organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(8-Meth­­oxy­carbonyl-4b,8-di­methyl-4b,5,6,7,8,8a,9,10-octa­hydro­phenan­thren-3-yl)amino]-3,5-di­nitro­benzoic acid ethyl acetate monosolvate

aCollege of Metallurgy and Resources, Anhui University of Technology, Maanshan 243002, People's Republic of China, and bDepartment of Chemistry and Engineering Technology, Guilin Normal College, Guilin 541001, People's Republic of China
*Correspondence e-mail: zhangyexinrudage@126.com

(Received 28 June 2012; accepted 16 July 2012; online 11 August 2012)

The title compound, C25H27N3O8·C4H8O2, has a diterpene skeleton in which the fused cyclo­hexane rings exhibit chair and half-chair conformations. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds are observed.

Related literature

For the synthesis of cis-deisopropyl­dehydro­abietate derivatives, see: Fonseca et al. (2001[Fonseca, T., Gigante, B. & Gilchrist, T. L. (2001). Tetrahedron, 57, 1793-1799.]); Baleizao et al. (2004[Baleizao, C., Pires, N., Gigante, B. & Marcelo-Curto, M. J. (2004). Tetrahedron Lett. 45, 4375-4377.]); Feio et al. (1999[Feio, S. S., Gigante, B., Roseiro, J. C. & Marcelo-Curto, M. J. (1999). J. Microbiol. Meth. 35, 201-206.]). For a related structures, see: Wang et al. (2006[Wang, H.-S., Wu, X.-R., Pan, Y.-M., Zhang, Y. & Zhang, Y. (2006). Acta Cryst. E62, o3166-o3167.]); Hamodrakas et al. (1978[Hamodrakas, S., Akrigg, D. & Sheldrick, B. (1978). Cryst. Struct. Commun. 7, 429-434.]). For uses of dehydro­abietic acid (DAA), see: Bhatnagar (1983[Bhatnagar, M. S. (1983). Paint Resin, 53, 45-49.], 1984[Bhatnagar, M. S. (1984). Paint Resin, 54, 42-43.]). For the geometry of diterpenic compounds, see: Allen et al. (1991[Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Macrae, C. F. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 204-212.]);

[Scheme 1]

Experimental

Crystal data
  • C25H27N3O8·C4H8O2

  • Mr = 585.60

  • Monoclinic, P 21

  • a = 7.649 (4) Å

  • b = 13.591 (8) Å

  • c = 14.399 (8) Å

  • β = 101.371 (7)°

  • V = 1467.5 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.47 × 0.38 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.988

  • 9128 measured reflections

  • 5885 independent reflections

  • 4688 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.03

  • 5885 reflections

  • 385 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1S⋯O6 0.86 2.02 2.654 (3) 129
O5—H5⋯O2Si 0.82 1.87 2.676 (3) 168
C4S—H4S3⋯O2 0.96 2.54 3.332 (4) 139
C15—H15B⋯O8 0.97 2.53 3.326 (4) 140
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dehydroabietic acid (DAA) is one of the isomerides in the renewable rosin. It is widely used in the fields such as paint, adhesives, printing ink (Bhatnagar, 1983), papermaking, and rubber food (Bhatnagar, 1983). Like some natural drug, it has an aromatic diterpene structure with three rings. It also has three sterogenic centres but their absolute configuration cannot be determined by this analysis. The compound comprises a reactive carboxy group and DAA molecule might be modified to obtain some multifunctional derivatives which can be used as high added value products like novel fluorescence derivatization reagents and efficient but low toxic medicines through constructing aromatic or heteroaromatic ring on DAA' s skeleton. Methyl cis-deisopropyldehydroabietate can be easily synthesized from DAA (Fonseca et al., 2001). It provides a convenient starting material for the construction of other derivatives. Some of these derivatives lacking the isopropyl group are also antimicrobial agents (Feio et al., 1999). The molecular structure of the title compound (I) (Fig. 1), as typical of diterpenic compounds (Allen et al., 1991), shows a trans junction of rings A (defined by C16, C17, C18, C19, C20, C21) and B (defined by C11, C12, C17, C16, C15, C14) with two methyl groups in axial positions of the six membered rings. The torsion angles show a chair and a half-chair conformation for rings A and B, respectively. The overall geometry of (I) is comparable to that found for methyl dehydroabietate (Hamodrakas et al., 1978), apart from the substituted 2,4,6 - trinitrophenylamino and methylgroups at the benzene ring.

Related literature top

For the synthesis of cis-deisopropyldehydroabietate derivatives, see: Fonseca et al. (2001); Baleizao et al. (2004); Feio et al. (1999). For a related structures, see: Wang et al. (2006); Hamodrakas et al. (1978). For uses of dehydroabietic acid (DAA), see: Bhatnagar (1983, 1984). For the geometry of diterpenic compounds, see: Allen et al. (1991);

Experimental top

The title compound was obtained by refluxing methyl 13-amino- cis-deisopropyldehydroabietate and 2-chloro-3, 5- dinitrobenzoic acid in ethanol in the presence of copper powder and potassium carbonate to give the title compound as a yellow precipitate in 87.7% yield. Recrystallization from ethyl acetate gave orange block-like crystals suitable for an X-ray diffraction experiment. Anal.Calcd. for C29H35N3O10: C, 59.48, H, 6.02, N, 7.18%. Found:C, 58.90, H, 6.56, N, 7.00%.

Refinement top

H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 25% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing hydrogen bonds drawn as dashed lines.
2-[(8-Methoxycarbonyl-4b,8-dimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren- 3-yl)amino]-3,5-dinitrobenzoic acid ethyl acetate monosolvate top
Crystal data top
C25H27N3O8·C4H8O2F(000) = 620
Mr = 585.60Dx = 1.325 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3055 reflections
a = 7.649 (4) Åθ = 2.8–24.0°
b = 13.591 (8) ŵ = 0.10 mm1
c = 14.399 (8) ÅT = 296 K
β = 101.371 (7)°Block, orange
V = 1467.5 (15) Å30.47 × 0.38 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5885 independent reflections
Radiation source: fine-focus sealed tube4688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.954, Tmax = 0.988k = 1714
9128 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.0376P]
where P = (Fo2 + 2Fc2)/3
5885 reflections(Δ/σ)max = 0.024
385 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C25H27N3O8·C4H8O2V = 1467.5 (15) Å3
Mr = 585.60Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.649 (4) ŵ = 0.10 mm1
b = 13.591 (8) ÅT = 296 K
c = 14.399 (8) Å0.47 × 0.38 × 0.12 mm
β = 101.371 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5885 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4688 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.988Rint = 0.016
9128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
5885 reflectionsΔρmin = 0.17 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4541 (2)0.20663 (15)1.11523 (11)0.0506 (4)
H1S0.41650.23691.15990.061*
N21.1161 (3)0.01668 (16)1.21945 (16)0.0627 (5)
N30.6957 (2)0.1904 (2)0.98090 (13)0.0622 (6)
O10.1533 (2)0.19460 (12)0.64103 (12)0.0619 (4)
O20.2245 (2)0.05029 (12)0.58598 (11)0.0553 (4)
O31.1580 (3)0.01462 (18)1.30023 (15)0.0869 (6)
O41.2085 (3)0.00787 (19)1.16010 (15)0.0920 (7)
O50.6401 (2)0.10646 (14)1.39061 (11)0.0631 (4)
H50.58290.12291.43060.095*
O60.4375 (2)0.19827 (14)1.29741 (10)0.0645 (5)
O70.6592 (3)0.27809 (18)0.97449 (14)0.0812 (6)
O80.7103 (3)0.13644 (19)0.91429 (12)0.0894 (7)
O1S0.3165 (2)0.24418 (17)0.61251 (13)0.0775 (5)
O2S0.4987 (2)0.16498 (16)0.53723 (12)0.0749 (6)
C10.8417 (3)0.08358 (16)1.25915 (15)0.0477 (5)
H10.88240.06331.32140.057*
C20.9446 (3)0.06669 (17)1.19241 (16)0.0493 (5)
C30.8917 (3)0.09838 (17)1.10043 (16)0.0513 (5)
H30.96320.08791.05610.062*
C40.7316 (3)0.14554 (17)1.07577 (13)0.0478 (5)
C50.6150 (3)0.16232 (16)1.13960 (13)0.0440 (5)
C60.6781 (3)0.13053 (16)1.23462 (13)0.0441 (4)
C70.5720 (3)0.14879 (17)1.30933 (14)0.0489 (5)
C80.3398 (3)0.20904 (16)1.02443 (13)0.0446 (5)
C90.2480 (3)0.29477 (18)0.99475 (16)0.0523 (5)
H90.26790.35171.03110.063*
C100.1267 (3)0.29411 (17)0.91050 (16)0.0529 (5)
H100.06140.35090.89170.063*
C110.0978 (2)0.21138 (16)0.85216 (14)0.0439 (5)
C120.1923 (2)0.12511 (15)0.88017 (13)0.0396 (4)
C130.3113 (3)0.12563 (16)0.96844 (13)0.0437 (4)
H130.37240.06820.98960.052*
C140.0350 (3)0.21756 (17)0.76050 (15)0.0514 (5)
H14A0.02060.24890.71320.062*
H14B0.13450.25830.76950.062*
C150.1040 (3)0.11764 (17)0.72472 (15)0.0480 (5)
H15A0.17680.12430.66180.058*
H15B0.17850.09110.76600.058*
C160.0500 (2)0.04646 (15)0.72138 (13)0.0393 (4)
H160.12790.07870.68420.047*
C170.1646 (3)0.02907 (14)0.82312 (13)0.0402 (4)
C180.0684 (3)0.04380 (18)0.87898 (15)0.0540 (5)
H18A0.14650.05890.93890.065*
H18B0.03750.01240.89270.065*
C190.0150 (4)0.13884 (19)0.82600 (18)0.0622 (6)
H19A0.04720.18080.86330.075*
H19B0.12090.17330.81620.075*
C200.1057 (3)0.11764 (19)0.73048 (18)0.0584 (6)
H20A0.21460.08690.74090.070*
H20B0.13770.17930.69760.070*
C210.0177 (3)0.05074 (16)0.66828 (14)0.0444 (4)
C220.1505 (3)0.0292 (2)0.57444 (17)0.0612 (6)
H22A0.10350.02200.54050.092*
H22B0.26260.00860.58830.092*
H22C0.16770.08780.53640.092*
C230.1299 (3)0.10728 (17)0.63367 (14)0.0460 (5)
C240.3485 (3)0.01273 (18)0.81485 (15)0.0499 (5)
H24A0.40680.03220.77940.075*
H24B0.33300.07510.78290.075*
H24C0.42000.02130.87700.075*
C250.3532 (4)0.1005 (2)0.5418 (2)0.0760 (8)
H25A0.44430.12890.58970.114*
H25B0.40620.05450.50500.114*
H25C0.29460.15170.50120.114*
C1S0.4227 (5)0.3569 (3)0.7347 (3)0.1153 (14)
H1S10.41380.41330.69390.173*
H1S20.51310.36830.79010.173*
H1S30.31030.34600.75310.173*
C2S0.4685 (4)0.2728 (3)0.6858 (2)0.1023 (12)
H2S10.50120.21900.73000.123*
H2S20.57010.28780.65720.123*
C3S0.3494 (3)0.19013 (19)0.54227 (16)0.0568 (6)
C4S0.1866 (4)0.1646 (2)0.47246 (19)0.0685 (7)
H4S10.19950.18590.41060.103*
H4S20.08550.19660.48940.103*
H4S30.16930.09460.47210.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0465 (9)0.0698 (13)0.0344 (8)0.0096 (9)0.0056 (7)0.0083 (8)
N20.0529 (11)0.0655 (14)0.0658 (14)0.0085 (9)0.0023 (10)0.0114 (10)
N30.0460 (10)0.0995 (19)0.0428 (10)0.0062 (11)0.0133 (8)0.0005 (11)
O10.0686 (10)0.0477 (10)0.0715 (11)0.0040 (8)0.0189 (9)0.0004 (8)
O20.0591 (9)0.0528 (9)0.0593 (9)0.0054 (7)0.0249 (7)0.0035 (7)
O30.0812 (13)0.1000 (15)0.0742 (13)0.0356 (11)0.0025 (10)0.0020 (11)
O40.0618 (11)0.129 (2)0.0892 (14)0.0323 (11)0.0234 (11)0.0025 (12)
O50.0734 (11)0.0769 (12)0.0417 (8)0.0163 (9)0.0178 (8)0.0080 (8)
O60.0606 (9)0.0897 (13)0.0448 (8)0.0209 (9)0.0144 (7)0.0002 (8)
O70.0831 (13)0.0916 (17)0.0666 (12)0.0033 (11)0.0091 (10)0.0213 (11)
O80.0761 (12)0.154 (2)0.0423 (9)0.0142 (13)0.0212 (8)0.0121 (11)
O1S0.0567 (10)0.1045 (15)0.0693 (11)0.0140 (10)0.0071 (9)0.0255 (10)
O2S0.0632 (10)0.1121 (17)0.0497 (9)0.0202 (10)0.0117 (8)0.0045 (9)
C10.0501 (12)0.0453 (12)0.0436 (11)0.0005 (9)0.0007 (9)0.0074 (9)
C20.0429 (11)0.0503 (13)0.0528 (13)0.0018 (9)0.0051 (9)0.0129 (9)
C30.0452 (11)0.0621 (14)0.0476 (12)0.0033 (10)0.0115 (9)0.0154 (10)
C40.0440 (11)0.0609 (14)0.0374 (10)0.0035 (9)0.0054 (8)0.0080 (9)
C50.0428 (10)0.0505 (12)0.0376 (10)0.0016 (9)0.0058 (8)0.0083 (8)
C60.0459 (10)0.0475 (12)0.0377 (10)0.0017 (9)0.0057 (8)0.0073 (9)
C70.0529 (12)0.0546 (14)0.0384 (11)0.0010 (10)0.0070 (9)0.0061 (9)
C80.0405 (10)0.0557 (13)0.0374 (10)0.0030 (9)0.0072 (8)0.0016 (9)
C90.0539 (12)0.0534 (14)0.0484 (12)0.0042 (10)0.0075 (10)0.0078 (10)
C100.0536 (12)0.0484 (13)0.0542 (13)0.0127 (10)0.0048 (10)0.0010 (10)
C110.0396 (10)0.0485 (12)0.0420 (11)0.0067 (9)0.0043 (8)0.0024 (9)
C120.0366 (9)0.0459 (11)0.0363 (9)0.0033 (8)0.0072 (7)0.0033 (8)
C130.0413 (10)0.0502 (12)0.0387 (10)0.0084 (9)0.0059 (8)0.0029 (9)
C140.0490 (12)0.0506 (13)0.0505 (12)0.0127 (10)0.0005 (9)0.0036 (10)
C150.0405 (10)0.0548 (13)0.0454 (11)0.0089 (9)0.0007 (9)0.0001 (10)
C160.0345 (9)0.0438 (11)0.0392 (10)0.0012 (8)0.0060 (8)0.0031 (8)
C170.0411 (10)0.0419 (11)0.0364 (10)0.0053 (8)0.0048 (8)0.0016 (8)
C180.0690 (14)0.0514 (13)0.0444 (11)0.0034 (11)0.0177 (10)0.0085 (10)
C190.0843 (17)0.0474 (14)0.0618 (15)0.0087 (12)0.0312 (13)0.0079 (11)
C200.0551 (13)0.0555 (15)0.0683 (16)0.0136 (11)0.0211 (12)0.0086 (11)
C210.0388 (10)0.0475 (12)0.0456 (11)0.0003 (9)0.0055 (8)0.0004 (9)
C220.0495 (13)0.0671 (16)0.0598 (14)0.0015 (11)0.0069 (10)0.0117 (12)
C230.0441 (11)0.0488 (13)0.0430 (11)0.0010 (9)0.0033 (9)0.0014 (9)
C240.0423 (11)0.0553 (13)0.0485 (12)0.0117 (9)0.0004 (9)0.0027 (10)
C250.0725 (17)0.0785 (19)0.088 (2)0.0140 (14)0.0429 (16)0.0006 (14)
C1S0.100 (3)0.107 (3)0.142 (3)0.026 (2)0.031 (2)0.049 (3)
C2S0.077 (2)0.136 (3)0.083 (2)0.019 (2)0.0077 (17)0.041 (2)
C3S0.0628 (14)0.0618 (15)0.0457 (12)0.0060 (12)0.0103 (10)0.0077 (11)
C4S0.0693 (16)0.0697 (17)0.0609 (15)0.0036 (12)0.0010 (12)0.0105 (12)
Geometric parameters (Å, º) top
N1—C51.353 (3)C14—H14B0.9700
N1—C81.423 (3)C15—C161.532 (3)
N1—H1S0.8600C15—H15A0.9700
N2—O41.217 (3)C15—H15B0.9700
N2—O31.221 (3)C16—C211.562 (3)
N2—C21.461 (3)C16—C171.570 (3)
N3—O71.223 (3)C16—H160.9800
N3—O81.230 (3)C17—C241.543 (3)
N3—C41.472 (3)C17—C181.550 (3)
O1—C231.202 (3)C18—C191.515 (4)
O2—C231.338 (3)C18—H18A0.9700
O2—C251.445 (3)C18—H18B0.9700
O5—C71.316 (3)C19—C201.525 (4)
O5—H50.8200C19—H19A0.9700
O6—C71.213 (3)C19—H19B0.9700
O1S—C3S1.314 (3)C20—C211.523 (3)
O1S—C2S1.461 (4)C20—H20A0.9700
O2S—C3S1.209 (3)C20—H20B0.9700
C1—C21.376 (3)C21—C231.528 (3)
C1—C61.387 (3)C21—C221.550 (3)
C1—H10.9300C22—H22A0.9600
C2—C31.376 (3)C22—H22B0.9600
C3—C41.365 (3)C22—H22C0.9600
C3—H30.9300C24—H24A0.9600
C4—C51.420 (3)C24—H24B0.9600
C5—C61.425 (3)C24—H24C0.9600
C6—C71.491 (3)C25—H25A0.9600
C8—C131.383 (3)C25—H25B0.9600
C8—C91.384 (3)C25—H25C0.9600
C9—C101.374 (3)C1S—C2S1.422 (5)
C9—H90.9300C1S—H1S10.9600
C10—C111.395 (3)C1S—H1S20.9600
C10—H100.9300C1S—H1S30.9600
C11—C121.394 (3)C2S—H2S10.9700
C11—C141.501 (3)C2S—H2S20.9700
C12—C131.410 (3)C3S—C4S1.479 (4)
C12—C171.534 (3)C4S—H4S10.9600
C13—H130.9300C4S—H4S20.9600
C14—C151.510 (3)C4S—H4S30.9600
C14—H14A0.9700
C5—N1—C8127.69 (16)C24—C17—C18109.75 (18)
C5—N1—H1S116.2C12—C17—C16111.36 (16)
C8—N1—H1S116.2C24—C17—C16109.47 (15)
O4—N2—O3123.7 (2)C18—C17—C16110.21 (17)
O4—N2—C2118.3 (2)C19—C18—C17113.07 (18)
O3—N2—C2118.0 (2)C19—C18—H18A109.0
O7—N3—O8125.2 (2)C17—C18—H18A109.0
O7—N3—C4118.2 (2)C19—C18—H18B109.0
O8—N3—C4116.6 (3)C17—C18—H18B109.0
C23—O2—C25115.90 (19)H18A—C18—H18B107.8
C7—O5—H5109.5C18—C19—C20110.4 (2)
C3S—O1S—C2S117.3 (2)C18—C19—H19A109.6
C2—C1—C6120.7 (2)C20—C19—H19A109.6
C2—C1—H1119.7C18—C19—H19B109.6
C6—C1—H1119.7C20—C19—H19B109.6
C1—C2—C3121.4 (2)H19A—C19—H19B108.1
C1—C2—N2119.9 (2)C19—C20—C21112.58 (18)
C3—C2—N2118.7 (2)C19—C20—H20A109.1
C4—C3—C2118.41 (19)C21—C20—H20A109.1
C4—C3—H3120.8C19—C20—H20B109.1
C2—C3—H3120.8C21—C20—H20B109.1
C3—C4—C5123.6 (2)H20A—C20—H20B107.8
C3—C4—N3115.45 (18)C20—C21—C23109.39 (18)
C5—C4—N3120.53 (19)C20—C21—C22109.59 (19)
N1—C5—C4124.00 (18)C23—C21—C22102.13 (17)
N1—C5—C6120.19 (17)C20—C21—C16111.04 (17)
C4—C5—C6115.80 (19)C23—C21—C16112.97 (16)
C1—C6—C5120.14 (18)C22—C21—C16111.35 (18)
C1—C6—C7119.03 (19)C21—C22—H22A109.5
C5—C6—C7120.83 (19)C21—C22—H22B109.5
O6—C7—O5122.96 (19)H22A—C22—H22B109.5
O6—C7—C6123.90 (19)C21—C22—H22C109.5
O5—C7—C6113.13 (19)H22A—C22—H22C109.5
C13—C8—C9119.86 (18)H22B—C22—H22C109.5
C13—C8—N1120.96 (18)O1—C23—O2122.0 (2)
C9—C8—N1119.06 (19)O1—C23—C21125.1 (2)
C10—C9—C8118.7 (2)O2—C23—C21112.64 (19)
C10—C9—H9120.6C17—C24—H24A109.5
C8—C9—H9120.6C17—C24—H24B109.5
C9—C10—C11122.41 (19)H24A—C24—H24B109.5
C9—C10—H10118.8C17—C24—H24C109.5
C11—C10—H10118.8H24A—C24—H24C109.5
C12—C11—C10119.49 (18)H24B—C24—H24C109.5
C12—C11—C14121.58 (18)O2—C25—H25A109.5
C10—C11—C14118.94 (18)O2—C25—H25B109.5
C11—C12—C13117.52 (18)H25A—C25—H25B109.5
C11—C12—C17123.47 (16)O2—C25—H25C109.5
C13—C12—C17118.90 (16)H25A—C25—H25C109.5
C8—C13—C12121.94 (18)H25B—C25—H25C109.5
C8—C13—H13119.0C2S—C1S—H1S1109.5
C12—C13—H13119.0C2S—C1S—H1S2109.5
C11—C14—C15112.35 (17)H1S1—C1S—H1S2109.5
C11—C14—H14A109.1C2S—C1S—H1S3109.5
C15—C14—H14A109.1H1S1—C1S—H1S3109.5
C11—C14—H14B109.1H1S2—C1S—H1S3109.5
C15—C14—H14B109.1C1S—C2S—O1S109.5 (3)
H14A—C14—H14B107.9C1S—C2S—H2S1109.8
C14—C15—C16111.05 (18)O1S—C2S—H2S1109.8
C14—C15—H15A109.4C1S—C2S—H2S2109.8
C16—C15—H15A109.4O1S—C2S—H2S2109.8
C14—C15—H15B109.4H2S1—C2S—H2S2108.2
C16—C15—H15B109.4O2S—C3S—O1S122.1 (2)
H15A—C15—H15B108.0O2S—C3S—C4S124.9 (2)
C15—C16—C21111.52 (17)O1S—C3S—C4S113.0 (2)
C15—C16—C17110.93 (16)C3S—C4S—H4S1109.5
C21—C16—C17113.55 (16)C3S—C4S—H4S2109.5
C15—C16—H16106.8H4S1—C4S—H4S2109.5
C21—C16—H16106.8C3S—C4S—H4S3109.5
C17—C16—H16106.8H4S1—C4S—H4S3109.5
C12—C17—C24108.83 (16)H4S2—C4S—H4S3109.5
C12—C17—C18107.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1S···O60.862.022.654 (3)129
O5—H5···O2Si0.821.872.676 (3)168
C4S—H4S3···O20.962.543.332 (4)139
C15—H15B···O80.972.533.326 (4)140
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H27N3O8·C4H8O2
Mr585.60
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.649 (4), 13.591 (8), 14.399 (8)
β (°) 101.371 (7)
V3)1467.5 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.47 × 0.38 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.954, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9128, 5885, 4688
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.03
No. of reflections5885
No. of parameters385
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1S···O60.862.022.654 (3)129
O5—H5···O2Si0.821.872.676 (3)168
C4S—H4S3···O20.962.543.332 (4)139
C15—H15B···O80.972.533.326 (4)140
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 50903001) and the Guangxi Department of Education research project (200911MS281, 200911MS282) for financial support.

References

First citationAllen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Macrae, C. F. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 204–212.  CrossRef Google Scholar
First citationBaleizao, C., Pires, N., Gigante, B. & Marcelo-Curto, M. J. (2004). Tetrahedron Lett. 45, 4375–4377.  CAS Google Scholar
First citationBhatnagar, M. S. (1983). Paint Resin, 53, 45–49.  CAS Google Scholar
First citationBhatnagar, M. S. (1984). Paint Resin, 54, 42–43.  CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeio, S. S., Gigante, B., Roseiro, J. C. & Marcelo-Curto, M. J. (1999). J. Microbiol. Meth. 35, 201–206.  Google Scholar
First citationFonseca, T., Gigante, B. & Gilchrist, T. L. (2001). Tetrahedron, 57, 1793–1799.  Web of Science CrossRef CAS Google Scholar
First citationHamodrakas, S., Akrigg, D. & Sheldrick, B. (1978). Cryst. Struct. Commun. 7, 429–434.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-S., Wu, X.-R., Pan, Y.-M., Zhang, Y. & Zhang, Y. (2006). Acta Cryst. E62, o3166–o3167.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds