organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bis(4-nitro­phen­­oxy)-1,1′-binaphth­yl

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 20 May 2008; accepted 28 May 2008; online 7 June 2008)

The title compound, C32H20N2O6, was synthesized by the reaction of 1,1′-binaphthyl-2,2′-diol and 4-nitro­phenol in the presence of K2CO3. The two naphthalene systems make a dihedral angle of 73.70 (5)°. The crystal packing involves mol­ecules connected by C—H⋯O hydrogen bonds into a chain along the c axis.

Related literature

For the chemistry of 1,1′-binaphthyl-2,2′-diol, see: Hiroshi et al. (2005[Hiroshi, A., Makoto, T., Junya, K., Tetsuo, I., Yasushi, O. & Yasushi, T. (2005). J. Am. Chem. Soc. 127, 10474-10475.]); Minatti & Dötz (2005[Minatti, A. & Dötz, K. H. (2005). Tetrahedron Asymmetry, 16, 3256-3267.]); Pu (1998[Pu, L. (1998). Chem. Rev. 98, 2405-2494.]); Periasamy et al. (1998[Periasamy, M., Venkatraman, L. & Thomas, K. R. J. (1997). J. Org. Chem. 62, 4302-4306.]).

[Scheme 1]

Experimental

Crystal data
  • C32H20N2O6

  • Mr = 528.50

  • Monoclinic, P 21 /c

  • a = 7.6159 (9) Å

  • b = 24.810 (3) Å

  • c = 13.5022 (15) Å

  • β = 95.790 (3)°

  • V = 2538.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.03 × 0.03 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.990

  • 13574 measured reflections

  • 4971 independent reflections

  • 2521 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.114

  • S = 0.85

  • 4971 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.93 2.54 3.425 (3) 159
C32—H32A⋯O6ii 0.93 2.45 3.360 (3) 165
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Axially chiral 2,2'-substituted-1,1'-binaphthyls have been extensively applied in many asymmetric processes, due to their highly stable chiral configuration with C2 symmetry (Pu, 1998). Chemists have synthesized a great number of 2,2'-substituted-1,1'-binaphthyls which have been used in asymmetric catalysis and chiral recognition (Periasamy et al., 1998). Herein we report the structure of title compound, 2,2'-substituted-1,1'-binaphthyls (Fig. 1).

In the structure of the title compoud geometric parameters are in the usual ranges. The two naphthalene rings make a dihedral angle of 73.70 (5)°. The dihedral angles between the two 4-nitrobenzene rings and the two naphthalene rings directly attached to them (ring C11–C16 between ring C1–C10 76.42 (7)° and ring C27–C32 between ring C17–C26 81.99 (7)°, respectivley) are in synclinal range. The dihedral angles between the two 4-nitrobenzene rings and the two naphthalene rings, not directly attached to them, are remarkably different: between C27–C32 and C1–C10 is 22.62 (5)° and between C11–C16 and C17–C26 is 81.87 (6)°. The two aromatic rings with the smallest dihedral angle of 22.62 (5)°) exhibit weak intramolecular ππ interaction with the separation distance 3.694 (16) an 3.8227 (17) Å between the ring centroids of the 4-nitrobenzene rings and the two six-membered rings of the naphthalene ring. In the crystal structure no classical hydrogen bond is found. The crystal packing involves C—H···O hydrogen bonds generating chain along the c axis (Table 1, Fig. 2) and a weak C—H···π interaction [C20—H20···Cg (the ring C11, C12, C13, C14, C15, C16 with symmetry opeartion x, -y + 1,-z + 1) of 3.814 (3) Å].

Related literature top

For the chemistry of 1,1'-binaphthyl-2,2'-diol, see: Hiroshi et al. (2005); Minatti & Dötz (2005); Pu (1998); Periasamy et al. (1998).

Experimental top

1,1'-binaphthyl-2,2'-diol (1 mmol, 0.29 g) and 4-nitrophenol (2 mmol, 0.28 g) were dissolved in acetone (25 ml) in the presence of K2CO3 (1 mmol, 0.14 g) and refluxed for 2–3 days. After the mixture was cooled to room temperature, the solution was filtered and rotated in vacuum affording yellow precipitate of compound I. The crude product was recrystallized by slowly evaporating ethanol to yield colourless crystals.

Refinement top

All the H atoms were positioned geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms have been omitted for clarity.
2,2'-Bis(4-nitrophenoxy)-1,1'-binaphthyl top
Crystal data top
C32H20N2O6F(000) = 1096
Mr = 528.50Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1979 reflections
a = 7.6159 (9) Åθ = 3.1–27.3°
b = 24.810 (3) ŵ = 0.10 mm1
c = 13.5022 (15) ÅT = 296 K
β = 95.790 (3)°Block, colourless
V = 2538.3 (5) Å30.03 × 0.03 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4971 independent reflections
Radiation source: fine-focus sealed tube2521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.988, Tmax = 0.990k = 2330
13574 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
4971 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C32H20N2O6V = 2538.3 (5) Å3
Mr = 528.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6159 (9) ŵ = 0.10 mm1
b = 24.810 (3) ÅT = 296 K
c = 13.5022 (15) Å0.03 × 0.03 × 0.02 mm
β = 95.790 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4971 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2521 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.990Rint = 0.060
13574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.86Δρmax = 0.13 e Å3
4971 reflectionsΔρmin = 0.21 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O41.3508 (2)0.39839 (7)0.26199 (13)0.0562 (5)
O10.9879 (2)0.43838 (7)0.17323 (12)0.0553 (5)
N10.4540 (3)0.59046 (10)0.10343 (16)0.0583 (7)
C251.0230 (4)0.40498 (9)0.44518 (18)0.0446 (7)
C81.0031 (3)0.36017 (9)0.27505 (17)0.0397 (6)
C241.1008 (3)0.39169 (9)0.35680 (17)0.0399 (6)
C110.8489 (4)0.47360 (10)0.15533 (17)0.0448 (7)
C171.2690 (4)0.40833 (9)0.34837 (19)0.0448 (7)
C230.8491 (4)0.39068 (10)0.46109 (19)0.0529 (7)
H23A0.77970.37200.41180.063*
C120.6795 (4)0.46179 (10)0.17407 (18)0.0535 (7)
H12A0.65270.42790.19800.064*
C71.0293 (4)0.27455 (11)0.37128 (19)0.0553 (8)
H7A1.07820.29310.42730.066*
O30.4934 (3)0.63407 (8)0.07056 (14)0.0734 (6)
C90.9767 (3)0.30318 (10)0.28363 (18)0.0445 (7)
C140.5925 (4)0.54981 (11)0.12233 (18)0.0479 (7)
C30.8464 (4)0.30174 (12)0.1116 (2)0.0641 (8)
H3A0.79370.28280.05700.077*
C10.9496 (3)0.38393 (10)0.18595 (19)0.0467 (7)
C271.3749 (3)0.34527 (11)0.23632 (19)0.0462 (7)
N21.4260 (4)0.18672 (11)0.1414 (2)0.0768 (8)
C150.7607 (4)0.56203 (11)0.10407 (18)0.0558 (8)
H15A0.78720.59610.08080.067*
C20.8700 (4)0.35544 (12)0.10426 (19)0.0608 (8)
H2A0.83360.37330.04520.073*
C220.7803 (4)0.40373 (11)0.5478 (2)0.0671 (9)
H22A0.66550.39370.55710.081*
C321.4198 (3)0.30571 (11)0.30582 (19)0.0531 (7)
H32A1.43690.31430.37320.064*
O20.3041 (3)0.57870 (8)0.12092 (16)0.0825 (7)
C100.9002 (4)0.27407 (11)0.2002 (2)0.0526 (7)
C160.8915 (4)0.52370 (11)0.12019 (17)0.0540 (7)
H16A1.00660.53150.10760.065*
C261.1244 (4)0.43468 (10)0.52074 (19)0.0528 (7)
C181.3671 (4)0.43793 (10)0.4217 (2)0.0601 (8)
H18A1.48070.44910.41220.072*
C130.5496 (4)0.50002 (11)0.15740 (19)0.0578 (8)
H13A0.43430.49230.16960.069*
C311.4392 (4)0.25318 (11)0.27459 (19)0.0539 (7)
H31A1.46980.22590.32030.065*
C191.2974 (4)0.45038 (11)0.5068 (2)0.0663 (9)
H19A1.36420.46950.55640.080*
C301.4125 (4)0.24221 (11)0.1749 (2)0.0527 (7)
C40.8843 (4)0.21737 (12)0.2078 (2)0.0721 (9)
H4A0.83630.19780.15290.086*
O51.4527 (3)0.15122 (9)0.20191 (16)0.0954 (8)
C201.0481 (5)0.44692 (12)0.6088 (2)0.0767 (10)
H20A1.11410.46580.65910.092*
C291.3761 (4)0.28167 (12)0.10560 (19)0.0634 (8)
H29A1.36430.27330.03810.076*
C281.3571 (3)0.33380 (11)0.13642 (19)0.0564 (8)
H28A1.33230.36110.09000.068*
C50.9374 (5)0.19142 (12)0.2932 (3)0.0820 (10)
H5A0.92560.15420.29690.098*
O61.4102 (4)0.17823 (9)0.05245 (17)0.1275 (11)
C61.0096 (4)0.22003 (12)0.3755 (2)0.0680 (9)
H6A1.04510.20180.43440.082*
C210.8817 (5)0.43195 (13)0.6221 (2)0.0774 (11)
H21A0.83470.44050.68110.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0586 (14)0.0454 (12)0.0676 (12)0.0072 (9)0.0207 (10)0.0062 (10)
O10.0477 (13)0.0515 (12)0.0657 (12)0.0035 (10)0.0005 (10)0.0137 (10)
N10.0579 (19)0.0617 (18)0.0550 (15)0.0040 (15)0.0045 (14)0.0064 (14)
C250.0507 (19)0.0348 (15)0.0473 (16)0.0051 (13)0.0006 (14)0.0039 (13)
C80.0376 (17)0.0417 (16)0.0406 (15)0.0034 (12)0.0087 (12)0.0034 (13)
C240.0422 (18)0.0337 (15)0.0429 (15)0.0030 (12)0.0007 (13)0.0037 (12)
C110.0453 (19)0.0494 (17)0.0387 (15)0.0052 (14)0.0014 (13)0.0036 (13)
C170.0462 (19)0.0353 (15)0.0519 (17)0.0057 (13)0.0001 (15)0.0033 (13)
C230.055 (2)0.0523 (18)0.0518 (17)0.0060 (14)0.0094 (15)0.0038 (14)
C120.050 (2)0.0451 (18)0.0666 (19)0.0043 (15)0.0126 (16)0.0111 (15)
C70.060 (2)0.0493 (18)0.0572 (18)0.0070 (15)0.0095 (15)0.0004 (15)
O30.0901 (18)0.0586 (14)0.0727 (13)0.0070 (12)0.0136 (12)0.0199 (12)
C90.0418 (18)0.0441 (17)0.0490 (16)0.0071 (13)0.0113 (13)0.0053 (14)
C140.049 (2)0.0480 (18)0.0461 (16)0.0017 (15)0.0038 (14)0.0031 (14)
C30.058 (2)0.077 (2)0.0542 (19)0.0067 (18)0.0057 (16)0.0206 (18)
C10.0399 (18)0.0475 (18)0.0529 (17)0.0023 (14)0.0056 (14)0.0026 (15)
C270.0383 (17)0.0463 (18)0.0551 (17)0.0013 (13)0.0094 (14)0.0056 (15)
N20.093 (2)0.067 (2)0.0689 (19)0.0145 (17)0.0008 (17)0.0064 (17)
C150.057 (2)0.0519 (18)0.0573 (18)0.0111 (16)0.0026 (16)0.0150 (15)
C20.055 (2)0.075 (2)0.0502 (17)0.0011 (17)0.0048 (15)0.0006 (17)
C220.071 (2)0.069 (2)0.065 (2)0.0214 (18)0.0218 (19)0.0203 (18)
C320.056 (2)0.0562 (19)0.0463 (16)0.0008 (15)0.0037 (14)0.0003 (15)
O20.0545 (16)0.0778 (16)0.1164 (18)0.0085 (12)0.0148 (14)0.0156 (13)
C100.0457 (19)0.0504 (18)0.0618 (18)0.0079 (14)0.0058 (15)0.0147 (16)
C160.0465 (19)0.0599 (19)0.0551 (17)0.0085 (15)0.0030 (14)0.0144 (15)
C260.072 (2)0.0379 (16)0.0467 (17)0.0052 (15)0.0054 (16)0.0045 (14)
C180.051 (2)0.0488 (19)0.079 (2)0.0140 (15)0.0049 (17)0.0064 (17)
C130.049 (2)0.0567 (19)0.0702 (19)0.0057 (16)0.0164 (16)0.0074 (16)
C310.059 (2)0.0557 (19)0.0471 (17)0.0056 (15)0.0070 (14)0.0049 (15)
C190.082 (3)0.0444 (19)0.068 (2)0.0130 (17)0.0175 (19)0.0091 (16)
C300.053 (2)0.0541 (19)0.0516 (17)0.0122 (15)0.0069 (15)0.0025 (16)
C40.073 (3)0.053 (2)0.089 (2)0.0150 (17)0.007 (2)0.0250 (19)
O50.144 (2)0.0593 (15)0.0822 (16)0.0152 (15)0.0077 (15)0.0012 (13)
C200.117 (3)0.061 (2)0.050 (2)0.012 (2)0.002 (2)0.0108 (16)
C290.072 (2)0.075 (2)0.0436 (16)0.0157 (18)0.0068 (15)0.0045 (17)
C280.059 (2)0.061 (2)0.0503 (18)0.0101 (16)0.0105 (15)0.0154 (16)
C50.094 (3)0.042 (2)0.111 (3)0.0168 (19)0.017 (2)0.007 (2)
O60.220 (3)0.098 (2)0.0606 (14)0.0392 (19)0.0073 (17)0.0251 (14)
C60.086 (3)0.048 (2)0.072 (2)0.0035 (17)0.0167 (19)0.0086 (18)
C210.114 (3)0.072 (2)0.050 (2)0.031 (2)0.022 (2)0.0027 (18)
Geometric parameters (Å, º) top
O4—C271.380 (3)N2—O51.205 (3)
O4—C171.398 (3)N2—O61.213 (3)
O1—C111.375 (3)N2—C301.456 (3)
O1—C11.396 (3)C15—C161.378 (3)
N1—O31.218 (2)C15—H15A0.9300
N1—O21.224 (3)C2—H2A0.9300
N1—C141.463 (3)C22—C211.391 (4)
C25—C231.408 (3)C22—H22A0.9300
C25—C261.422 (3)C32—C311.382 (3)
C25—C241.423 (3)C32—H32A0.9300
C8—C11.365 (3)C10—C41.416 (3)
C8—C91.434 (3)C16—H16A0.9300
C8—C241.489 (3)C26—C191.405 (4)
C24—C171.361 (3)C26—C201.408 (3)
C11—C121.371 (3)C18—C191.349 (3)
C11—C161.381 (3)C18—H18A0.9300
C17—C181.389 (3)C13—H13A0.9300
C23—C221.369 (3)C31—C301.368 (3)
C23—H23A0.9300C31—H31A0.9300
C12—C131.373 (3)C19—H19A0.9300
C12—H12A0.9300C30—C291.364 (3)
C7—C61.363 (3)C4—C51.347 (4)
C7—C91.403 (3)C4—H4A0.9300
C7—H7A0.9300C20—C211.350 (4)
C9—C101.413 (3)C20—H20A0.9300
C14—C151.363 (3)C29—C281.371 (3)
C14—C131.374 (3)C29—H29A0.9300
C3—C21.349 (3)C28—H28A0.9300
C3—C101.405 (3)C5—C61.385 (4)
C3—H3A0.9300C5—H5A0.9300
C1—C21.396 (3)C6—H6A0.9300
C27—C281.372 (3)C21—H21A0.9300
C27—C321.377 (3)
C27—O4—C17117.38 (19)C1—C2—H2A120.2
C11—O1—C1118.0 (2)C23—C22—C21120.2 (3)
O3—N1—O2123.4 (3)C23—C22—H22A119.9
O3—N1—C14118.4 (3)C21—C22—H22A119.9
O2—N1—C14118.2 (2)C27—C32—C31119.4 (2)
C23—C25—C26118.2 (3)C27—C32—H32A120.3
C23—C25—C24123.2 (2)C31—C32—H32A120.3
C26—C25—C24118.7 (3)C3—C10—C9119.4 (2)
C1—C8—C9117.7 (2)C3—C10—C4121.8 (3)
C1—C8—C24120.6 (2)C9—C10—C4118.8 (3)
C9—C8—C24121.4 (2)C15—C16—C11119.0 (3)
C17—C24—C25118.3 (2)C15—C16—H16A120.5
C17—C24—C8120.1 (2)C11—C16—H16A120.5
C25—C24—C8121.6 (2)C19—C26—C20121.7 (3)
C12—C11—O1123.6 (2)C19—C26—C25119.7 (3)
C12—C11—C16120.9 (3)C20—C26—C25118.5 (3)
O1—C11—C16115.4 (2)C19—C18—C17119.9 (3)
C24—C17—C18123.0 (3)C19—C18—H18A120.1
C24—C17—O4121.2 (2)C17—C18—H18A120.1
C18—C17—O4115.8 (3)C12—C13—C14119.0 (3)
C22—C23—C25121.2 (3)C12—C13—H13A120.5
C22—C23—H23A119.4C14—C13—H13A120.5
C25—C23—H23A119.4C30—C31—C32118.5 (3)
C11—C12—C13119.9 (2)C30—C31—H31A120.7
C11—C12—H12A120.1C32—C31—H31A120.7
C13—C12—H12A120.1C18—C19—C26120.4 (3)
C6—C7—C9121.0 (3)C18—C19—H19A119.8
C6—C7—H7A119.5C26—C19—H19A119.8
C9—C7—H7A119.5C29—C30—C31122.2 (3)
C7—C9—C10118.2 (2)C29—C30—N2118.8 (3)
C7—C9—C8122.4 (2)C31—C30—N2119.1 (3)
C10—C9—C8119.3 (2)C5—C4—C10121.1 (3)
C15—C14—C13121.5 (3)C5—C4—H4A119.5
C15—C14—N1119.3 (3)C10—C4—H4A119.5
C13—C14—N1119.2 (3)C21—C20—C26121.7 (3)
C2—C3—C10121.0 (3)C21—C20—H20A119.1
C2—C3—H3A119.5C26—C20—H20A119.1
C10—C3—H3A119.5C30—C29—C28119.3 (3)
C8—C1—C2123.0 (2)C30—C29—H29A120.3
C8—C1—O1118.6 (2)C28—C29—H29A120.3
C2—C1—O1118.2 (2)C29—C28—C27119.4 (3)
C28—C27—C32121.0 (3)C29—C28—H28A120.3
C28—C27—O4116.3 (2)C27—C28—H28A120.3
C32—C27—O4122.7 (2)C4—C5—C6120.2 (3)
O5—N2—O6122.5 (3)C4—C5—H5A119.9
O5—N2—C30119.5 (3)C6—C5—H5A119.9
O6—N2—C30118.0 (3)C7—C6—C5120.8 (3)
C14—C15—C16119.7 (3)C7—C6—H6A119.6
C14—C15—H15A120.2C5—C6—H6A119.6
C16—C15—H15A120.2C20—C21—C22120.2 (3)
C3—C2—C1119.5 (3)C20—C21—H21A119.9
C3—C2—H2A120.2C22—C21—H21A119.9
C23—C25—C24—C17178.9 (2)C28—C27—C32—C313.0 (4)
C26—C25—C24—C170.3 (3)O4—C27—C32—C31179.0 (2)
C23—C25—C24—C81.5 (4)C2—C3—C10—C91.4 (4)
C26—C25—C24—C8179.3 (2)C2—C3—C10—C4176.9 (3)
C1—C8—C24—C1769.6 (3)C7—C9—C10—C3180.0 (2)
C9—C8—C24—C17104.5 (3)C8—C9—C10—C32.0 (4)
C1—C8—C24—C25110.8 (3)C7—C9—C10—C41.7 (4)
C9—C8—C24—C2575.1 (3)C8—C9—C10—C4176.3 (2)
C1—O1—C11—C1217.3 (3)C14—C15—C16—C110.4 (4)
C1—O1—C11—C16165.2 (2)C12—C11—C16—C150.0 (4)
C25—C24—C17—C180.5 (4)O1—C11—C16—C15177.5 (2)
C8—C24—C17—C18179.9 (2)C23—C25—C26—C19179.0 (2)
C25—C24—C17—O4177.6 (2)C24—C25—C26—C190.2 (4)
C8—C24—C17—O42.8 (4)C23—C25—C26—C201.9 (4)
C27—O4—C17—C2462.0 (3)C24—C25—C26—C20178.9 (2)
C27—O4—C17—C18120.7 (2)C24—C17—C18—C191.4 (4)
C26—C25—C23—C221.6 (4)O4—C17—C18—C19178.7 (2)
C24—C25—C23—C22179.2 (2)C11—C12—C13—C140.2 (4)
O1—C11—C12—C13177.6 (2)C15—C14—C13—C120.2 (4)
C16—C11—C12—C130.3 (4)N1—C14—C13—C12179.3 (2)
C6—C7—C9—C101.0 (4)C27—C32—C31—C300.2 (4)
C6—C7—C9—C8176.9 (2)C17—C18—C19—C261.5 (4)
C1—C8—C9—C7179.0 (2)C20—C26—C19—C18179.8 (3)
C24—C8—C9—C74.7 (4)C25—C26—C19—C180.7 (4)
C1—C8—C9—C101.1 (4)C32—C31—C30—C293.3 (4)
C24—C8—C9—C10173.2 (2)C32—C31—C30—N2177.7 (2)
O3—N1—C14—C150.9 (4)O5—N2—C30—C29177.7 (3)
O2—N1—C14—C15179.6 (2)O6—N2—C30—C292.5 (4)
O3—N1—C14—C13178.6 (2)O5—N2—C30—C313.3 (4)
O2—N1—C14—C130.9 (4)O6—N2—C30—C31176.5 (3)
C9—C8—C1—C20.5 (4)C3—C10—C4—C5179.6 (3)
C24—C8—C1—C2174.8 (2)C9—C10—C4—C51.3 (4)
C9—C8—C1—O1174.5 (2)C19—C26—C20—C21179.8 (3)
C24—C8—C1—O10.2 (4)C25—C26—C20—C211.1 (4)
C11—O1—C1—C8117.7 (3)C31—C30—C29—C283.2 (4)
C11—O1—C1—C267.0 (3)N2—C30—C29—C28177.8 (3)
C17—O4—C27—C28144.1 (2)C30—C29—C28—C270.0 (4)
C17—O4—C27—C3237.9 (3)C32—C27—C28—C293.1 (4)
C13—C14—C15—C160.5 (4)O4—C27—C28—C29178.8 (2)
N1—C14—C15—C16179.0 (2)C10—C4—C5—C60.2 (5)
C10—C3—C2—C10.2 (4)C9—C7—C6—C50.1 (4)
C8—C1—C2—C31.2 (4)C4—C5—C6—C70.5 (5)
O1—C1—C2—C3173.9 (2)C26—C20—C21—C220.1 (5)
C25—C23—C22—C210.5 (4)C23—C22—C21—C200.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.543.425 (3)159
C32—H32A···O6ii0.932.453.360 (3)165
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H20N2O6
Mr528.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.6159 (9), 24.810 (3), 13.5022 (15)
β (°) 95.790 (3)
V3)2538.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.03 × 0.03 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.988, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13574, 4971, 2521
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.114, 0.86
No. of reflections4971
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.543.425 (3)158.9
C32—H32A···O6ii0.932.453.360 (3)164.5
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to ZRQ.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHiroshi, A., Makoto, T., Junya, K., Tetsuo, I., Yasushi, O. & Yasushi, T. (2005). J. Am. Chem. Soc. 127, 10474–10475.  Web of Science PubMed Google Scholar
First citationMinatti, A. & Dötz, K. H. (2005). Tetrahedron Asymmetry, 16, 3256–3267.  Web of Science CrossRef CAS Google Scholar
First citationPeriasamy, M., Venkatraman, L. & Thomas, K. R. J. (1997). J. Org. Chem. 62, 4302–4306.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationPu, L. (1998). Chem. Rev. 98, 2405–2494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds