Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Zn(C44H28N4)(C3H7NO)], is a square-pyramidal five-coordinate zinc-porphyrin complex with N,N'-dimethyl­formamide as an apical ligand. The crystal structure is characterized by a layered organization of the porphyrin species with tight stacking of the corrugated layers along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042224/kp6076sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042224/kp6076Isup2.hkl
Contains datablock I

CCDC reference: 296722

Key indicators

  • Single-crystal X-ray study
  • T = 110 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.132
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N51 - C50 .. 14.65 su
Author Response: While the main axis of atomic displacement of C50 is along b, that of N51 is along a. This may be due to the smaller size of the N-atom and thus a less restricted motion perpendicular to the ligand's main axis, as well as to the tendency of the pyramidal N-atom to invert its conformation. O49 is also free to move sideways parallel to the porphyrin plane (with a significant component along a).
PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X)  Zn     -   O49     ..      11.60 su
Author Response: The Zn-ion is tightly held near the porphyrin centre, and has a thermal motion ellipsoid of nearly spherical shape. On the other hand O49 is free to move sideways parallel to the porphyrin plane (with a significant component along a). Atom C50 reveals expected displacement mainly along b (the main axis of the axial ligand).

Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT230_ALERT_2_C Hirshfeld Test Diff for O49 - C50 .. 5.73 su
Author Response: While the main axis of atomic displacement of C50 is along b, that of N51 is along a. This may be due to the smaller size of the N-atom and thus a less restricted motion perpendicular to the ligand's main axis, as well as to the tendency of the pyramidal N-atom to invert its conformation. O49 is also free to move sideways parallel to the porphyrin plane (with a significant component along a).

0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Numerous four-coordinate, five-coordinate and six-coordinate complexes of metallo-tetraphenylporphyrin have been reported with a wide variety of crystallization solvents (many of these compounds form clathrates) and axial ligands coordinated to the metal centre (Byrn, et al., 1991; Byrn et al., 1993). Porphyrin complexes with dimethylformamide as an axial ligand include ZnII-tetra(4-hydroxyphenyl)porphyrin (Goldberg et al., 1995), MnIII-tetraphenylporphyrin perchlorate (Hill & Williamson, 1985), ZrIV-tetraphenylporphyrin dichloride (Tutass et al., 2002), and ZnII-tetraphenylporphyrin (Droege et al., 1994). The latter crystallized as a dichloromethane solvate. The present report provides information on the five-coordinate complex of the title compound, (I) (Fig. 1), determined at low temperature (ca 110 K).

In the crystal structure, the porphyrin core is slightly saddled with the inner pyrrole N atoms deviating ±0.023 (1) Å from their mean plane. The zinc ion is shifted by 0.329 (1) Å from this N4 plane towards the axial ligand, imparting to the metalloporphyrin entity a domed structure (Fig. 2), which is typical of many five-coordinate complexes of metallated tetraarylporphyrins (Allen, 2002).

Efficient crystal packing of the molecular units of (I) (Fig. 3) is realised by waved layers of the metalloporphyrin species running perpendicular to the b axis. Adjacent inversion-related layers fit tightly into one another; the axial ligands of one layer are inserted between the porphyrin frameworks of neighbouring layers. The parallel offset of these layers allows a close van der Waals contact between the concave surface of a given metalloporphyrin core and a phenyl ring from another layer. The corresponding shortest non-bonding distances include: C4···C35(1 − x, −y, 2 − z) = 3.583 (2) Å, N22···C36(1 − x, −y, 2 − z) = 3.459 (2) Å, and C6···C36(1 − x, −y, 2 − z) = 3.463 (2) Å. This concave surface is in van der Waals contact with one of the methyl residues from the nearest layer translated along b. The axial ligand from one layer penetrates through the nearest layer approaching the porphyrin core [N24···C52(x, 1 + y, z) =3.776 (3) Å]. The geometry of the coordination around the zinc ion (Table 1) shows already known values (Allen, 2002, Vinodu & Goldberg, 2004).

Experimental top

The crystals of the title compound were obtained as a side product by dissolving zinc-tetraphenylporphyrin in N,N'-dimethylformamide in the presence of tris(acetoneperoxide) while attempting to formulate new porphyrin complexes.

Refinement top

H atoms were placeded in calculated positions and were constrained to ride on their parent atoms, with C—H distances in the range 0.95–0.98 Å and with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-III (Burnett & Johnson, 1996) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom-labelling scheme. Displacement parameters are drawn at the 50% probablity level.
[Figure 2] Fig. 2. Stick illustration of the domed molecular structure. The Zn atom is represented by a small sphere. Colour code: C dark grey, H white, N blue, O red, Zn violet.
[Figure 3] Fig. 3. Crystal packing of the title compound, illustrating the tight layered intermolecular organization. Hatoms are omitted for clarity. Zn atoms are represented by small spheres. Colour code: C dark grey, N blue, O red, Zn violet.
(dimethylformamide)(tetraphenylporphyrinato)zinc(II) top
Crystal data top
[Zn(C44H28N4)(C3H7NO)]F(000) = 1560
Mr = 751.17Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8468 reflections
a = 13.7419 (3) Åθ = 2.3–28.2°
b = 9.2278 (2) ŵ = 0.72 mm1
c = 29.3016 (7) ÅT = 110 K
β = 101.7186 (13)°Prism, red
V = 3638.22 (14) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5627 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 28.2°, θmin = 2.3°
Detector resolution: 56 microns pixels mm-1h = 1818
ϕ and ω scansk = 1212
29748 measured reflectionsl = 3837
8697 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 1.2438P]
where P = (Fo2 + 2Fc2)/3
8697 reflections(Δ/σ)max = 0.003
489 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Zn(C44H28N4)(C3H7NO)]V = 3638.22 (14) Å3
Mr = 751.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7419 (3) ŵ = 0.72 mm1
b = 9.2278 (2) ÅT = 110 K
c = 29.3016 (7) Å0.20 × 0.15 × 0.15 mm
β = 101.7186 (13)°
Data collection top
Nonius KappaCCD
diffractometer
5627 reflections with I > 2σ(I)
29748 measured reflectionsRint = 0.059
8697 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.85 e Å3
8697 reflectionsΔρmin = 0.64 e Å3
489 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.27658 (2)0.24348 (3)0.894088 (10)0.02084 (10)
C10.04751 (18)0.2034 (3)0.88257 (9)0.0231 (6)
C20.0296 (2)0.1944 (3)0.90945 (9)0.0300 (7)
H20.09770.17310.89770.036*
C30.0130 (2)0.2218 (3)0.95413 (9)0.0293 (7)
H30.01950.22330.97980.035*
C40.11684 (19)0.2483 (3)0.95587 (9)0.0232 (6)
C50.18809 (19)0.2700 (3)0.99681 (9)0.0238 (6)
C60.29151 (19)0.2725 (3)1.00014 (9)0.0230 (6)
C70.3634 (2)0.2901 (3)1.04308 (9)0.0285 (7)
H70.34950.30741.07310.034*
C80.4543 (2)0.2772 (3)1.03261 (9)0.0281 (7)
H80.51630.28371.05390.034*
C90.43969 (18)0.2517 (3)0.98299 (8)0.0221 (6)
C100.51630 (18)0.2214 (3)0.95946 (9)0.0222 (6)
C110.50308 (18)0.1851 (3)0.91205 (9)0.0227 (6)
C120.58215 (19)0.1554 (3)0.88778 (9)0.0271 (6)
H120.65120.15350.90110.033*
C130.54055 (18)0.1309 (3)0.84283 (9)0.0257 (6)
H130.57460.10890.81850.031*
C140.43358 (18)0.1444 (3)0.83833 (9)0.0218 (6)
C150.36284 (18)0.1337 (3)0.79652 (9)0.0219 (6)
C160.25902 (18)0.1433 (3)0.79266 (8)0.0216 (6)
C170.18718 (18)0.1212 (3)0.74991 (9)0.0239 (6)
H170.20120.10140.72010.029*
C180.09645 (18)0.1340 (3)0.76037 (8)0.0234 (6)
H180.03450.12560.73910.028*
C190.11052 (18)0.1624 (3)0.80944 (8)0.0221 (6)
C200.03357 (17)0.1770 (3)0.83449 (8)0.0215 (6)
N210.13662 (15)0.2360 (2)0.91168 (7)0.0224 (5)
N220.33965 (15)0.2524 (2)0.96387 (7)0.0214 (5)
N230.41256 (15)0.1766 (2)0.88132 (7)0.0218 (5)
N240.21054 (14)0.1700 (3)0.82855 (7)0.0221 (5)
C250.1518 (2)0.2820 (3)1.04185 (9)0.0274 (7)
C260.1004 (2)0.4026 (4)1.05195 (10)0.0342 (7)
H260.08690.47951.03000.041*
C270.0680 (2)0.4127 (4)1.09381 (11)0.0427 (8)
H270.03210.49551.10030.051*
C280.0883 (2)0.3026 (4)1.12576 (11)0.0463 (9)
H280.06720.31031.15460.056*
C290.1386 (2)0.1820 (4)1.11649 (11)0.0475 (9)
H290.15200.10591.13870.057*
C300.1705 (2)0.1706 (4)1.07419 (10)0.0411 (8)
H300.20500.08641.06760.049*
C310.62109 (19)0.2259 (3)0.98724 (9)0.0237 (6)
C320.6652 (2)0.3566 (3)1.00331 (10)0.0318 (7)
H320.62840.44410.99750.038*
C330.76340 (19)0.3599 (3)1.02803 (10)0.0315 (7)
H330.79340.44991.03850.038*
C340.8170 (2)0.2336 (3)1.03736 (9)0.0288 (7)
H340.88410.23631.05370.035*
C350.7725 (2)0.1032 (4)1.02281 (10)0.0375 (7)
H350.80840.01541.03010.045*
C360.6752 (2)0.0996 (3)0.99752 (10)0.0344 (7)
H360.64550.00920.98720.041*
C370.39887 (17)0.1146 (3)0.75206 (9)0.0227 (6)
C380.45292 (17)0.0066 (3)0.74393 (9)0.0255 (6)
H380.46900.07880.76740.031*
C390.48369 (18)0.0235 (3)0.70193 (10)0.0306 (7)
H390.52180.10590.69720.037*
C400.45926 (19)0.0787 (4)0.66696 (10)0.0330 (7)
H400.47850.06500.63790.040*
C410.4069 (2)0.2004 (4)0.67459 (10)0.0317 (7)
H410.39150.27210.65100.038*
C420.37632 (19)0.2189 (3)0.71677 (9)0.0262 (6)
H420.33990.30300.72160.031*
C430.07116 (17)0.1582 (3)0.80790 (8)0.0217 (6)
C440.10151 (18)0.0328 (3)0.78242 (9)0.0250 (6)
H440.05530.04350.78200.030*
C450.19850 (19)0.0183 (3)0.75757 (9)0.0288 (6)
H450.21790.06690.73990.035*
C460.2667 (2)0.1274 (4)0.75856 (10)0.0329 (7)
H460.33310.11710.74170.040*
C470.2383 (2)0.2517 (3)0.78414 (10)0.0325 (7)
H470.28530.32650.78510.039*
C480.14061 (19)0.2674 (3)0.80847 (10)0.0283 (6)
H480.12130.35370.82560.034*
O490.29027 (15)0.4680 (2)0.87671 (7)0.0377 (5)
C500.2233 (2)0.5474 (4)0.86032 (10)0.0376 (8)
H500.15870.50660.85190.045*
N510.23272 (17)0.6899 (3)0.85300 (8)0.0305 (5)
C520.1458 (2)0.7731 (4)0.83234 (12)0.0443 (9)
H52A0.08770.70920.82590.066*
H52B0.15590.81690.80320.066*
H52C0.13500.84960.85400.066*
C530.3246 (2)0.7675 (4)0.86449 (12)0.0428 (8)
H53A0.37950.69870.87330.064*
H53B0.32290.83310.89060.064*
H53C0.33430.82380.83740.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02044 (16)0.02527 (19)0.01600 (16)0.00285 (13)0.00177 (12)0.00048 (13)
C10.0214 (13)0.0271 (16)0.0203 (14)0.0037 (11)0.0035 (11)0.0024 (11)
C20.0235 (13)0.0405 (19)0.0257 (15)0.0013 (13)0.0047 (12)0.0011 (13)
C30.0255 (13)0.041 (2)0.0225 (14)0.0003 (12)0.0073 (12)0.0018 (13)
C40.0256 (13)0.0235 (15)0.0210 (13)0.0033 (11)0.0056 (11)0.0015 (12)
C50.0287 (13)0.0254 (16)0.0181 (13)0.0007 (11)0.0064 (11)0.0015 (11)
C60.0266 (13)0.0235 (16)0.0186 (13)0.0010 (11)0.0034 (11)0.0006 (11)
C70.0306 (14)0.0365 (18)0.0175 (14)0.0012 (12)0.0024 (12)0.0010 (12)
C80.0262 (14)0.0359 (19)0.0191 (14)0.0000 (12)0.0027 (11)0.0007 (12)
C90.0239 (12)0.0244 (15)0.0155 (12)0.0007 (11)0.0019 (10)0.0006 (11)
C100.0230 (13)0.0221 (16)0.0188 (13)0.0001 (11)0.0020 (11)0.0015 (11)
C110.0222 (12)0.0217 (15)0.0225 (14)0.0014 (11)0.0007 (11)0.0028 (11)
C120.0208 (13)0.0329 (18)0.0263 (15)0.0002 (12)0.0016 (11)0.0005 (13)
C130.0200 (12)0.0325 (17)0.0241 (14)0.0031 (11)0.0033 (11)0.0014 (12)
C140.0207 (12)0.0222 (15)0.0232 (14)0.0007 (11)0.0061 (11)0.0016 (11)
C150.0233 (12)0.0229 (15)0.0195 (13)0.0010 (11)0.0046 (11)0.0002 (11)
C160.0219 (12)0.0229 (15)0.0194 (13)0.0015 (11)0.0024 (11)0.0020 (11)
C170.0239 (13)0.0292 (16)0.0189 (13)0.0010 (11)0.0052 (11)0.0004 (12)
C180.0199 (12)0.0316 (17)0.0169 (13)0.0002 (11)0.0005 (10)0.0011 (12)
C190.0213 (12)0.0246 (16)0.0191 (13)0.0029 (11)0.0015 (11)0.0014 (11)
C200.0190 (12)0.0268 (16)0.0184 (13)0.0031 (11)0.0030 (10)0.0000 (11)
N210.0194 (10)0.0303 (14)0.0163 (11)0.0035 (9)0.0010 (9)0.0007 (10)
N220.0221 (10)0.0241 (13)0.0172 (11)0.0005 (9)0.0020 (9)0.0009 (10)
N230.0218 (10)0.0260 (13)0.0162 (11)0.0023 (9)0.0009 (9)0.0003 (10)
N240.0201 (10)0.0281 (14)0.0182 (11)0.0034 (9)0.0046 (9)0.0014 (10)
C250.0285 (14)0.0363 (19)0.0170 (13)0.0061 (12)0.0036 (11)0.0038 (12)
C260.0305 (15)0.045 (2)0.0277 (16)0.0031 (14)0.0068 (13)0.0075 (14)
C270.0361 (17)0.060 (2)0.0352 (18)0.0090 (16)0.0134 (14)0.0187 (17)
C280.0391 (17)0.081 (3)0.0226 (16)0.0206 (18)0.0147 (14)0.0158 (18)
C290.053 (2)0.068 (3)0.0222 (16)0.0129 (19)0.0106 (15)0.0085 (17)
C300.0495 (18)0.047 (2)0.0291 (17)0.0015 (16)0.0131 (15)0.0019 (15)
C310.0218 (12)0.0295 (17)0.0190 (13)0.0022 (11)0.0026 (11)0.0009 (11)
C320.0323 (15)0.0258 (17)0.0334 (16)0.0019 (13)0.0024 (13)0.0022 (13)
C330.0274 (14)0.0323 (18)0.0318 (16)0.0055 (13)0.0012 (12)0.0012 (13)
C340.0225 (13)0.0388 (19)0.0237 (14)0.0001 (13)0.0013 (11)0.0021 (13)
C350.0335 (15)0.0307 (19)0.0421 (18)0.0043 (14)0.0072 (14)0.0016 (15)
C360.0317 (15)0.0270 (18)0.0373 (17)0.0013 (13)0.0098 (13)0.0023 (14)
C370.0168 (12)0.0294 (16)0.0207 (14)0.0036 (11)0.0010 (10)0.0041 (12)
C380.0164 (12)0.0334 (17)0.0253 (14)0.0013 (11)0.0011 (11)0.0036 (12)
C390.0201 (13)0.0369 (19)0.0349 (17)0.0015 (12)0.0060 (12)0.0108 (14)
C400.0280 (14)0.049 (2)0.0227 (15)0.0069 (14)0.0076 (12)0.0090 (14)
C410.0319 (15)0.0414 (19)0.0218 (15)0.0058 (14)0.0052 (12)0.0023 (13)
C420.0234 (13)0.0348 (18)0.0200 (14)0.0007 (12)0.0037 (11)0.0035 (12)
C430.0197 (12)0.0301 (17)0.0156 (13)0.0004 (11)0.0040 (10)0.0033 (11)
C440.0256 (13)0.0305 (17)0.0195 (13)0.0002 (12)0.0057 (11)0.0028 (12)
C450.0322 (14)0.0340 (18)0.0200 (14)0.0105 (13)0.0049 (12)0.0001 (12)
C460.0225 (13)0.046 (2)0.0284 (15)0.0091 (13)0.0005 (12)0.0043 (14)
C470.0203 (13)0.042 (2)0.0341 (16)0.0052 (13)0.0032 (12)0.0002 (15)
C480.0231 (13)0.0314 (18)0.0297 (15)0.0024 (12)0.0035 (12)0.0017 (13)
O490.0475 (12)0.0383 (14)0.0270 (11)0.0116 (11)0.0073 (10)0.0032 (10)
C500.0302 (15)0.054 (2)0.0288 (17)0.0022 (15)0.0059 (13)0.0073 (15)
N510.0428 (14)0.0229 (14)0.0255 (13)0.0003 (11)0.0062 (11)0.0015 (11)
C520.0319 (16)0.056 (2)0.044 (2)0.0019 (15)0.0048 (14)0.0003 (17)
C530.0323 (16)0.049 (2)0.0438 (19)0.0049 (15)0.0003 (14)0.0047 (16)
Geometric parameters (Å, º) top
Zn—N222.054 (2)C27—H270.9500
Zn—N242.065 (2)C28—C291.367 (5)
Zn—N232.073 (2)C28—H280.9500
Zn—N212.091 (2)C29—C301.400 (4)
Zn—O492.150 (2)C29—H290.9500
C1—N211.376 (3)C30—H300.9500
C1—C201.404 (3)C31—C361.383 (4)
C1—C21.445 (4)C31—C321.388 (4)
C2—C31.345 (4)C32—C331.396 (4)
C2—H20.9500C32—H320.9500
C3—C41.438 (4)C33—C341.376 (4)
C3—H30.9500C33—H330.9500
C4—N211.381 (3)C34—C351.378 (4)
C4—C51.400 (4)C34—H340.9500
C5—C61.405 (4)C35—C361.391 (4)
C5—C251.506 (3)C35—H350.9500
C6—N221.374 (3)C36—H360.9500
C6—C71.442 (4)C37—C381.389 (4)
C7—C81.350 (4)C37—C421.401 (4)
C7—H70.9500C38—C391.389 (4)
C8—C91.446 (4)C38—H380.9500
C8—H80.9500C39—C401.383 (4)
C9—N221.375 (3)C39—H390.9500
C9—C101.399 (4)C40—C411.376 (4)
C10—C111.404 (4)C40—H400.9500
C10—C311.504 (3)C41—C421.395 (4)
C11—N231.382 (3)C41—H410.9500
C11—C121.441 (4)C42—H420.9500
C12—C131.344 (4)C43—C481.390 (4)
C12—H120.9500C43—C441.394 (4)
C13—C141.454 (3)C44—C451.389 (4)
C13—H130.9500C44—H440.9500
C14—N231.381 (3)C45—C461.380 (4)
C14—C151.404 (3)C45—H450.9500
C15—C161.411 (3)C46—C471.383 (4)
C15—C371.495 (3)C46—H460.9500
C16—N241.377 (3)C47—C481.393 (4)
C16—C171.443 (4)C47—H470.9500
C17—C181.348 (3)C48—H480.9500
C17—H170.9500O49—C501.199 (3)
C18—C191.435 (3)C50—N511.342 (4)
C18—H180.9500C50—H500.9500
C19—N241.377 (3)N51—C531.431 (4)
C19—C201.411 (3)N51—C521.445 (4)
C20—C431.501 (3)C52—H52A0.9800
C25—C261.383 (4)C52—H52B0.9800
C25—C301.386 (4)C52—H52C0.9800
C26—C271.390 (4)C53—H53A0.9800
C26—H260.9500C53—H53B0.9800
C27—C281.371 (5)C53—H53C0.9800
N22—Zn—N24162.90 (9)C27—C26—H26119.6
N22—Zn—N2388.74 (8)C28—C27—C26119.7 (3)
N24—Zn—N2388.64 (8)C28—C27—H27120.1
N22—Zn—N2188.81 (8)C26—C27—H27120.1
N24—Zn—N2188.04 (8)C29—C28—C27120.6 (3)
N23—Zn—N21160.51 (9)C29—C28—H28119.7
N22—Zn—O4999.08 (8)C27—C28—H28119.7
N24—Zn—O4998.01 (8)C28—C29—C30119.9 (3)
N23—Zn—O4996.81 (8)C28—C29—H29120.0
N21—Zn—O49102.67 (8)C30—C29—H29120.0
N21—C1—C20125.6 (2)C25—C30—C29120.2 (3)
N21—C1—C2109.5 (2)C25—C30—H30119.9
C20—C1—C2124.8 (2)C29—C30—H30119.9
C3—C2—C1107.3 (2)C36—C31—C32118.7 (2)
C3—C2—H2126.3C36—C31—C10120.5 (2)
C1—C2—H2126.3C32—C31—C10120.8 (2)
C2—C3—C4107.4 (2)C31—C32—C33120.3 (3)
C2—C3—H3126.3C31—C32—H32119.8
C4—C3—H3126.3C33—C32—H32119.8
N21—C4—C5125.4 (2)C34—C33—C32120.4 (3)
N21—C4—C3109.6 (2)C34—C33—H33119.8
C5—C4—C3124.8 (2)C32—C33—H33119.8
C4—C5—C6125.7 (2)C33—C34—C35119.5 (3)
C4—C5—C25117.6 (2)C33—C34—H34120.3
C6—C5—C25116.6 (2)C35—C34—H34120.3
N22—C6—C5125.7 (2)C34—C35—C36120.3 (3)
N22—C6—C7109.7 (2)C34—C35—H35119.9
C5—C6—C7124.5 (2)C36—C35—H35119.9
C8—C7—C6107.0 (2)C31—C36—C35120.8 (3)
C8—C7—H7126.5C31—C36—H36119.6
C6—C7—H7126.5C35—C36—H36119.6
C7—C8—C9107.3 (2)C38—C37—C42118.2 (2)
C7—C8—H8126.4C38—C37—C15121.8 (2)
C9—C8—H8126.4C42—C37—C15120.0 (2)
N22—C9—C10126.2 (2)C39—C38—C37120.8 (3)
N22—C9—C8109.4 (2)C39—C38—H38119.6
C10—C9—C8124.3 (2)C37—C38—H38119.6
C9—C10—C11125.2 (2)C40—C39—C38120.6 (3)
C9—C10—C31117.5 (2)C40—C39—H39119.7
C11—C10—C31117.3 (2)C38—C39—H39119.7
N23—C11—C10125.2 (2)C41—C40—C39119.5 (3)
N23—C11—C12109.7 (2)C41—C40—H40120.3
C10—C11—C12125.1 (2)C39—C40—H40120.3
C13—C12—C11107.6 (2)C40—C41—C42120.4 (3)
C13—C12—H12126.2C40—C41—H41119.8
C11—C12—H12126.2C42—C41—H41119.8
C12—C13—C14107.2 (2)C41—C42—C37120.6 (3)
C12—C13—H13126.4C41—C42—H42119.7
C14—C13—H13126.4C37—C42—H42119.7
N23—C14—C15125.1 (2)C48—C43—C44118.5 (2)
N23—C14—C13109.3 (2)C48—C43—C20119.9 (2)
C15—C14—C13125.5 (2)C44—C43—C20121.7 (2)
C14—C15—C16125.1 (2)C45—C44—C43120.8 (3)
C14—C15—C37118.4 (2)C45—C44—H44119.6
C16—C15—C37116.5 (2)C43—C44—H44119.6
N24—C16—C15126.0 (2)C46—C45—C44120.1 (3)
N24—C16—C17109.7 (2)C46—C45—H45119.9
C15—C16—C17124.3 (2)C44—C45—H45119.9
C18—C17—C16107.0 (2)C45—C46—C47119.9 (3)
C18—C17—H17126.5C45—C46—H46120.0
C16—C17—H17126.5C47—C46—H46120.0
C17—C18—C19107.5 (2)C46—C47—C48120.0 (3)
C17—C18—H18126.2C46—C47—H47120.0
C19—C18—H18126.2C48—C47—H47120.0
N24—C19—C20125.1 (2)C43—C48—C47120.7 (3)
N24—C19—C18109.7 (2)C43—C48—H48119.6
C20—C19—C18125.2 (2)C47—C48—H48119.6
C1—C20—C19125.1 (2)C50—O49—Zn126.0 (2)
C1—C20—C43117.5 (2)O49—C50—N51124.9 (3)
C19—C20—C43117.4 (2)O49—C50—H50117.6
C1—N21—C4106.2 (2)N51—C50—H50117.6
C1—N21—Zn127.01 (16)C50—N51—C53124.2 (3)
C4—N21—Zn126.48 (17)C50—N51—C52119.3 (3)
C6—N22—C9106.5 (2)C53—N51—C52116.5 (3)
C6—N22—Zn127.12 (17)N51—C52—H52A109.5
C9—N22—Zn126.17 (16)N51—C52—H52B109.5
C14—N23—C11106.22 (19)H52A—C52—H52B109.5
C14—N23—Zn126.31 (16)N51—C52—H52C109.5
C11—N23—Zn126.21 (17)H52A—C52—H52C109.5
C19—N24—C16106.2 (2)H52B—C52—H52C109.5
C19—N24—Zn127.51 (16)N51—C53—H53A109.5
C16—N24—Zn125.43 (16)N51—C53—H53B109.5
C26—C25—C30118.8 (3)H53A—C53—H53B109.5
C26—C25—C5121.4 (3)N51—C53—H53C109.5
C30—C25—C5119.7 (3)H53A—C53—H53C109.5
C25—C26—C27120.8 (3)H53B—C53—H53C109.5
C25—C26—H26119.6

Experimental details

Crystal data
Chemical formula[Zn(C44H28N4)(C3H7NO)]
Mr751.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)13.7419 (3), 9.2278 (2), 29.3016 (7)
β (°) 101.7186 (13)
V3)3638.22 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29748, 8697, 5627
Rint0.059
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.03
No. of reflections8697
No. of parameters489
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.64

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-III (Burnett & Johnson, 1996) and Mercury (Bruno et al., 2002).

Selected geometric parameters (Å, º) top
Zn—N222.054 (2)Zn—N212.091 (2)
Zn—N242.065 (2)Zn—O492.150 (2)
Zn—N232.073 (2)
N22—Zn—N24162.90 (9)N22—Zn—O4999.08 (8)
N22—Zn—N2388.74 (8)N24—Zn—O4998.01 (8)
N24—Zn—N2388.64 (8)N23—Zn—O4996.81 (8)
N22—Zn—N2188.81 (8)N21—Zn—O49102.67 (8)
N24—Zn—N2188.04 (8)C50—O49—Zn126.0 (2)
N23—Zn—N21160.51 (9)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds