Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The centrosymmetric title compound, [Ag2Cd2I6(C10H8N2)4], was synthesized by the reaction of CdI2, KAgI2 and 2,2′-bipyridine in dimethyl­formamide. The crystal structure contains an Ag2I6 chain and Cd(2,2′-bipyridine)2 units; the four 2,2′-bipyridine ligands are positioned at the ends of the mol­ecule and μ2-iodo bridges link two Cd(2,2′-bipyridine)I2Ag units. The Cd atom exhibits a distorted octa­hedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052841/kp2139sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052841/kp2139Isup2.hkl
Contains datablock I

CCDC reference: 672575

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.044
  • wR factor = 0.121
  • Data-to-parameter ratio = 23.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I1 - Ag1 .. 37.21 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I2 - Ag1 .. 41.29 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I3 - Ag1 .. 22.41 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I3 - Ag1_a .. 27.87 su PLAT722_ALERT_1_B Angle Calc 118.00, Rep 120.69 Dev... 2.69 Deg. H5A -C5 -C4 1.555 1.555 1.555 PLAT722_ALERT_1_B Angle Calc 118.00, Rep 120.71 Dev... 2.71 Deg. H5A -C5 -N1 1.555 1.555 1.555 PLAT722_ALERT_1_B Angle Calc 121.00, Rep 118.22 Dev... 2.78 Deg. H7A -C7 -C6 1.555 1.555 1.555 PLAT722_ALERT_1_B Angle Calc 121.00, Rep 118.28 Dev... 2.72 Deg. H7A -C7 -C8 1.555 1.555 1.555 PLAT722_ALERT_1_B Angle Calc 118.00, Rep 120.53 Dev... 2.53 Deg. H11A -C11 -N4 1.555 1.555 1.555 PLAT722_ALERT_1_B Angle Calc 118.00, Rep 120.57 Dev... 2.57 Deg. H11A -C11 -C12 1.555 1.555 1.555 PLAT722_ALERT_1_B Angle Calc 121.00, Rep 118.34 Dev... 2.66 Deg. H12A -C12 -C11 1.555 1.555 1.555 PLAT722_ALERT_1_B Angle Calc 121.00, Rep 118.41 Dev... 2.59 Deg. H12A -C12 -C13 1.555 1.555 1.555
Alert level C ABSTM02_ALERT_3_C The ratio of Tmax/Tmin expected RT(exp) is > 1.10 Absorption corrections should be applied. Tmin and Tmax expected: 0.386 0.442 RT(exp) = 1.144 PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT057_ALERT_3_C Correction for Absorption Required RT(exp) ... 1.13 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) I1 - Cd1 .. 8.32 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) I2 - Cd1 .. 6.11 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 13 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... H1A C1 H1A PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... H6A C6 H6A PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... H15A C15 H15A PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... H20A C20 H20A PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.70 Dev... 1.30 Deg. H2A -C2 -C1 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.67 Dev... 1.33 Deg. H3A -C3 -C2 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.70 Dev... 1.30 Deg. H3A -C3 -C4 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.67 Dev... 1.33 Deg. H13A -C13 -C12 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.70 Dev... 1.30 Deg. H13A -C13 -C14 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 119.00, Rep 120.69 Dev... 1.69 Deg. H16A -C16 -N3 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 119.00, Rep 120.71 Dev... 1.71 Deg. H16A -C16 -C17 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.22 Dev... 1.78 Deg. H17A -C17 -C16 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.28 Dev... 1.72 Deg. H17A -C17 -C18 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.38 Dev... 1.62 Deg. H18A -C18 -C17 1.555 1.555 1.555 PLAT722_ALERT_1_C Angle Calc 120.00, Rep 118.39 Dev... 1.61 Deg. H18A -C18 -C19 1.555 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd1 (2) 2.19
0 ALERT level A = In general: serious problem 12 ALERT level B = Potentially serious problem 23 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 26 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Divers and useful physcial properties as well as large structural varitey have prompted the recent surge in design and synthesis of new hybrid organic-inorganic materials.These materials have attracted much attention of chemists and physicists, not due to variety of intriguing structure topologies, but also for their potential application in catalysis, materials science, medicine, magntochemistry, and optical materials (Cheetham, 1994; Yaghi et al., 1998; Wu et al., 2003; Niu et al., 2004). Among the various families of hybrid functional materials, silver(I) halides occupy an important role (Li et al., 2006; Rutherford, 1998). Up to now the structure of silver(I) halides containing Ag2I4, Ag3I6, Ag4I6, and Ag4I8 anions exhibit isolated anions, one-dimensional infinite chains, two- and three-dimensional frameworks (Meyer, 1963; Estienne, 1986; Helgsson & Jagner, 1991; Jones, 1992). In this paper we report the synthesis and structure of a new one-dimensional organic-inorganic hybrid compound Ag2I6[Cd(2,2'-bipyridine)2]2.

The structure of the compound contains an one-dimensional Ag2I6 chain: the six iodide atoms acting as bridges between the silver atoms (Fig. 1). Ag atoms are in a tetraherdal arrangement where AgI4 tetrahedra share all corners with the neighbouring metal atoms (Figs.1 and 2). The Ag—I distances range from 2.8036 (7)Å to 2.9058 (8) Å, while the Ag—I—Ag angle is 70.08 (2)°,and the I—Ag—I angles range from 95.96 (2)° to 118.40 (2)° (Table 1). In Ag2I6 the Ag···Ag separation is 3.2260 (11) Å. Cd(II) reveals a distorted octahedral geometry with two 2,2'-bipyridine ligands and two iodide atoms (Fig. 1). The Cd—I distances range from 2.8352 (6)Å to 2.9368 (6) Å, whereas Cd—N are in the range from 2.331 (5)Å to 2.407 (6) Å. The N—Cd—N angles range from 69.61 (17)° to 155.03 (18)°, I—Cd—I is 96.217 (17)°, and the N—Cd—I angles are from 86.86 (12)° to 171.04 (13)° (Table 1). Ag2I6 links adjacent Cd centres into the chains.

Related literature top

For related literature, see: Li et al. (2006); Cheetham (1994); Estienne (1986); Helgsson & Jagner (1991); Jones (1992); Meyer (1963); Niu et al. (2004); Rutherford (1998); Wu et al. (2003); Yaghi et al. (1998).

Experimental top

KAgI2 was prepared by dropping excessive KI/DMF solution into AgNO3/DMF solution.The title compound was synthesized by CdI2(0.074 g) and 2,2'-bipyridine (0.015 g) dissolved in DMF (2.5 ml) followed by dropping the KAgI2(4 ml) solution.The mixture was stirred for 2 m and then filtered off. The filtrate was kept at room temperature for five days and the deep-brown block crystals were obtained. Crystals were washed with ethanol and then with water.

Refinement top

H atoms were positioned geometrically with C—H = 0.93Å and allowed to ride during subsequent refinement with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART; cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x + 2, -y, -z + 1. H atoms have been omitted.
Tetrakis(2,2-bipyridine)-1κ4N,N';4κ4N,N'- hexa-µ-iodido-1:2κ4I:I;2:3κ4I:I;3:4κ4I:I– 1,4-dicadmium(II)-2,3-disilver(I)(Ag—Ag) top
Crystal data top
[Ag2Cd2I6(C10H8N2)4]F(000) = 1672
Mr = 1826.68Dx = 2.468 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9170 (6) ÅCell parameters from 6188 reflections
b = 21.5098 (15) Åθ = 2.5–26.3°
c = 12.8527 (9) ŵ = 5.44 mm1
β = 94.374 (4)°T = 293 K
V = 2458.0 (3) Å3Block, brown
Z = 20.20 × 0.15 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4890 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 28.5°, θmin = 2.5°
ϕ and ω scansh = 1111
14678 measured reflectionsk = 2528
6188 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0653P)2 + 1.6703P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6188 reflectionsΔρmax = 1.19 e Å3
263 parametersΔρmin = 1.02 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (3)
Crystal data top
[Ag2Cd2I6(C10H8N2)4]V = 2458.0 (3) Å3
Mr = 1826.68Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.9170 (6) ŵ = 5.44 mm1
b = 21.5098 (15) ÅT = 293 K
c = 12.8527 (9) Å0.20 × 0.15 × 0.15 mm
β = 94.374 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4890 reflections with I > 2σ(I)
14678 measured reflectionsRint = 0.045
6188 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.00Δρmax = 1.19 e Å3
6188 reflectionsΔρmin = 1.02 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.82840 (5)0.162316 (19)0.20025 (3)0.04285 (13)
I10.68673 (5)0.04486 (2)0.25574 (3)0.06171 (15)
I20.98594 (5)0.18259 (2)0.39736 (3)0.05907 (15)
I30.80925 (5)0.01176 (2)0.60922 (3)0.05752 (15)
Ag10.92118 (7)0.05126 (3)0.42222 (4)0.06661 (17)
N10.8859 (7)0.2636 (3)0.1342 (4)0.0571 (13)
N20.6309 (6)0.2308 (3)0.2223 (4)0.0583 (14)
N31.0127 (5)0.1145 (2)0.1076 (4)0.0456 (11)
N40.7331 (6)0.1421 (2)0.0239 (4)0.0494 (11)
C10.7836 (9)0.3074 (3)0.1394 (5)0.0608 (18)
C20.8089 (12)0.3669 (4)0.1002 (7)0.087 (3)
H2A0.73500.39730.10270.104*
C30.9371 (15)0.3803 (5)0.0595 (9)0.111 (4)
H3A0.95420.42030.03540.134*
C41.0433 (14)0.3358 (5)0.0530 (8)0.099 (3)
H4A1.13370.34420.02430.118*
C51.0125 (10)0.2774 (4)0.0907 (6)0.078 (2)
H5A1.08380.24620.08540.094*
C60.6409 (8)0.2892 (3)0.1866 (5)0.0616 (18)
C70.5247 (13)0.3303 (5)0.1890 (7)0.095 (3)
H7A0.53250.37050.16340.113*
C80.3968 (15)0.3105 (6)0.2302 (9)0.108 (4)
H8A0.31530.33740.23100.129*
C90.3850 (10)0.2524 (7)0.2702 (8)0.106 (4)
H9A0.29800.23960.29960.128*
C100.5080 (9)0.2125 (5)0.2658 (7)0.080 (2)
H10A0.50370.17270.29370.096*
C110.5951 (8)0.1549 (4)0.0136 (5)0.0624 (17)
H11A0.53840.18230.02340.075*
C120.5298 (9)0.1296 (4)0.1058 (6)0.072 (2)
H12A0.43150.13920.12970.086*
C130.6148 (10)0.0904 (4)0.1598 (5)0.073 (2)
H13A0.57510.07270.22190.087*
C140.7597 (9)0.0772 (4)0.1222 (5)0.0649 (18)
H14A0.81820.04990.15790.078*
C150.8172 (7)0.1048 (3)0.0312 (4)0.0465 (13)
C161.1535 (7)0.1061 (3)0.1497 (6)0.0584 (15)
H16A1.17840.11890.21790.070*
C171.2614 (9)0.0791 (4)0.0943 (7)0.071 (2)
H17A1.35870.07410.12470.086*
C181.2264 (9)0.0599 (4)0.0041 (7)0.074 (2)
H18A1.29980.04160.04170.089*
C191.0838 (9)0.0669 (3)0.0490 (6)0.068 (2)
H19A1.05820.05320.11670.081*
C200.9763 (7)0.0957 (3)0.0103 (4)0.0483 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0466 (2)0.0396 (2)0.0428 (2)0.00666 (17)0.00627 (16)0.00090 (15)
I20.0791 (3)0.0469 (3)0.0492 (2)0.0079 (2)0.00834 (19)0.00098 (16)
I30.0673 (3)0.0548 (3)0.0524 (2)0.0105 (2)0.01750 (19)0.00039 (17)
I10.0624 (3)0.0576 (3)0.0635 (3)0.0183 (2)0.0058 (2)0.00984 (19)
Ag10.0715 (4)0.0658 (4)0.0631 (3)0.0075 (3)0.0083 (3)0.0091 (2)
N30.048 (3)0.041 (3)0.050 (2)0.006 (2)0.016 (2)0.0011 (19)
N40.058 (3)0.048 (3)0.043 (2)0.002 (2)0.006 (2)0.005 (2)
N20.045 (3)0.072 (4)0.057 (3)0.015 (3)0.000 (2)0.011 (3)
N10.070 (3)0.044 (3)0.056 (3)0.002 (3)0.004 (3)0.002 (2)
C150.063 (4)0.036 (3)0.041 (2)0.011 (3)0.010 (2)0.002 (2)
C60.074 (4)0.051 (4)0.056 (3)0.025 (3)0.017 (3)0.021 (3)
C200.059 (3)0.037 (3)0.052 (3)0.003 (3)0.024 (3)0.003 (2)
C10.084 (5)0.037 (3)0.056 (3)0.008 (3)0.028 (3)0.004 (3)
C160.048 (3)0.052 (4)0.076 (4)0.004 (3)0.003 (3)0.000 (3)
C140.083 (5)0.066 (5)0.047 (3)0.015 (4)0.011 (3)0.001 (3)
C190.090 (6)0.052 (4)0.066 (4)0.001 (4)0.037 (4)0.005 (3)
C110.063 (4)0.064 (4)0.059 (3)0.001 (3)0.004 (3)0.007 (3)
C180.066 (5)0.060 (5)0.103 (6)0.007 (4)0.044 (4)0.003 (4)
C170.058 (4)0.054 (4)0.104 (6)0.007 (3)0.022 (4)0.003 (4)
C120.068 (4)0.086 (6)0.060 (4)0.029 (4)0.004 (3)0.015 (4)
C50.084 (5)0.071 (5)0.082 (5)0.020 (4)0.017 (4)0.003 (4)
C130.098 (6)0.077 (5)0.043 (3)0.036 (5)0.002 (4)0.002 (3)
C100.060 (4)0.094 (7)0.089 (5)0.014 (4)0.019 (4)0.018 (5)
C70.106 (7)0.079 (6)0.093 (6)0.053 (6)0.027 (6)0.036 (5)
C20.104 (7)0.039 (4)0.107 (6)0.011 (4)0.051 (6)0.003 (4)
C90.054 (5)0.160 (12)0.107 (7)0.014 (6)0.018 (5)0.053 (8)
C80.114 (9)0.102 (9)0.106 (7)0.049 (7)0.007 (6)0.035 (6)
C30.129 (9)0.072 (7)0.124 (8)0.042 (7)0.056 (7)0.032 (6)
C40.125 (9)0.081 (7)0.086 (6)0.036 (6)0.011 (6)0.027 (5)
Geometric parameters (Å, º) top
Cd1—N12.407 (6)C11—C121.391 (10)
Cd1—N22.331 (5)C18—C171.344 (12)
Cd1—N32.339 (4)C12—C131.359 (12)
Cd1—N42.399 (5)C5—C41.381 (12)
Cd1—I22.8352 (6)C10—C91.397 (12)
Cd1—I12.9368 (6)C7—C81.362 (16)
I2—Ag12.9058 (8)C2—C31.325 (15)
I3—Ag12.8036 (7)C9—C81.358 (17)
I3—Ag1i2.8155 (7)C3—C41.353 (17)
I1—Ag12.8784 (7)C1—H1A0.930
Ag1—I3i2.8155 (7)C2—H2A0.930
Ag1—Ag1i3.2260 (11)C3—H3A0.930
N3—C201.332 (7)C4—H4A0.930
N3—C161.341 (8)C5—H5A0.930
N4—C111.317 (8)C6—H6A0.930
N4—C151.337 (8)C7—H7A0.930
N2—C101.328 (9)C8—H8A0.930
N2—C61.341 (9)C9—H9A0.930
N1—C11.316 (9)C10—H10A0.930
N1—C51.332 (9)C11—H11A0.930
C15—C141.376 (9)C12—H12A0.930
C15—C201.489 (9)C13—H13A0.930
C6—C71.365 (10)C14—H14A0.930
C6—C11.503 (11)C15—H15A0.930
C20—C191.412 (9)C16—H16A0.930
C1—C21.400 (11)C17—H17A0.930
C16—C171.369 (10)C18—H18A0.930
C14—C131.374 (11)C19—H19A0.930
C19—C181.364 (12)C20—H20A0.930
N2—Cd1—N3155.03 (18)N1—C1—C6116.4 (6)
N2—Cd1—N490.75 (18)C2—C1—C6123.2 (7)
N3—Cd1—N469.61 (17)N3—C16—C17121.4 (7)
N2—Cd1—N169.7 (2)C13—C14—C15119.3 (7)
N3—Cd1—N192.37 (19)C18—C19—C20118.0 (7)
N4—Cd1—N184.32 (17)N4—C11—C12123.3 (8)
N2—Cd1—I296.99 (13)C17—C18—C19120.4 (7)
N3—Cd1—I2101.70 (12)C18—C17—C16119.8 (8)
N4—Cd1—I2171.04 (13)C13—C12—C11117.7 (8)
N1—Cd1—I294.10 (13)N1—C5—C4123.2 (10)
N2—Cd1—I199.88 (16)C12—C13—C14119.6 (6)
N3—Cd1—I194.44 (12)N2—C10—C9120.7 (10)
N4—Cd1—I186.86 (12)C8—C7—C6117.7 (11)
N1—Cd1—I1166.23 (14)C3—C2—C1120.5 (9)
I2—Cd1—I196.217 (17)C8—C9—C10117.8 (10)
Cd1—I2—Ag181.934 (18)C9—C8—C7121.8 (10)
Ag1—I3—Ag1i70.08 (2)C2—C3—C4119.9 (9)
Ag1—I1—Cd180.672 (18)C3—C4—C5117.6 (11)
I3—Ag1—I3i109.92 (2)H2A—C2—C1118.70
I3—Ag1—I1109.69 (2)H2A—C2—C3120.25
I3i—Ag1—I1116.74 (2)H3A—C3—C2118.67
I3—Ag1—I2118.40 (2)H3A—C3—C4118.70
I3i—Ag1—I2105.86 (2)H4A—C4—C3120.25
I1—Ag1—I295.96 (2)H4A—C4—C5120.22
I3—Ag1—Ag1i55.135 (19)H5A—C5—C4120.69
I3i—Ag1—Ag1i54.790 (19)H5A—C5—N1120.71
I1—Ag1—Ag1i133.27 (3)H7A—C7—C6118.22
I2—Ag1—Ag1i130.68 (3)H7A—C7—C8118.28
C20—N3—C16119.5 (5)H8A—C8—C7118.38
C20—N3—Cd1118.8 (4)H8A—C8—C9118.39
C16—N3—Cd1121.8 (4)H9A—C9—C8120.51
C11—N4—C15118.6 (6)H9A—C9—C10120.52
C11—N4—Cd1124.2 (4)H10A—C10—C9120.59
C15—N4—Cd1115.9 (4)H10A—C10—N2120.64
C10—N2—C6120.0 (7)H11A—C11—N4120.53
C10—N2—Cd1121.3 (6)H11A—C11—C12120.57
C6—N2—Cd1118.7 (5)H12A—C12—C11118.34
C1—N1—C5118.3 (7)H12A—C12—C13118.41
C1—N1—Cd1117.6 (5)H13A—C13—C12118.67
C5—N1—Cd1124.1 (5)H13A—C13—C14118.70
N4—C15—C14121.4 (6)H14A—C14—C13120.25
N4—C15—C20116.5 (5)H14A—C14—C15120.22
C14—C15—C20122.1 (6)H16A—C16—N3120.69
N2—C6—C7121.9 (9)H16A—C16—C17120.71
N2—C6—C1117.5 (5)H17A—C17—C16118.22
C7—C6—C1120.5 (9)H17A—C17—C18118.28
N3—C20—C19120.9 (6)H18A—C18—C17118.38
N3—C20—C15117.0 (5)H18A—C18—C19118.39
C19—C20—C15122.1 (6)H19A—C19—C18120.51
N1—C1—C2120.3 (8)H19A—C19—C20120.52
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2Cd2I6(C10H8N2)4]
Mr1826.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.9170 (6), 21.5098 (15), 12.8527 (9)
β (°) 94.374 (4)
V3)2458.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.44
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14678, 6188, 4890
Rint0.045
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.00
No. of reflections6188
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 1.02

Computer programs: SMART, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Cd1—N12.407 (6)Cd1—I12.9368 (6)
Cd1—N22.331 (5)I2—Ag12.9058 (8)
Cd1—N32.339 (4)I3—Ag12.8036 (7)
Cd1—N42.399 (5)I1—Ag12.8784 (7)
Cd1—I22.8352 (6)Ag1—Ag1i3.2260 (11)
N2—Cd1—N3155.03 (18)N4—Cd1—I186.86 (12)
N2—Cd1—N490.75 (18)I2—Cd1—I196.217 (17)
N3—Cd1—N469.61 (17)Ag1—I3—Ag1i70.08 (2)
N2—Cd1—N169.7 (2)I3—Ag1—I1109.69 (2)
N3—Cd1—N192.37 (19)I3—Ag1—I2118.40 (2)
N4—Cd1—N184.32 (17)I1—Ag1—I295.96 (2)
N4—Cd1—I2171.04 (13)
Symmetry code: (i) x+2, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds