metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(3-Meth­­oxy-2-oxido­benzyl­­idene)nicotinohydrazidato]di­methyl­tin(IV)

aDepartment of Chemistry and Chemical Engineering, Jining University, Shandong 273155, People's Republic of China
*Correspondence e-mail: zhongjungao@sina.com

(Received 4 September 2009; accepted 15 September 2009; online 19 September 2009)

In the title complex, [Sn(CH3)2(C14H11N3O3)], the Sn atom is in a distorted trigonal-bipyramidal coordination, with Sn—O distances of 2.138 (2) and 2.176 (2) Å. The dihedral angles between the two chelated benzene rings and the O—Sn—N group are 71.73 (9) and 83.30 (9)°.

Related literature

For covalent radii, see: Sanderson (1967[Sanderson, R. T. (1967). Inorganic Chemistry, p. 74. New York: Reinhold.]). For bond-lengh data, see: Yang et al. (1999[Yang, Z. Y., Yang, R. D. & Yu, K. B. (1999). Acta Chim. Sin. 57, 236-243.]). For a related structure, see: Yearwood et al. (2002[Yearwood, B., Parkin, C. H. & Atwood, D. A. (2002). Inorg. Chim. Acta, 333, 124-131.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C14H11N3O3)]

  • Mr = 418.02

  • Monoclinic, C 2/c

  • a = 26.121 (8) Å

  • b = 9.795 (3) Å

  • c = 13.227 (4) Å

  • β = 103.666 (4)°

  • V = 3288.4 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 298 K

  • 0.35 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.609, Tmax = 0.834

  • 9367 measured reflections

  • 3574 independent reflections

  • 3115 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.00

  • 3574 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

C15—Sn1 2.092 (3)
C16—Sn1 2.098 (3)
N2—Sn1 2.200 (3)
O2—Sn1 2.138 (2)
O3—Sn1 2.176 (2)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structure of the title compound, (I), (Fig. 1) the Sn1 atom is in a distored trigonal-bipyramidal coordination formed by a tridentate ligand of the azomethine N atom, the hydroxyl O atom and the carbonyl O atom (Table 1). The dihedral angles between the two chelated benzene rings: O2—Sn1—N2 and O3—Sn1—N2 are 83.30 (9) and 71.73 (9)°, respectively. The Sn atom is coordinated in distorted trigonal-bipyramidal arrangement with O2 and O3 located in the axial positions [O2—Sn1—O3 = 155.02 (9)°] and the C15, C16 and N2 in the equatorial positions. The sum of the C15—Sn1—C16 [146.08 (14)], C15—Sn1—N2 [106.13 (11)] and C16—Sn1—N2 [107.23 (11)°] bond angles is 359.44°, indicating approximate co-planarity for these atoms. Comparing the length of CN 1.270Å and C—N 1.470 Å, both bonds, C8—N2 (1.287 (4) Å) and C9—N1 (1.304 (4) Å) should be CN. The N1—N2 bond (1.400 (3) Å) is a single-bond (Yang et al., 1999). The Sn1—N2 distance is close to the sum of the covalent radii of 2.15Å (Sanderson, 1967), indicating a strong Sn—N interaction. Very similar structural parameters were observed in the compound studied by Yearwood et al. (2002).

Related literature top

For covalent radii, see: Sanderson (1967). For bond-lengh data, see: Yang et al. (1999). For a related structure, see: Yearwood et al. (2002).

Experimental top

A mixture of dimethyltin oxide (0.3295 g, 2.0 mmol) and 3-methoxy-2-oxideobenzaldehyde(3-pyridyl)methyl-hydrazone (0.5420 g, 2.0 mmol) in methanol (50 ml) was heated under reflux for 6 h. The obtained clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol (1:1) to yield blocks of (I). Yield 0.5936 g, 71%, m.p. 453 K, analysis, calculated for C16H17N3O3Sn: C 45.97, H, 4.10; N 10.06%; found: C 46.02, H 4.05, N, 10.09%.

Refinement top

H atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic H atomds and 0.96 Å for methyl H atoms and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(for methyl groups).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% displacement ellipsoids (H atoms omitted for clarity).
[N'-(3-Methoxy-2-oxidobenzylidene)nicotinohydrazidato]dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C14H11N3O3)]F(000) = 1664
Mr = 418.02Dx = 1.689 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4244 reflections
a = 26.121 (8) Åθ = 2.2–27.6°
b = 9.795 (3) ŵ = 1.57 mm1
c = 13.227 (4) ÅT = 298 K
β = 103.666 (4)°Block, yellow
V = 3288.4 (17) Å30.35 × 0.16 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3574 independent reflections
Radiation source: fine-focus sealed tube3115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3320
Tmin = 0.609, Tmax = 0.834k = 1212
9367 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.5213P]
where P = (Fo2 + 2Fc2)/3
3574 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Sn(CH3)2(C14H11N3O3)]V = 3288.4 (17) Å3
Mr = 418.02Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.121 (8) ŵ = 1.57 mm1
b = 9.795 (3) ÅT = 298 K
c = 13.227 (4) Å0.35 × 0.16 × 0.12 mm
β = 103.666 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3574 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3115 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.834Rint = 0.023
9367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
3574 reflectionsΔρmin = 0.54 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17768 (17)0.0742 (5)0.0099 (5)0.112 (2)
H1A0.19130.06220.05090.169*
H1B0.17290.16970.02080.169*
H1C0.20210.03680.06930.169*
C20.12735 (12)0.1271 (3)0.0369 (2)0.0486 (7)
C30.17073 (12)0.1957 (3)0.0522 (3)0.0543 (8)
H30.20310.15150.03910.065*
C40.16700 (14)0.3308 (3)0.0870 (3)0.0598 (9)
H40.19660.37610.09730.072*
C50.11962 (12)0.3952 (3)0.1057 (3)0.0530 (7)
H50.11710.48520.12860.064*
C60.07437 (12)0.3282 (3)0.0910 (2)0.0450 (7)
C70.07714 (12)0.1931 (3)0.0542 (2)0.0441 (7)
C80.02708 (12)0.4074 (3)0.1159 (2)0.0461 (6)
H80.03010.49440.14210.055*
C90.10299 (11)0.4315 (3)0.1225 (2)0.0453 (7)
C100.14890 (11)0.5246 (3)0.1563 (2)0.0458 (7)
C110.14558 (15)0.6528 (3)0.1969 (3)0.0579 (8)
H110.11330.68720.20320.069*
C120.19100 (16)0.7297 (4)0.2282 (3)0.0701 (10)
H120.18980.81720.25490.084*
C130.23784 (17)0.6734 (4)0.2190 (3)0.0701 (11)
H130.26830.72510.24160.084*
C140.19835 (12)0.4796 (3)0.1490 (3)0.0563 (8)
H140.20060.39380.12020.068*
C150.07460 (13)0.0606 (3)0.1813 (2)0.0564 (8)
H15A0.07280.03420.16250.085*
H15B0.05440.07600.23230.085*
H15C0.11060.08580.20990.085*
C160.03460 (15)0.1988 (3)0.1120 (3)0.0562 (8)
H16A0.06490.24380.12580.084*
H16B0.00360.25180.14050.084*
H16C0.03100.11000.14350.084*
N10.05804 (9)0.4727 (2)0.1381 (2)0.0477 (6)
N20.01913 (9)0.3731 (3)0.10640 (18)0.0445 (5)
N30.24269 (11)0.5509 (3)0.1802 (3)0.0683 (8)
O10.12845 (9)0.0056 (3)0.0043 (2)0.0690 (7)
O20.03632 (8)0.1225 (2)0.03858 (18)0.0546 (5)
O30.11123 (10)0.3162 (2)0.0820 (2)0.0604 (6)
Sn10.043848 (7)0.17888 (2)0.049245 (14)0.04388 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (3)0.083 (3)0.202 (6)0.031 (2)0.060 (3)0.070 (3)
C20.0429 (16)0.0581 (18)0.0459 (16)0.0086 (14)0.0129 (12)0.0022 (14)
C30.0378 (16)0.072 (2)0.0542 (19)0.0055 (14)0.0135 (14)0.0008 (15)
C40.0459 (18)0.069 (2)0.069 (2)0.0046 (15)0.0219 (16)0.0008 (16)
C50.0518 (18)0.0535 (18)0.0568 (19)0.0003 (14)0.0190 (14)0.0026 (15)
C60.0419 (16)0.0540 (17)0.0397 (15)0.0042 (12)0.0107 (12)0.0063 (12)
C70.0394 (15)0.0581 (18)0.0354 (14)0.0030 (12)0.0103 (11)0.0039 (12)
C80.0472 (17)0.0458 (15)0.0459 (16)0.0028 (13)0.0120 (12)0.0027 (13)
C90.0451 (16)0.0492 (16)0.0418 (15)0.0110 (13)0.0104 (12)0.0012 (13)
C100.0479 (16)0.0466 (16)0.0421 (15)0.0124 (13)0.0091 (12)0.0037 (13)
C110.061 (2)0.0536 (18)0.061 (2)0.0123 (15)0.0173 (16)0.0053 (15)
C120.082 (3)0.0534 (19)0.076 (3)0.023 (2)0.022 (2)0.0120 (19)
C130.057 (2)0.079 (3)0.071 (3)0.0297 (18)0.0076 (18)0.0001 (19)
C140.0514 (18)0.0535 (18)0.062 (2)0.0115 (15)0.0101 (15)0.0008 (16)
C150.060 (2)0.061 (2)0.0445 (17)0.0025 (15)0.0053 (14)0.0008 (14)
C160.075 (2)0.0510 (18)0.0452 (18)0.0102 (16)0.0203 (16)0.0036 (14)
N10.0450 (14)0.0442 (13)0.0535 (15)0.0077 (11)0.0107 (11)0.0006 (11)
N20.0445 (14)0.0462 (13)0.0426 (13)0.0091 (11)0.0100 (10)0.0005 (11)
N30.0507 (17)0.0673 (19)0.085 (2)0.0174 (14)0.0116 (14)0.0038 (16)
O10.0457 (12)0.0708 (15)0.0958 (19)0.0155 (11)0.0277 (12)0.0276 (14)
O20.0400 (11)0.0565 (13)0.0689 (15)0.0080 (10)0.0162 (10)0.0079 (11)
O30.0509 (14)0.0569 (14)0.0793 (18)0.0155 (10)0.0269 (12)0.0220 (11)
Sn10.04134 (14)0.04977 (15)0.04093 (14)0.01097 (8)0.01049 (9)0.00053 (8)
Geometric parameters (Å, º) top
C1—O11.423 (4)C10—C141.390 (4)
C1—H1A0.9600C11—C121.383 (5)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.374 (6)
C2—O11.367 (4)C12—H120.9300
C2—C31.373 (5)C13—N31.323 (5)
C2—C71.431 (4)C13—H130.9300
C3—C41.397 (4)C14—N31.332 (4)
C3—H30.9300C14—H140.9300
C4—C51.359 (5)C15—Sn12.092 (3)
C4—H40.9300C15—H15A0.9600
C5—C61.405 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.406 (4)C16—Sn12.098 (3)
C6—C81.430 (4)C16—H16A0.9600
C7—O21.327 (4)C16—H16B0.9600
C8—N21.287 (4)C16—H16C0.9600
C8—H80.9300N1—N21.400 (3)
C9—O31.290 (3)N2—Sn12.200 (3)
C9—N11.304 (4)O2—Sn12.138 (2)
C9—C101.489 (4)O3—Sn12.176 (2)
C10—C111.377 (4)
O1—C1—H1A109.5C11—C12—H12120.8
O1—C1—H1B109.5N3—C13—C12124.6 (3)
H1A—C1—H1B109.5N3—C13—H13117.7
O1—C1—H1C109.5C12—C13—H13117.7
H1A—C1—H1C109.5N3—C14—C10124.5 (3)
H1B—C1—H1C109.5N3—C14—H14117.7
O1—C2—C3123.7 (3)C10—C14—H14117.7
O1—C2—C7115.5 (3)Sn1—C15—H15A109.5
C3—C2—C7120.8 (3)Sn1—C15—H15B109.5
C2—C3—C4121.1 (3)H15A—C15—H15B109.5
C2—C3—H3119.4Sn1—C15—H15C109.5
C4—C3—H3119.4H15A—C15—H15C109.5
C5—C4—C3119.3 (3)H15B—C15—H15C109.5
C5—C4—H4120.4Sn1—C16—H16A109.5
C3—C4—H4120.4Sn1—C16—H16B109.5
C4—C5—C6121.2 (3)H16A—C16—H16B109.5
C4—C5—H5119.4Sn1—C16—H16C109.5
C6—C5—H5119.4H16A—C16—H16C109.5
C5—C6—C7120.8 (3)H16B—C16—H16C109.5
C5—C6—C8115.1 (3)C9—N1—N2110.7 (2)
C7—C6—C8124.2 (3)C8—N2—N1114.8 (2)
O2—C7—C6124.5 (3)C8—N2—Sn1128.1 (2)
O2—C7—C2118.7 (3)N1—N2—Sn1117.03 (18)
C6—C7—C2116.8 (3)C13—N3—C14116.1 (3)
N2—C8—C6127.9 (3)C2—O1—C1116.2 (3)
N2—C8—H8116.0C7—O2—Sn1131.74 (19)
C6—C8—H8116.0C9—O3—Sn1114.66 (19)
O3—C9—N1125.6 (3)C15—Sn1—C16146.08 (14)
O3—C9—C10117.4 (3)C15—Sn1—O295.11 (11)
N1—C9—C10117.0 (3)C16—Sn1—O294.66 (12)
C11—C10—C14117.5 (3)C15—Sn1—O392.46 (12)
C11—C10—C9123.8 (3)C16—Sn1—O392.19 (12)
C14—C10—C9118.7 (3)O2—Sn1—O3155.02 (9)
C10—C11—C12119.0 (4)C15—Sn1—N2106.13 (11)
C10—C11—H11120.5C16—Sn1—N2107.23 (11)
C12—C11—H11120.5O2—Sn1—N283.30 (9)
C13—C12—C11118.3 (4)O3—Sn1—N271.73 (9)
C13—C12—H12120.8
O1—C2—C3—C4179.1 (3)C6—C8—N2—N1179.5 (3)
C7—C2—C3—C41.4 (5)C6—C8—N2—Sn10.4 (4)
C2—C3—C4—C50.2 (5)C9—N1—N2—C8177.8 (3)
C3—C4—C5—C60.3 (5)C9—N1—N2—Sn13.0 (3)
C4—C5—C6—C71.5 (5)C12—C13—N3—C140.2 (6)
C4—C5—C6—C8178.7 (3)C10—C14—N3—C131.2 (5)
C5—C6—C7—O2179.7 (3)C3—C2—O1—C12.4 (5)
C8—C6—C7—O20.5 (5)C7—C2—O1—C1178.0 (4)
C5—C6—C7—C22.5 (4)C6—C7—O2—Sn15.1 (4)
C8—C6—C7—C2177.7 (3)C2—C7—O2—Sn1177.7 (2)
O1—C2—C7—O20.5 (4)N1—C9—O3—Sn14.5 (4)
C3—C2—C7—O2179.9 (3)C10—C9—O3—Sn1174.16 (19)
O1—C2—C7—C6177.9 (3)C7—O2—Sn1—C15110.8 (3)
C3—C2—C7—C62.4 (4)C7—O2—Sn1—C16101.7 (3)
C5—C6—C8—N2177.5 (3)C7—O2—Sn1—O33.7 (4)
C7—C6—C8—N22.3 (5)C7—O2—Sn1—N25.1 (3)
O3—C9—C10—C11177.3 (3)C9—O3—Sn1—C15102.0 (2)
N1—C9—C10—C113.9 (4)C9—O3—Sn1—C16111.6 (2)
O3—C9—C10—C144.0 (4)C9—O3—Sn1—O25.6 (4)
N1—C9—C10—C14174.7 (3)C9—O3—Sn1—N24.2 (2)
C14—C10—C11—C120.1 (5)C8—N2—Sn1—C1595.7 (3)
C9—C10—C11—C12178.5 (3)N1—N2—Sn1—C1583.4 (2)
C10—C11—C12—C131.1 (6)C8—N2—Sn1—C1690.5 (3)
C11—C12—C13—N31.3 (6)N1—N2—Sn1—C1690.4 (2)
C11—C10—C14—N31.3 (5)C8—N2—Sn1—O22.3 (2)
C9—C10—C14—N3177.4 (3)N1—N2—Sn1—O2176.8 (2)
O3—C9—N1—N21.0 (4)C8—N2—Sn1—O3177.0 (3)
C10—C9—N1—N2177.6 (2)N1—N2—Sn1—O33.86 (19)

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C14H11N3O3)]
Mr418.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)26.121 (8), 9.795 (3), 13.227 (4)
β (°) 103.666 (4)
V3)3288.4 (17)
Z8
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.35 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.609, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
9367, 3574, 3115
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.00
No. of reflections3574
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.54

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
C15—Sn12.092 (3)O2—Sn12.138 (2)
C16—Sn12.098 (3)O3—Sn12.176 (2)
N2—Sn12.200 (3)
 

Acknowledgements

We acknowledge the financial support of the Jining University Science Foundation and the State Key Laboratory of Crystal Materials, Shandong University.

References

First citationSanderson, R. T. (1967). Inorganic Chemistry, p. 74. New York: Reinhold.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYang, Z. Y., Yang, R. D. & Yu, K. B. (1999). Acta Chim. Sin. 57, 236–243.  CAS Google Scholar
First citationYearwood, B., Parkin, C. H. & Atwood, D. A. (2002). Inorg. Chim. Acta, 333, 124–131.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds