0.17651 (13)0.81353 (10)0.0214 (3)
O20.73833 (13)0.45383 (13)1.15813 (10)0.0240 (3)
C220.77885 (16)0.30103 (17)0.60435 (13)0.0174 (3)
H220.82930.36800.63490.021*
O10.73521 (14)0.24231 (14)1.19090 (11)0.0285 (3)
O70.65710 (12)0.44801 (12)0.48979 (10)0.0229 (3)
N20.85280 (14)0.05279 (14)0.78967 (11)0.0173 (3)
C250.62888 (17)0.10402 (18)0.51823 (14)0.0204 (4)
H250.57630.03730.49020.024*
C170.86058 (16)0.17996 (17)0.78125 (12)0.0170 (3)
C230.68475 (16)0.32815 (18)0.52690 (13)0.0185 (3)
C150.86015 (16)0.06883 (17)0.88977 (13)0.0168 (3)
C260.7471 (2)0.54471 (19)0.51712 (15)0.0278 (4)
H26A0.71960.62520.48400.042*
H26B0.82570.51900.49540.042*
H26C0.75780.55640.59080.042*
N10.87847 (13)0.20668 (14)1.03592 (10)0.0154 (3)
H1A0.84000.13301.05280.018*
H1B0.94290.22271.08590.018*
C200.79909 (16)0.17574 (18)0.63698 (12)0.0172 (3)
C60.50803 (18)0.34869 (19)0.75184 (15)0.0242 (4)
H60.59010.33870.73690.029*
C80.67413 (17)0.28867 (19)0.95447 (14)0.0209 (4)
H8A0.70070.25570.89110.025*
H8B0.62350.22190.98180.025*
C240.61083 (17)0.22814 (19)0.48234 (14)0.0202 (4)
C130.92855 (16)0.18674 (17)0.93702 (12)0.0160 (3)
H130.90740.26240.89230.019*
C210.90294 (16)0.13908 (17)0.71794 (13)0.0174 (3)
H21A0.96930.09570.68700.021*
H21B0.93790.21640.75360.021*
C141.06858 (16)0.17006 (19)0.95410 (13)0.0207 (4)
H14A1.09830.15010.88960.031*
H14B1.09000.10011.00200.031*
H14C1.10710.24930.98170.031*
C90.78851 (16)0.31546 (17)1.03144 (13)0.0171 (3)
H90.82950.39541.01180.021*
C180.75488 (17)0.05633 (18)0.63247 (13)0.0202 (4)
H18A0.82640.08830.60130.024*
H18B0.68400.11320.61110.024*
C160.78556 (16)0.06097 (17)0.74921 (13)0.0170 (3)
H160.70630.06560.77900.020*
C120.5522 (2)0.4949 (2)1.23442 (16)0.0331 (5)
H12A0.52950.56801.18990.050*
H12B0.52000.50751.29900.050*
H12C0.51700.41661.20210.050*
C20.36654 (19)0.3986 (2)0.86908 (16)0.0288 (4)
H20.35100.42240.93510.035*
C100.75218 (16)0.33115 (19)1.13720 (14)0.0203 (4)
C190.72420 (17)0.07729 (18)0.59540 (13)0.0185 (4)
C280.9733 (2)0.2135 (3)0.4377 (2)0.0452 (6)
C290.9077 (2)0.1088 (2)0.38715 (17)0.0317 (5)
H29A0.94220.08950.32450.048*
H29B0.82050.13150.37090.048*
H29C0.91550.03350.43130.048*
C270.49224 (18)0.1638 (2)0.32940 (14)0.0260 (4)
H27A0.43750.19930.27210.039*
H27B0.45060.09330.35950.039*
H27C0.56780.13220.30560.039*
C10.48732 (18)0.38403 (19)0.84900 (15)0.0235 (4)
C110.69039 (18)0.4832 (2)1.25307 (14)0.0283 (4)
H11A0.72660.56431.28120.034*
H11B0.71380.41451.30300.034*
C30.26836 (19)0.3788 (2)0.79368 (18)0.0326 (5)
H30.18620.38950.80820.039*
C50.41007 (19)0.3281 (2)0.67694 (15)0.0276 (4)
H5A0.42530.30310.61110.033*
C40.28987 (19)0.3435 (2)0.69729 (17)0.0303 (4)
H40.22280.33000.64550.036*
N31.0276 (3)0.2938 (3)0.4810 (3)0.0866 (12)
C70.59528 (19)0.40899 (19)0.93067 (15)0.0268 (4)
H7A0.56360.43840.99310.032*
H7B0.64730.47780.90790.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0299 (2)0.01598 (18)0.01952 (19)0.00160 (16)0.00259 (15)0.00102 (15)
O60.0268 (7)0.0263 (7)0.0257 (7)0.0052 (6)0.0092 (6)0.0006 (6)
O50.0232 (7)0.0160 (7)0.0432 (9)0.0014 (5)0.0095 (6)0.0032 (6)
O30.0274 (6)0.0178 (6)0.0161 (5)0.0040 (5)0.0039 (5)0.0010 (5)
O40.0188 (6)0.0201 (6)0.0235 (7)0.0006 (5)0.0033 (5)0.0023 (5)
O20.0287 (7)0.0232 (7)0.0213 (6)0.0008 (5)0.0084 (5)0.0059 (5)
C220.0185 (8)0.0208 (9)0.0135 (8)0.0032 (7)0.0040 (6)0.0023 (6)
O10.0358 (8)0.0269 (7)0.0250 (7)0.0003 (6)0.0121 (6)0.0033 (6)
O70.0258 (7)0.0203 (7)0.0211 (6)0.0029 (5)0.0020 (5)0.0027 (5)
N20.0198 (7)0.0162 (7)0.0150 (7)0.0004 (6)0.0006 (6)0.0003 (6)
C250.0200 (9)0.0220 (9)0.0184 (8)0.0002 (7)0.0005 (7)0.0030 (7)
C170.0204 (8)0.0181 (9)0.0117 (8)0.0003 (7)0.0007 (6)0.0003 (6)
C230.0204 (8)0.0206 (9)0.0156 (8)0.0040 (7)0.0068 (6)0.0016 (7)
C150.0179 (8)0.0163 (8)0.0157 (8)0.0040 (6)0.0009 (6)0.0003 (6)
C260.0367 (11)0.0193 (10)0.0260 (10)0.0000 (8)0.0019 (8)0.0028 (8)
N10.0168 (7)0.0175 (7)0.0116 (6)0.0005 (5)0.0006 (5)0.0003 (5)
C200.0172 (8)0.0235 (9)0.0112 (7)0.0007 (7)0.0037 (6)0.0000 (7)
C60.0213 (9)0.0263 (10)0.0253 (10)0.0046 (7)0.0037 (7)0.0044 (8)
C80.0204 (9)0.0230 (9)0.0187 (9)0.0022 (7)0.0002 (7)0.0019 (7)
C240.0169 (8)0.0270 (10)0.0162 (8)0.0036 (7)0.0003 (7)0.0006 (7)
C130.0197 (8)0.0167 (8)0.0116 (7)0.0018 (7)0.0017 (6)0.0007 (6)
C210.0173 (8)0.0206 (9)0.0142 (8)0.0013 (6)0.0015 (6)0.0003 (6)
C140.0190 (9)0.0254 (10)0.0179 (8)0.0000 (7)0.0026 (7)0.0005 (7)
C90.0189 (8)0.0155 (8)0.0172 (8)0.0010 (7)0.0030 (6)0.0025 (6)
C180.0243 (9)0.0191 (9)0.0160 (8)0.0011 (7)0.0015 (7)0.0027 (7)
C160.0188 (8)0.0170 (8)0.0151 (8)0.0006 (7)0.0010 (6)0.0008 (6)
C120.0349 (11)0.0371 (12)0.0291 (10)0.0074 (10)0.0111 (8)0.0039 (9)
C20.0284 (10)0.0317 (11)0.0274 (10)0.0094 (8)0.0079 (8)0.0054 (8)
C100.0158 (8)0.0251 (9)0.0203 (9)0.0016 (7)0.0032 (7)0.0035 (7)
C190.0200 (9)0.0210 (9)0.0146 (8)0.0016 (7)0.0029 (7)0.0018 (7)
C280.0409 (13)0.0531 (16)0.0477 (14)0.0144 (12)0.0293 (12)0.0160 (12)
C290.0277 (10)0.0404 (12)0.0278 (10)0.0020 (9)0.0064 (8)0.0019 (9)
C270.0229 (9)0.0316 (10)0.0207 (9)0.0006 (8)0.0071 (7)0.0004 (8)
C10.0251 (9)0.0203 (9)0.0248 (9)0.0070 (7)0.0020 (8)0.0032 (7)
C110.0311 (10)0.0326 (10)0.0222 (9)0.0015 (9)0.0077 (7)0.0106 (9)
C30.0211 (10)0.0326 (11)0.0443 (13)0.0066 (8)0.0054 (9)0.0093 (9)
C50.0323 (10)0.0259 (10)0.0239 (10)0.0029 (8)0.0013 (8)0.0012 (8)
C40.0261 (10)0.0230 (10)0.0388 (12)0.0017 (8)0.0069 (8)0.0042 (8)
N30.081 (2)0.088 (2)0.105 (2)0.0498 (18)0.0661 (19)0.059 (2)
C70.0289 (10)0.0260 (11)0.0243 (9)0.0101 (8)0.0004 (8)0.0035 (7)
Geometric parameters (Å, º) top
O6—C241.372 (2)C13—C141.529 (2)
O6—C271.431 (2)C13—H131.0000
O5—C171.306 (2)C21—H21A0.9900
O5—H50.8400C21—H21B0.9900
O3—C151.232 (2)C14—H14A0.9800
O4—C171.213 (2)C14—H14B0.9800
O2—C101.327 (2)C14—H14C0.9800
O2—C111.462 (2)C9—C101.521 (2)
C22—C231.389 (2)C9—H91.0000
C22—C201.390 (3)C18—C191.506 (3)
C22—H220.9500C18—C161.548 (2)
O1—C101.202 (2)C18—H18A0.9900
O7—C231.368 (2)C18—H18B0.9900
O7—C261.426 (2)C16—H161.0000
N2—C151.336 (2)C12—C111.505 (3)
N2—C161.465 (2)C12—H12A0.9800
N2—C211.471 (2)C12—H12B0.9800
C25—C241.389 (3)C12—H12C0.9800
C25—C191.395 (3)C2—C31.388 (3)
C25—H250.9500C2—C11.390 (3)
C17—C161.522 (2)C2—H20.9500
C23—C241.406 (3)C28—N31.141 (4)
C15—C131.535 (2)C28—C291.430 (3)
C26—H26A0.9800C29—H29A0.9800
C26—H26B0.9800C29—H29B0.9800
C26—H26C0.9800C29—H29C0.9800
N1—C91.501 (2)C27—H27A0.9800
N1—C131.505 (2)C27—H27B0.9800
N1—H1A0.9200C27—H27C0.9800
N1—H1B0.9200C1—C71.521 (3)
C20—C191.386 (3)C11—H11A0.9900
C20—C211.511 (2)C11—H11B0.9900
C6—C51.383 (3)C3—C41.385 (3)
C6—C11.392 (3)C3—H30.9500
C6—H60.9500C5—C41.386 (3)
C8—C71.536 (2)C5—H5A0.9500
C8—C91.537 (2)C4—H40.9500
C8—H8A0.9900C7—H7A0.9900
C8—H8B0.9900C7—H7B0.9900
C24—O6—C27115.19 (15)C10—C9—C8110.46 (14)
C17—O5—H5109.5N1—C9—H9109.4
C10—O2—C11116.64 (15)C10—C9—H9109.4
C23—C22—C20119.84 (16)C8—C9—H9109.4
C23—C22—H22120.1C19—C18—C16111.62 (14)
C20—C22—H22120.1C19—C18—H18A109.3
C23—O7—C26116.47 (14)C16—C18—H18A109.3
C15—N2—C16115.59 (14)C19—C18—H18B109.3
C15—N2—C21126.25 (15)C16—C18—H18B109.3
C16—N2—C21118.14 (14)H18A—C18—H18B108.0
C24—C25—C19120.04 (17)N2—C16—C17109.56 (14)
C24—C25—H25120.0N2—C16—C18112.16 (14)
C19—C25—H25120.0C17—C16—C18110.26 (14)
O4—C17—O5125.15 (16)N2—C16—H16108.2
O4—C17—C16122.96 (16)C17—C16—H16108.2
O5—C17—C16111.88 (14)C18—C16—H16108.2
O7—C23—C22124.31 (17)C11—C12—H12A109.5
O7—C23—C24116.23 (16)C11—C12—H12B109.5
C22—C23—C24119.46 (17)H12A—C12—H12B109.5
O3—C15—N2122.80 (17)C11—C12—H12C109.5
O3—C15—C13118.93 (15)H12A—C12—H12C109.5
N2—C15—C13118.26 (15)H12B—C12—H12C109.5
O7—C26—H26A109.5C3—C2—C1120.7 (2)
O7—C26—H26B109.5C3—C2—H2119.7
H26A—C26—H26B109.5C1—C2—H2119.7
O7—C26—H26C109.5O1—C10—O2126.37 (17)
H26A—C26—H26C109.5O1—C10—C9123.12 (18)
H26B—C26—H26C109.5O2—C10—C9110.47 (16)
C9—N1—C13112.41 (13)C20—C19—C25119.49 (17)
C9—N1—H1A109.1C20—C19—C18117.64 (16)
C13—N1—H1A109.1C25—C19—C18122.78 (16)
C9—N1—H1B109.1N3—C28—C29177.4 (4)
C13—N1—H1B109.1C28—C29—H29A109.5
H1A—N1—H1B107.9C28—C29—H29B109.5
C19—C20—C22120.94 (16)H29A—C29—H29B109.5
C19—C20—C21116.57 (16)C28—C29—H29C109.5
C22—C20—C21122.49 (16)H29A—C29—H29C109.5
C5—C6—C1120.51 (18)H29B—C29—H29C109.5
C5—C6—H6119.7O6—C27—H27A109.5
C1—C6—H6119.7O6—C27—H27B109.5
C7—C8—C9112.03 (15)H27A—C27—H27B109.5
C7—C8—H8A109.2O6—C27—H27C109.5
C9—C8—H8A109.2H27A—C27—H27C109.5
C7—C8—H8B109.2H27B—C27—H27C109.5
C9—C8—H8B109.2C2—C1—C6118.74 (18)
H8A—C8—H8B107.9C2—C1—C7120.87 (18)
O6—C24—C25123.58 (17)C6—C1—C7120.37 (17)
O6—C24—C23116.26 (16)O2—C11—C12109.82 (15)
C25—C24—C23120.15 (16)O2—C11—H11A109.7
N1—C13—C14110.89 (13)C12—C11—H11A109.7
N1—C13—C15104.89 (14)O2—C11—H11B109.7
C14—C13—C15113.26 (15)C12—C11—H11B109.7
N1—C13—H13109.2H11A—C11—H11B108.2
C14—C13—H13109.2C4—C3—C2120.15 (19)
C15—C13—H13109.2C4—C3—H3119.9
N2—C21—C20108.06 (14)C2—C3—H3119.9
N2—C21—H21A110.1C6—C5—C4120.46 (19)
C20—C21—H21A110.1C6—C5—H5A119.8
N2—C21—H21B110.1C4—C5—H5A119.8
C20—C21—H21B110.1C3—C4—C5119.44 (19)
H21A—C21—H21B108.4C3—C4—H4120.3
C13—C14—H14A109.5C5—C4—H4120.3
C13—C14—H14B109.5C1—C7—C8111.73 (16)
H14A—C14—H14B109.5C1—C7—H7A109.3
C13—C14—H14C109.5C8—C7—H7A109.3
H14A—C14—H14C109.5C1—C7—H7B109.3
H14B—C14—H14C109.5C8—C7—H7B109.3
N1—C9—C10107.06 (14)H7A—C7—H7B107.9
N1—C9—C8111.17 (14)
C26—O7—C23—C2214.3 (2)C15—N2—C16—C18166.61 (15)
C26—O7—C23—C24166.07 (16)C21—N2—C16—C1812.1 (2)
C20—C22—C23—O7179.68 (16)O4—C17—C16—N216.0 (2)
C20—C22—C23—C240.0 (3)O5—C17—C16—N2165.23 (15)
C16—N2—C15—O30.8 (2)O4—C17—C16—C18107.90 (19)
C21—N2—C15—O3177.83 (16)O5—C17—C16—C1870.85 (19)
C16—N2—C15—C13179.54 (14)C19—C18—C16—N236.4 (2)
C21—N2—C15—C130.9 (3)C19—C18—C16—C17158.82 (15)
C23—C22—C20—C192.0 (3)C11—O2—C10—O14.1 (3)
C23—C22—C20—C21177.53 (15)C11—O2—C10—C9173.57 (14)
C27—O6—C24—C2529.9 (3)N1—C9—C10—O139.3 (2)
C27—O6—C24—C23150.20 (17)C8—C9—C10—O181.9 (2)
C19—C25—C24—O6177.08 (17)N1—C9—C10—O2142.99 (15)
C19—C25—C24—C233.0 (3)C8—C9—C10—O295.82 (17)
O7—C23—C24—O62.7 (2)C22—C20—C19—C251.4 (3)
C22—C23—C24—O6177.65 (16)C21—C20—C19—C25178.13 (16)
O7—C23—C24—C25177.23 (16)C22—C20—C19—C18178.01 (16)
C22—C23—C24—C252.5 (3)C21—C20—C19—C181.5 (2)
C9—N1—C13—C14133.60 (15)C24—C25—C19—C201.1 (3)
C9—N1—C13—C15103.80 (15)C24—C25—C19—C18175.32 (17)
O3—C15—C13—N121.2 (2)C16—C18—C19—C2044.4 (2)
N2—C15—C13—N1157.68 (15)C16—C18—C19—C25139.15 (18)
O3—C15—C13—C1499.90 (19)C3—C2—C1—C60.2 (3)
N2—C15—C13—C1481.27 (19)C3—C2—C1—C7178.4 (2)
C15—N2—C21—C20124.98 (18)C5—C6—C1—C20.3 (3)
C16—N2—C21—C2053.6 (2)C5—C6—C1—C7178.89 (19)
C19—C20—C21—N246.4 (2)C10—O2—C11—C1292.1 (2)
C22—C20—C21—N2134.08 (17)C1—C2—C3—C40.3 (3)
C13—N1—C9—C10176.13 (14)C1—C6—C5—C40.7 (3)
C13—N1—C9—C863.13 (18)C2—C3—C4—C50.1 (3)
C7—C8—C9—N1167.02 (15)C6—C5—C4—C30.6 (3)
C7—C8—C9—C1074.3 (2)C2—C1—C7—C8118.7 (2)
C15—N2—C16—C1770.60 (18)C6—C1—C7—C862.7 (2)
C21—N2—C16—C17110.70 (16)C9—C8—C7—C1175.96 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···Cl1i0.842.092.924 (3)171
N1—H1A···O30.922.042.587 (2)117
N1—H1B···O4ii0.921.872.724 (3)154
C13—H13···Cl11.002.523.459 (2)157
C14—H14B···Cl1iii0.982.713.593 (2)150
C18—H18A···N3iv0.992.393.367 (4)168
C29—H29A···Cl1iv0.982.743.698 (2)165
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1/2, z+2; (iii) x+2, y1/2, z+2; (iv) x+2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···Cl1i0.842.092.924 (3)171
N1—H1A···O30.922.042.587 (2)117
N1—H1B···O4ii0.921.872.724 (3)154
C13—H13···Cl11.002.523.459 (2)157
C14—H14B···Cl1iii0.982.713.593 (2)150
C18—H18A···N3iv0.992.393.367 (4)168
C29—H29A···Cl1iv0.982.743.698 (2)165
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1/2, z+2; (iii) x+2, y1/2, z+2; (iv) x+2, y1/2, z+1.
 

Acknowledgements

This work was supported by grants from the Science and Technology Innovation Council of ShenZhen (No. JCYJ20120615172324607).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKlutchko, S., Blankley, C. J., Fleming, R. W., Hinkley, J. M., Werner, A. E., Nordin, I., Holmes, A., Hoefle, M. L., Cohen, D. M., Essenburg, A. D. & Kaplan, H. R. (1986). J. Med. Chem. 29, 1953–1961.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, T., Araki, T., Kitaoka, H. & Terada, K. (2010). Int. J. Pharm. 402, 110–116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSuzuki, T., Kitaoka, H., Miwa, Y. & Taga, T. (2000). Anal. Sci. 16, 343–344.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamazaki, K. & Suzuki, M. (1998). Anal. Sci. 14, 463–464.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1126-o1127
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds