Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C18H18N2O5, the two spiro-fused cyclic fragments are planar. The planar system is stabilized by an intra­molecular N—H...O hydrogen bond. In the crystal packing, mol­ecules are connected by inter­molecular N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027547/kp2112sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027547/kp2112Isup2.hkl
Contains datablock I

CCDC reference: 654939

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.149
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.66 Ratio PLAT230_ALERT_2_B Hirshfeld Test Diff for C14 - C15 .. 7.22 su
Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.51 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C17 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... R
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Spiro-cyclic derivatives of 2-oxindole are interesting objects for searching of new physiologically active substances (Cingolant et al., 1989, Urbahns et al., 2000). However, such compounds containing the 2-amino-4H-pyrane fragment have not been investigated. In this paper we report the molecular and crystal structure of the spiro[indolin-3,4-(5-acetyl-2-amino-3-carbethoxy-6- methyl-4H-pyran)]-2-one (Fig. 1) which can be considered as a potential melatonin analogue with a rigid etanamide side chain. Dihydroindolone fragment is planar within 0.01 Å and spiro-joined to the dihydropyrane ring; esterified carboxyl group and the C18, N2, and C16 atoms are co-planar within 0.03 Å and are turned with respect to the bicyclic fragment for 116.2 (2) ° (the C1—C6—C7—C9 torsion angle). The formation of hydrogen bond promotes the elongation of the C11—C12 and C13—O3 bonds (Table 1) in comparison with their mean values (Bürgi & Dunitz, 1994) 1.320 Å and 1.210 Å, respectively and the shortening of the C11—N2 and C12—C13 bonds (the mean value are 1.336 Å and 1.455 Å, respectively). The repulsion between substituents at the C9—C10 double bond (the shortened intramolecular contacts H17c···C10 2.81 Å, H17c···C18 2.76 Å, H18b···C16 2.63 Å, H18c···C17 2.64 Å [the sum of van der Waals radii is 2.87 Å (Zefirov & Zorky, 1995)], C18···C17 3.19 Å (3.42 Å) leads to an increase of the C9—C10—C18 bond angle up to 128.6 (2) °. The formation of the N2—H2Na···O3 intramolecular hydrogen bond (Table 2) supports the coplanarity of the carboxyl group and dihydropyrane ring. In the crystal molecules of (I) are connected by the intermolecular hydrogen bonds N1—H1N···O1' and N2—H2Nb···O1' (Table 2, Fig. 2).

Related literature top

For related literature, see: Cingolant et al. (1989); Urbahns et al. (2000); Zefirov & Zorky (1995).

For related literature, see: Bürgi & Dunitz (1994).

Experimental top

A solution of isatin (0.01 mol), triethanolamine (1.3 ml, 0.01 mol) and pentane-2,4-dione (1.01 ml, 0.01 mol) in absolute ethanol (10.0 ml) were gradually added to the cyano-acetic acid ethyl ester (1.1 ml, 0.01 mol). The resulting reaction mixture was refluxed for 2 h. The mixture was allowed to form the precipitate. The resulting precipitate was filtered, washed with hexane, and recrystallized from the ethanol and DMF mixture (1:1) and dried. Yield 0.22 g (65%), m.p. 508 K. 1H NMR (DMSO-d6) δ p.p.m.: 065 t (3H, OCH2CH3), 1.80 s (3H, CH3), 2.05 s (3H, COCH3), 3.65 q (2H, OCH2CH3), 6.65 d (1H), 6.80 t (1H), 6.98 d (1H), 7.05 t (1H), 7.72 s (1H, NH2, D2O) exchangeable), 10.25 s (1H, NH, D2O exchangeable.). Analysis, required for C18H18N2O5: C 63.15; H 5.30; N 8.18%; found: C63.15; H 5.30; N 8.18%.

Refinement top

All hydrogen atoms were located from electron density difference maps and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms.The hydrogen atoms which are take part in the formation of hydrogen bonds are refined in isotropic approximation.

Structure description top

Spiro-cyclic derivatives of 2-oxindole are interesting objects for searching of new physiologically active substances (Cingolant et al., 1989, Urbahns et al., 2000). However, such compounds containing the 2-amino-4H-pyrane fragment have not been investigated. In this paper we report the molecular and crystal structure of the spiro[indolin-3,4-(5-acetyl-2-amino-3-carbethoxy-6- methyl-4H-pyran)]-2-one (Fig. 1) which can be considered as a potential melatonin analogue with a rigid etanamide side chain. Dihydroindolone fragment is planar within 0.01 Å and spiro-joined to the dihydropyrane ring; esterified carboxyl group and the C18, N2, and C16 atoms are co-planar within 0.03 Å and are turned with respect to the bicyclic fragment for 116.2 (2) ° (the C1—C6—C7—C9 torsion angle). The formation of hydrogen bond promotes the elongation of the C11—C12 and C13—O3 bonds (Table 1) in comparison with their mean values (Bürgi & Dunitz, 1994) 1.320 Å and 1.210 Å, respectively and the shortening of the C11—N2 and C12—C13 bonds (the mean value are 1.336 Å and 1.455 Å, respectively). The repulsion between substituents at the C9—C10 double bond (the shortened intramolecular contacts H17c···C10 2.81 Å, H17c···C18 2.76 Å, H18b···C16 2.63 Å, H18c···C17 2.64 Å [the sum of van der Waals radii is 2.87 Å (Zefirov & Zorky, 1995)], C18···C17 3.19 Å (3.42 Å) leads to an increase of the C9—C10—C18 bond angle up to 128.6 (2) °. The formation of the N2—H2Na···O3 intramolecular hydrogen bond (Table 2) supports the coplanarity of the carboxyl group and dihydropyrane ring. In the crystal molecules of (I) are connected by the intermolecular hydrogen bonds N1—H1N···O1' and N2—H2Nb···O1' (Table 2, Fig. 2).

For related literature, see: Cingolant et al. (1989); Urbahns et al. (2000); Zefirov & Zorky (1995).

For related literature, see: Bürgi & Dunitz (1994).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (or SHELXTL-Plus?)(Sheldrick, 1998); program(s) used to refine structure: SHELXTL (or SHELXTL-Plus?); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic membering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing is stabilized by N—H···O hydrogen bonds.
Methyl 5'-acetyl-2'-amino-6'-methyl-2-oxospiro[indoline-3,4'-4H-pyran]-3'-carboxylate top
Crystal data top
C18H18N2O5F(000) = 1440
Mr = 342.34Dx = 1.305 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.5506 (9) ÅCell parameters from 6306 reflections
b = 10.6729 (4) Åθ = 3–35°
c = 15.8285 (7) ŵ = 0.10 mm1
β = 122.818 (3)°T = 293 K
V = 3485.5 (2) Å3Plate, colourless
Z = 80.30 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
2240 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
Detector resolution: 16.1827 pixels mm-1h = 2929
ω scansk = 1212
10420 measured reflectionsl = 1817
3018 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0851P)2 + 1.3474P]
where P = (Fo2 + 2Fc2)/3
3018 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H18N2O5V = 3485.5 (2) Å3
Mr = 342.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.5506 (9) ŵ = 0.10 mm1
b = 10.6729 (4) ÅT = 293 K
c = 15.8285 (7) Å0.30 × 0.10 × 0.05 mm
β = 122.818 (3)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
2240 reflections with I > 2σ(I)
10420 measured reflectionsRint = 0.031
3018 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.32 e Å3
3018 reflectionsΔρmin = 0.21 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08678 (6)0.67104 (13)0.34768 (10)0.0526 (4)
O20.28466 (6)0.64340 (14)0.44108 (11)0.0602 (4)
O30.19920 (8)0.99077 (15)0.32023 (13)0.0770 (5)
O40.10457 (7)0.89331 (14)0.22049 (12)0.0695 (5)
O50.09930 (8)0.40131 (17)0.26489 (14)0.0787 (5)
N10.03680 (7)0.65486 (15)0.17652 (12)0.0483 (4)
H1N0.0044 (13)0.663 (2)0.1598 (19)0.070 (7)*
N20.29878 (9)0.8478 (2)0.45134 (15)0.0626 (5)
H2NB0.3365 (13)0.830 (2)0.511 (2)0.067 (7)*
H2NA0.2827 (13)0.926 (3)0.430 (2)0.084 (9)*
C10.05499 (9)0.64990 (16)0.10680 (14)0.0457 (4)
C20.01655 (10)0.64695 (19)0.00309 (15)0.0584 (6)
H20.02840.64990.03060.070*
C30.04697 (12)0.6395 (2)0.04904 (16)0.0641 (6)
H30.02210.63810.11890.077*
C40.11360 (12)0.6342 (2)0.00091 (16)0.0610 (6)
H40.13300.62780.03560.073*
C50.15193 (10)0.63820 (18)0.10521 (15)0.0510 (5)
H50.19690.63470.13890.061*
C60.12235 (8)0.64741 (16)0.15742 (13)0.0431 (4)
C70.15141 (8)0.65374 (16)0.27042 (13)0.0388 (4)
C80.08823 (8)0.66018 (17)0.27184 (14)0.0431 (4)
C90.18856 (8)0.53477 (17)0.32161 (13)0.0433 (4)
C100.24992 (9)0.53452 (19)0.39961 (15)0.0525 (5)
C110.25668 (9)0.75611 (19)0.40164 (14)0.0487 (5)
C120.19375 (8)0.76803 (18)0.32151 (13)0.0450 (4)
C130.16859 (10)0.89299 (19)0.28959 (15)0.0545 (5)
C140.07229 (14)1.0115 (3)0.1836 (2)0.0975 (10)
H14B0.08631.05220.14370.117*
H14A0.08241.06600.23930.117*
C150.00001 (19)0.9856 (4)0.1196 (4)0.1426 (16)
H15C0.00920.93000.06570.214*
H15B0.02301.06300.09230.214*
H15A0.01350.94760.16030.214*
C160.15250 (9)0.41441 (18)0.27901 (14)0.0492 (5)
C170.17974 (14)0.3148 (2)0.2462 (2)0.0835 (8)
H17C0.22210.33940.26280.125*
H17B0.15180.30320.17480.125*
H17A0.18280.23770.27980.125*
C180.29125 (12)0.4255 (3)0.45825 (19)0.0831 (8)
H18C0.32420.41350.44380.125*
H18B0.26490.35160.43990.125*
H18A0.31130.44140.52880.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0338 (7)0.0759 (9)0.0445 (8)0.0015 (6)0.0188 (6)0.0062 (6)
O20.0326 (7)0.0714 (10)0.0538 (9)0.0016 (6)0.0085 (6)0.0094 (7)
O30.0651 (10)0.0576 (10)0.0789 (11)0.0174 (8)0.0198 (9)0.0042 (8)
O40.0492 (9)0.0526 (9)0.0694 (10)0.0000 (6)0.0078 (8)0.0017 (7)
O50.0548 (10)0.0833 (12)0.0920 (13)0.0154 (8)0.0359 (9)0.0148 (9)
N10.0248 (8)0.0650 (10)0.0432 (9)0.0036 (6)0.0108 (7)0.0015 (7)
N20.0408 (10)0.0775 (14)0.0499 (11)0.0170 (9)0.0117 (9)0.0105 (9)
C10.0374 (9)0.0490 (10)0.0394 (10)0.0074 (7)0.0134 (8)0.0021 (8)
C20.0434 (11)0.0633 (13)0.0440 (11)0.0091 (9)0.0076 (9)0.0012 (9)
C30.0713 (15)0.0683 (14)0.0374 (11)0.0151 (10)0.0195 (11)0.0039 (9)
C40.0712 (15)0.0679 (14)0.0466 (12)0.0111 (10)0.0336 (11)0.0055 (9)
C50.0486 (11)0.0551 (12)0.0480 (11)0.0079 (8)0.0252 (10)0.0044 (8)
C60.0375 (9)0.0460 (10)0.0387 (10)0.0069 (7)0.0161 (8)0.0045 (7)
C70.0289 (8)0.0465 (10)0.0363 (9)0.0033 (7)0.0145 (7)0.0028 (7)
C80.0319 (9)0.0502 (10)0.0416 (10)0.0021 (7)0.0163 (8)0.0034 (7)
C90.0382 (9)0.0521 (11)0.0393 (9)0.0024 (7)0.0209 (8)0.0015 (8)
C100.0417 (10)0.0595 (12)0.0466 (11)0.0061 (8)0.0176 (9)0.0054 (9)
C110.0361 (9)0.0635 (13)0.0435 (10)0.0077 (8)0.0197 (8)0.0082 (9)
C120.0336 (9)0.0581 (11)0.0391 (9)0.0063 (8)0.0170 (8)0.0054 (8)
C130.0484 (11)0.0555 (12)0.0477 (11)0.0098 (9)0.0183 (9)0.0058 (9)
C140.0754 (17)0.0617 (15)0.098 (2)0.0061 (13)0.0102 (15)0.0115 (14)
C150.090 (2)0.113 (3)0.158 (4)0.031 (2)0.024 (2)0.027 (2)
C160.0481 (11)0.0542 (11)0.0415 (10)0.0006 (8)0.0218 (9)0.0040 (8)
C170.0882 (18)0.0638 (15)0.104 (2)0.0079 (13)0.0556 (17)0.0230 (14)
C180.0654 (15)0.0803 (17)0.0650 (15)0.0258 (13)0.0102 (12)0.0028 (12)
Geometric parameters (Å, º) top
O1—C81.226 (2)C6—C71.526 (2)
O2—C111.358 (2)C7—C91.516 (2)
O2—C101.379 (2)C7—C121.520 (2)
O3—C131.222 (2)C7—C81.565 (2)
O4—C131.343 (2)C9—C101.333 (3)
O4—C141.435 (3)C9—C161.497 (3)
O5—C161.208 (2)C10—C181.491 (3)
N1—C81.345 (2)C11—C121.374 (3)
N1—C11.398 (3)C12—C131.441 (3)
N1—H1N0.90 (3)C14—C151.518 (5)
N2—C111.328 (2)C14—H14B0.9700
N2—H2NB0.91 (3)C14—H14A0.9700
N2—H2NA0.90 (3)C15—H15C0.9600
C1—C21.381 (3)C15—H15B0.9600
C1—C61.393 (3)C15—H15A0.9600
C2—C31.383 (3)C16—C171.491 (3)
C2—H20.9300C17—H17C0.9600
C3—C41.379 (3)C17—H17B0.9600
C3—H30.9300C17—H17A0.9600
C4—C51.389 (3)C18—H18C0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.368 (3)C18—H18A0.9600
C5—H50.9300
C11—O2—C10119.97 (14)C9—C10—C18128.6 (2)
C13—O4—C14118.56 (17)O2—C10—C18108.93 (17)
C8—N1—C1112.32 (15)N2—C11—O2110.06 (17)
C8—N1—H1N123.3 (16)N2—C11—C12127.1 (2)
C1—N1—H1N124.1 (16)O2—C11—C12122.82 (16)
C11—N2—H2NB119.2 (15)C11—C12—C13117.59 (17)
C11—N2—H2NA114.4 (18)C11—C12—C7121.29 (17)
H2NB—N2—H2NA125 (2)C13—C12—C7121.10 (15)
C2—C1—C6121.10 (19)O3—C13—O4121.16 (19)
C2—C1—N1129.37 (18)O3—C13—C12126.63 (18)
C6—C1—N1109.52 (16)O4—C13—C12112.20 (16)
C1—C2—C3117.93 (19)O4—C14—C15107.5 (2)
C1—C2—H2121.0O4—C14—H14B110.2
C3—C2—H2121.0C15—C14—H14B110.2
C4—C3—C2121.10 (19)O4—C14—H14A110.2
C4—C3—H3119.5C15—C14—H14A110.2
C2—C3—H3119.5H14B—C14—H14A108.5
C3—C4—C5120.6 (2)C14—C15—H15C109.5
C3—C4—H4119.7C14—C15—H15B109.5
C5—C4—H4119.7H15C—C15—H15B109.5
C6—C5—C4118.74 (19)C14—C15—H15A109.5
C6—C5—H5120.6H15C—C15—H15A109.5
C4—C5—H5120.6H15B—C15—H15A109.5
C5—C6—C1120.49 (17)O5—C16—C17119.8 (2)
C5—C6—C7130.34 (16)O5—C16—C9119.91 (18)
C1—C6—C7109.16 (15)C17—C16—C9120.08 (18)
C9—C7—C12110.36 (14)C16—C17—H17C109.5
C9—C7—C6110.66 (14)C16—C17—H17B109.5
C12—C7—C6114.17 (14)H17C—C17—H17B109.5
C9—C7—C8110.05 (14)C16—C17—H17A109.5
C12—C7—C8110.76 (14)H17C—C17—H17A109.5
C6—C7—C8100.45 (13)H17B—C17—H17A109.5
O1—C8—N1126.49 (17)C10—C18—H18C109.5
O1—C8—C7124.99 (16)C10—C18—H18B109.5
N1—C8—C7108.50 (16)H18C—C18—H18B109.5
C10—C9—C16120.72 (17)C10—C18—H18A109.5
C10—C9—C7123.15 (16)H18C—C18—H18A109.5
C16—C9—C7116.12 (14)H18B—C18—H18A109.5
C9—C10—O2122.41 (17)
C8—N1—C1—C2178.18 (19)C6—C7—C9—C1652.80 (19)
C8—N1—C1—C62.1 (2)C8—C7—C9—C1657.31 (19)
C6—C1—C2—C31.0 (3)C16—C9—C10—O2179.83 (16)
N1—C1—C2—C3178.70 (19)C7—C9—C10—O20.7 (3)
C1—C2—C3—C40.5 (3)C16—C9—C10—C182.4 (3)
C2—C3—C4—C51.0 (3)C7—C9—C10—C18178.2 (2)
C3—C4—C5—C60.1 (3)C11—O2—C10—C90.8 (3)
C4—C5—C6—C11.4 (3)C11—O2—C10—C18178.72 (19)
C4—C5—C6—C7179.93 (18)C10—O2—C11—N2178.78 (17)
C2—C1—C6—C52.0 (3)C10—O2—C11—C121.0 (3)
N1—C1—C6—C5177.77 (16)N2—C11—C12—C133.3 (3)
C2—C1—C6—C7179.12 (16)O2—C11—C12—C13177.05 (17)
N1—C1—C6—C71.15 (19)N2—C11—C12—C7178.69 (18)
C5—C6—C7—C962.6 (2)O2—C11—C12—C71.0 (3)
C1—C6—C7—C9116.19 (16)C9—C7—C12—C110.8 (2)
C5—C6—C7—C1262.6 (2)C6—C7—C12—C11124.59 (19)
C1—C6—C7—C12118.60 (16)C8—C7—C12—C11122.91 (18)
C5—C6—C7—C8178.84 (18)C9—C7—C12—C13177.20 (16)
C1—C6—C7—C80.05 (18)C6—C7—C12—C1357.4 (2)
C1—N1—C8—O1176.39 (18)C8—C7—C12—C1355.1 (2)
C1—N1—C8—C72.1 (2)C14—O4—C13—O30.6 (3)
C9—C7—C8—O166.1 (2)C14—O4—C13—C12178.2 (2)
C12—C7—C8—O156.2 (2)C11—C12—C13—O37.4 (3)
C6—C7—C8—O1177.25 (17)C7—C12—C13—O3174.5 (2)
C9—C7—C8—N1115.41 (16)C11—C12—C13—O4171.36 (18)
C12—C7—C8—N1122.29 (16)C7—C12—C13—O46.7 (3)
C6—C7—C8—N11.28 (18)C13—O4—C14—C15171.6 (3)
C12—C7—C9—C100.7 (2)C10—C9—C16—O5130.3 (2)
C6—C7—C9—C10126.69 (19)C7—C9—C16—O550.2 (2)
C8—C7—C9—C10123.20 (19)C10—C9—C16—C1754.7 (3)
C12—C7—C9—C16179.85 (15)C7—C9—C16—C17124.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.96 (3)2.850 (2)168 (2)
N2—H2NA···O30.90 (3)1.96 (3)2.667 (3)134 (2)
N2—H2NB···O1ii0.91 (3)2.00 (3)2.892 (2)166 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H18N2O5
Mr342.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.5506 (9), 10.6729 (4), 15.8285 (7)
β (°) 122.818 (3)
V3)3485.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur3
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10420, 3018, 2240
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.09
No. of reflections3018
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXTL (or SHELXTL-Plus?)(Sheldrick, 1998), SHELXTL (or SHELXTL-Plus?), XP (Siemens, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.96 (3)2.850 (2)168 (2)
N2—H2NA···O30.90 (3)1.96 (3)2.667 (3)134 (2)
N2—H2NB···O1ii0.91 (3)2.00 (3)2.892 (2)166 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds