organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­aminium perchlorate–18-crown-6 (1/1)

aRiZhao Polytechnic, RiZhao 276826, People's Republic of China
*Correspondence e-mail: wangwenzhe-11@163.com

(Received 21 January 2011; accepted 24 February 2011; online 2 March 2011)

In the title compound, C7H10N+·ClO4·C20H24O6, the proton­ated benzyl­amine cation forms a rotator–stator complex with the 18-crown-6 (1,4,7,10,13,16-hexa­oxacyclo­octa­deca­ne) mol­ecule via N—H⋯O hydrogen bonds. The cations are associated via weak C—H⋯π inter­actions, forming chains parallel to [011], while the perclorate anions are located between these chains.

Related literature

For a related structure, see: Ge et al.. (2010[Ge, J.-Z., Fu, X.-Q., Hang, T., Ye, Q. & Xiong, R.-G. (2010). Cryst. Growth Des. 10, 3632-3637.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·ClO4·C12H24O6

  • Mr = 471.92

  • Triclinic, [P \overline 1]

  • a = 9.3482 (19) Å

  • b = 10.948 (2) Å

  • c = 12.071 (2) Å

  • α = 76.71 (3)°

  • β = 86.64 (3)°

  • γ = 78.27 (3)°

  • V = 1177.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.926, Tmax = 0.958

  • 12262 measured reflections

  • 5391 independent reflections

  • 3637 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.157

  • S = 1.03

  • 5391 reflections

  • 292 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 (2) 2.18 (2) 3.004 (3) 161 (3)
N1—H2⋯O2 0.84 (2) 2.11 (2) 2.938 (3) 174 (3)
N1—H3⋯O1 0.85 (2) 2.47 (2) 2.955 (3) 117 (2)
N1—H3⋯O6 0.85 (2) 2.07 (2) 2.885 (3) 162 (3)
C13—H13BCg1i 0.97 2.99 3.545 (3) 117
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound, (I), contains a 1:1 (C7H10N+)(18-crown-6) adduct forming the supramolecular cation and a perchlorate anion (Fig. 1). The 18-crown-6 molecule possesses a boat conformation, while the ammonium atom is in a forward perching position. The supramolecular cation is involved in three bifurcated hydrogen bonds, each to two adjacent oxygen atoms of the crown ring, with the hydrogen bond length from 2.885 (3) Å- 3.004 (3)Å (Table 1).

The pairwise face-to-face supramolecular cations are linked by C—H···Cgi [symmetry code: (i) -x + 1, -y + 1, -z] interactions with C···centroid distances of 3.545 (3) Å, forming one-dimensional chains parallel to [0 1 1] (Fig. 2). The perchlorate anions are located between the chains of cations.

Related literature top

For related literature, see: Ge et al. (2010).

Experimental top

Benzylamine (1.07 g, 10 mmol) was firstly dissolved in methanol (20 mL), to which perchloraic acid aqueous solution was dropped slowly with stirring until pH of the solution gradually changed to ca 7.18-crown-6 (2.64 g 10 mmol) methanol solution was mixed. Methanol was added until the precipitated substrate disappeared, then the solution was allowed to slowly evaporate at room temperature until prisms of the title compound were grown.

Refinement top

Positional parameters of all the H atoms for C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C). All ammonium H atoms were found in a difference Fourier map and refined with restraints for the N—H distances of 0.87 (2) Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. N-bound H atoms are shown as small spheres of arbitrary radii, all other H atoms have been omitted for clarity. Dashed lines indicate N—H···O hydrogen bonds.
[Figure 2] Fig. 2. A view of crystal packing with stacking parallel to [0 1 1]. Dashed lines indicate hydrogen bonds and C—H···π interactions. Cg denotes the ring centroid. [symmetry code: (i) -x + 1, -y + 1, -z]
Benzylaminium perchlorate–1,4,7,10,13,16-hexaoxacyclooctadecane (1/1) top
Crystal data top
C7H10N+·ClO4·C12H24O6Z = 2
Mr = 471.92F(000) = 504
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3482 (19) ÅCell parameters from 5069.5 reflections
b = 10.948 (2) Åθ = 3.2–27.6°
c = 12.071 (2) ŵ = 0.21 mm1
α = 76.71 (3)°T = 298 K
β = 86.64 (3)°Prism, colourless
γ = 78.27 (3)°0.40 × 0.30 × 0.20 mm
V = 1177.1 (4) Å3
Data collection top
Rigaku SCXmini
diffractometer
5391 independent reflections
Radiation source: fine-focus sealed tube3637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.926, Tmax = 0.958l = 1515
12262 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.4966P]
where P = (Fo2 + 2Fc2)/3
5391 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.49 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
C7H10N+·ClO4·C12H24O6γ = 78.27 (3)°
Mr = 471.92V = 1177.1 (4) Å3
Triclinic, P1Z = 2
a = 9.3482 (19) ÅMo Kα radiation
b = 10.948 (2) ŵ = 0.21 mm1
c = 12.071 (2) ÅT = 298 K
α = 76.71 (3)°0.40 × 0.30 × 0.20 mm
β = 86.64 (3)°
Data collection top
Rigaku SCXmini
diffractometer
5391 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3637 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.958Rint = 0.036
12262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0583 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.49 e Å3
5391 reflectionsΔρmin = 0.32 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09437 (7)0.73666 (6)0.23044 (6)0.0524 (2)
N10.4131 (2)0.2586 (2)0.25044 (18)0.0396 (4)
H30.328 (2)0.241 (2)0.262 (2)0.055 (8)*
H20.434 (3)0.280 (3)0.309 (2)0.080 (11)*
H10.473 (3)0.191 (2)0.242 (2)0.061 (8)*
C10.0242 (3)0.2263 (3)0.3324 (2)0.0539 (6)
H1A0.04210.14500.38740.065*
H1B0.07650.24350.30830.065*
C20.0486 (3)0.3295 (3)0.3861 (2)0.0570 (7)
H2A0.03750.40990.33000.068*
H2B0.02280.33980.44650.068*
C30.2209 (3)0.3866 (3)0.4913 (2)0.0574 (7)
H3A0.15040.39300.55300.069*
H3B0.21190.47030.44030.069*
C40.3716 (3)0.3441 (3)0.5380 (2)0.0563 (7)
H4A0.38640.39720.58890.068*
H4B0.38440.25620.58110.068*
C50.6237 (3)0.3138 (3)0.4840 (3)0.0619 (7)
H5A0.63220.33910.55490.074*
H5B0.68540.35740.42760.074*
C60.6772 (3)0.1724 (3)0.5013 (2)0.0618 (7)
H6A0.77510.14890.53190.074*
H6B0.61380.12730.55490.074*
C70.7380 (3)0.0069 (3)0.4014 (3)0.0622 (8)
H7A0.68590.04570.45880.075*
H7B0.83970.01120.42320.075*
C80.7269 (3)0.0241 (3)0.2899 (3)0.0605 (7)
H8A0.77160.03340.23110.073*
H8B0.77780.11110.29160.073*
C90.5564 (3)0.0628 (3)0.1715 (2)0.0621 (7)
H9A0.59740.15380.18800.075*
H9B0.60620.02190.10480.075*
C100.3972 (3)0.0412 (3)0.1491 (2)0.0585 (7)
H10A0.38050.08870.09410.070*
H10B0.34500.07020.21890.070*
C110.1953 (3)0.1244 (3)0.0785 (2)0.0574 (7)
H11A0.17340.06450.03700.069*
H11B0.17540.20910.02870.069*
C120.0963 (3)0.1234 (3)0.1806 (2)0.0574 (7)
H12A0.00470.14050.15740.069*
H12B0.11670.04000.23230.069*
C130.4150 (3)0.3677 (3)0.1516 (2)0.0558 (7)
H13A0.34090.44010.16300.067*
H13B0.39090.34410.08330.067*
C140.5614 (2)0.4067 (2)0.13535 (19)0.0410 (5)
C150.6709 (3)0.3499 (2)0.0712 (2)0.0534 (6)
H15A0.65440.28620.03690.064*
C160.8057 (3)0.3872 (3)0.0573 (2)0.0619 (7)
H16A0.87870.34880.01350.074*
C170.8306 (3)0.4798 (3)0.1078 (2)0.0595 (7)
H17A0.92130.50350.09960.071*
C180.7231 (3)0.5378 (3)0.1702 (2)0.0590 (7)
H18A0.74020.60180.20380.071*
C190.5883 (3)0.5018 (2)0.1837 (2)0.0503 (6)
H19A0.51520.54240.22600.060*
O10.19248 (17)0.29632 (15)0.43136 (15)0.0486 (4)
O20.47524 (19)0.35379 (16)0.44750 (14)0.0512 (4)
O30.67755 (19)0.13841 (15)0.39507 (15)0.0521 (4)
O40.57664 (17)0.01084 (16)0.26576 (14)0.0482 (4)
O50.34709 (18)0.09153 (16)0.10618 (14)0.0493 (4)
O60.11943 (17)0.21897 (16)0.23658 (15)0.0490 (4)
O70.0730 (3)0.7953 (3)0.3246 (2)0.1013 (8)
O80.0789 (4)0.8327 (2)0.1295 (2)0.1123 (10)
O90.0107 (4)0.6649 (4)0.2327 (3)0.1528 (15)
O100.2345 (3)0.6655 (4)0.2346 (3)0.1501 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0508 (4)0.0502 (4)0.0589 (4)0.0132 (3)0.0051 (3)0.0139 (3)
N10.0340 (11)0.0437 (11)0.0426 (11)0.0117 (9)0.0003 (9)0.0089 (9)
C10.0352 (12)0.0615 (16)0.0613 (16)0.0114 (11)0.0027 (11)0.0054 (13)
C20.0385 (13)0.0610 (16)0.0668 (17)0.0017 (12)0.0068 (12)0.0165 (14)
C30.0624 (17)0.0521 (15)0.0619 (17)0.0090 (13)0.0110 (13)0.0263 (13)
C40.0761 (19)0.0547 (15)0.0440 (14)0.0201 (14)0.0026 (13)0.0176 (12)
C50.0598 (17)0.0690 (18)0.0655 (18)0.0257 (14)0.0162 (14)0.0173 (14)
C60.0586 (16)0.0673 (18)0.0581 (17)0.0166 (14)0.0223 (13)0.0017 (14)
C70.0482 (15)0.0481 (15)0.085 (2)0.0051 (12)0.0271 (14)0.0004 (14)
C80.0390 (14)0.0507 (15)0.088 (2)0.0001 (11)0.0036 (13)0.0139 (14)
C90.0764 (19)0.0549 (16)0.0515 (16)0.0071 (14)0.0016 (14)0.0227 (13)
C100.0798 (19)0.0498 (15)0.0509 (15)0.0147 (13)0.0110 (13)0.0171 (12)
C110.0550 (16)0.0655 (17)0.0556 (16)0.0152 (13)0.0123 (13)0.0153 (13)
C120.0465 (14)0.0617 (16)0.0717 (18)0.0219 (12)0.0040 (13)0.0195 (14)
C130.0471 (14)0.0520 (15)0.0625 (17)0.0177 (12)0.0168 (12)0.0101 (12)
C140.0422 (12)0.0407 (12)0.0368 (12)0.0106 (10)0.0073 (9)0.0019 (10)
C150.0675 (17)0.0455 (14)0.0469 (14)0.0100 (12)0.0067 (12)0.0092 (11)
C160.0521 (16)0.0711 (19)0.0523 (16)0.0009 (14)0.0109 (12)0.0070 (14)
C170.0477 (15)0.0762 (19)0.0526 (16)0.0236 (14)0.0010 (12)0.0006 (14)
C180.0638 (17)0.0609 (17)0.0587 (16)0.0287 (14)0.0003 (14)0.0118 (14)
C190.0492 (14)0.0542 (15)0.0483 (14)0.0125 (12)0.0054 (11)0.0122 (12)
O10.0421 (9)0.0446 (9)0.0602 (11)0.0030 (7)0.0027 (8)0.0194 (8)
O20.0553 (10)0.0568 (10)0.0448 (10)0.0166 (8)0.0035 (8)0.0122 (8)
O30.0542 (10)0.0435 (9)0.0558 (11)0.0100 (8)0.0175 (8)0.0010 (8)
O40.0393 (9)0.0531 (10)0.0522 (10)0.0018 (7)0.0003 (7)0.0184 (8)
O50.0518 (10)0.0485 (10)0.0507 (10)0.0130 (8)0.0025 (8)0.0138 (8)
O60.0388 (9)0.0510 (10)0.0611 (11)0.0157 (7)0.0037 (8)0.0153 (8)
O70.0982 (18)0.133 (2)0.0844 (17)0.0079 (16)0.0136 (14)0.0580 (17)
O80.166 (3)0.0825 (17)0.0832 (18)0.0337 (18)0.0295 (18)0.0073 (14)
O90.179 (3)0.161 (3)0.162 (3)0.130 (3)0.004 (3)0.040 (2)
O100.101 (2)0.179 (3)0.132 (3)0.065 (2)0.0001 (19)0.040 (2)
Geometric parameters (Å, º) top
Cl1—O91.372 (3)C7—H7B0.9700
Cl1—O101.378 (3)C8—O41.423 (3)
Cl1—O81.407 (3)C8—H8A0.9700
Cl1—O71.414 (2)C8—H8B0.9700
N1—C131.484 (3)C9—O41.421 (3)
N1—H30.847 (17)C9—C101.489 (4)
N1—H20.836 (18)C9—H9A0.9700
N1—H10.858 (17)C9—H9B0.9700
C1—O61.424 (3)C10—O51.416 (3)
C1—C21.486 (4)C10—H10A0.9700
C1—H1A0.9700C10—H10B0.9700
C1—H1B0.9700C11—O51.431 (3)
C2—O11.427 (3)C11—C121.497 (4)
C2—H2A0.9700C11—H11A0.9700
C2—H2B0.9700C11—H11B0.9700
C3—O11.425 (3)C12—O61.425 (3)
C3—C41.492 (4)C12—H12A0.9700
C3—H3A0.9700C12—H12B0.9700
C3—H3B0.9700C13—C141.503 (3)
C4—O21.417 (3)C13—H13A0.9700
C4—H4A0.9700C13—H13B0.9700
C4—H4B0.9700C14—C191.375 (3)
C5—O21.431 (3)C14—C151.380 (4)
C5—C61.497 (4)C15—C161.392 (4)
C5—H5A0.9700C15—H15A0.9300
C5—H5B0.9700C16—C171.360 (4)
C6—O31.415 (3)C16—H16A0.9300
C6—H6A0.9700C17—C181.361 (4)
C6—H6B0.9700C17—H17A0.9300
C7—O31.421 (3)C18—C191.385 (4)
C7—C81.476 (4)C18—H18A0.9300
C7—H7A0.9700C19—H19A0.9300
O9—Cl1—O10113.1 (3)O4—C8—H8B110.0
O9—Cl1—O8108.3 (2)C7—C8—H8B110.0
O10—Cl1—O8108.9 (2)H8A—C8—H8B108.3
O9—Cl1—O7109.3 (2)O4—C9—C10109.1 (2)
O10—Cl1—O7108.27 (19)O4—C9—H9A109.9
O8—Cl1—O7108.82 (18)C10—C9—H9A109.9
C13—N1—H3111.3 (18)O4—C9—H9B109.9
C13—N1—H2109 (2)C10—C9—H9B109.9
H3—N1—H2106 (3)H9A—C9—H9B108.3
C13—N1—H1112.5 (19)O5—C10—C9108.1 (2)
H3—N1—H1108 (3)O5—C10—H10A110.1
H2—N1—H1110 (3)C9—C10—H10A110.1
O6—C1—C2110.2 (2)O5—C10—H10B110.1
O6—C1—H1A109.6C9—C10—H10B110.1
C2—C1—H1A109.6H10A—C10—H10B108.4
O6—C1—H1B109.6O5—C11—C12113.4 (2)
C2—C1—H1B109.6O5—C11—H11A108.9
H1A—C1—H1B108.1C12—C11—H11A108.9
O1—C2—C1109.0 (2)O5—C11—H11B108.9
O1—C2—H2A109.9C12—C11—H11B108.9
C1—C2—H2A109.9H11A—C11—H11B107.7
O1—C2—H2B109.9O6—C12—C11109.1 (2)
C1—C2—H2B109.9O6—C12—H12A109.9
H2A—C2—H2B108.3C11—C12—H12A109.9
O1—C3—C4109.2 (2)O6—C12—H12B109.9
O1—C3—H3A109.8C11—C12—H12B109.9
C4—C3—H3A109.8H12A—C12—H12B108.3
O1—C3—H3B109.8N1—C13—C14111.97 (19)
C4—C3—H3B109.8N1—C13—H13A109.2
H3A—C3—H3B108.3C14—C13—H13A109.2
O2—C4—C3109.6 (2)N1—C13—H13B109.2
O2—C4—H4A109.7C14—C13—H13B109.2
C3—C4—H4A109.7H13A—C13—H13B107.9
O2—C4—H4B109.7C19—C14—C15118.4 (2)
C3—C4—H4B109.7C19—C14—C13120.2 (2)
H4A—C4—H4B108.2C15—C14—C13121.4 (2)
O2—C5—C6112.9 (2)C14—C15—C16120.6 (2)
O2—C5—H5A109.0C14—C15—H15A119.7
C6—C5—H5A109.0C16—C15—H15A119.7
O2—C5—H5B109.0C17—C16—C15119.9 (3)
C6—C5—H5B109.0C17—C16—H16A120.0
H5A—C5—H5B107.8C15—C16—H16A120.0
O3—C6—C5108.5 (2)C16—C17—C18120.2 (3)
O3—C6—H6A110.0C16—C17—H17A119.9
C5—C6—H6A110.0C18—C17—H17A119.9
O3—C6—H6B110.0C17—C18—C19120.1 (3)
C5—C6—H6B110.0C17—C18—H18A119.9
H6A—C6—H6B108.4C19—C18—H18A119.9
O3—C7—C8109.8 (2)C14—C19—C18120.8 (2)
O3—C7—H7A109.7C14—C19—H19A119.6
C8—C7—H7A109.7C18—C19—H19A119.6
O3—C7—H7B109.7C3—O1—C2112.38 (19)
C8—C7—H7B109.7C4—O2—C5113.7 (2)
H7A—C7—H7B108.2C6—O3—C7112.5 (2)
O4—C8—C7108.7 (2)C9—O4—C8112.3 (2)
O4—C8—H8A110.0C10—O5—C11113.4 (2)
C7—C8—H8A110.0C1—O6—C12111.88 (18)
O6—C1—C2—O165.1 (3)C13—C14—C19—C18179.5 (2)
O1—C3—C4—O268.5 (3)C17—C18—C19—C140.5 (4)
O2—C5—C6—O364.3 (3)C4—C3—O1—C2178.8 (2)
O3—C7—C8—O466.0 (3)C1—C2—O1—C3176.0 (2)
O4—C9—C10—O569.6 (3)C3—C4—O2—C5179.4 (2)
O5—C11—C12—O663.4 (3)C6—C5—O2—C484.9 (3)
N1—C13—C14—C1993.2 (3)C5—C6—O3—C7175.3 (2)
N1—C13—C14—C1587.6 (3)C8—C7—O3—C6176.5 (2)
C19—C14—C15—C160.8 (4)C10—C9—O4—C8178.0 (2)
C13—C14—C15—C16179.9 (2)C7—C8—O4—C9168.3 (2)
C14—C15—C16—C170.4 (4)C9—C10—O5—C11178.6 (2)
C15—C16—C17—C181.2 (4)C12—C11—O5—C1076.3 (3)
C16—C17—C18—C190.8 (4)C2—C1—O6—C12178.3 (2)
C15—C14—C19—C181.3 (4)C11—C12—O6—C1177.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H3···O10.85 (2)2.47 (2)2.955 (3)117 (2)
N1—H2···O20.84 (2)2.11 (2)2.938 (3)174 (3)
N1—H2···O30.84 (2)2.60 (3)3.003 (3)111 (2)
N1—H1···O40.86 (2)2.18 (2)3.004 (3)161 (3)
N1—H1···O50.86 (2)2.61 (3)2.968 (3)107 (2)
N1—H3···O60.85 (2)2.07 (2)2.885 (3)162 (3)
C13—H13B···Cg1i0.972.993.545 (3)117
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H10N+·ClO4·C12H24O6
Mr471.92
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3482 (19), 10.948 (2), 12.071 (2)
α, β, γ (°)76.71 (3), 86.64 (3), 78.27 (3)
V3)1177.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.926, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
12262, 5391, 3637
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 1.03
No. of reflections5391
No. of parameters292
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.32

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H3···O10.847 (17)2.47 (2)2.955 (3)117 (2)
N1—H2···O20.836 (18)2.105 (19)2.938 (3)174 (3)
N1—H2···O30.836 (18)2.60 (3)3.003 (3)111 (2)
N1—H1···O40.858 (17)2.182 (19)3.004 (3)161 (3)
N1—H1···O50.858 (17)2.61 (3)2.968 (3)107 (2)
N1—H3···O60.847 (17)2.067 (18)2.885 (3)162 (3)
C13—H13B···Cg1i0.972.99343.545 (3)117.32
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to RiZhao Polytechnic for support.

References

First citationGe, J.-Z., Fu, X.-Q., Hang, T., Ye, Q. & Xiong, R.-G. (2010). Cryst. Growth Des. 10, 3632–3637.  CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds