Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Short-range B-cation order affects the functional properties of many complex perovskites. However, current ability to measure the characteristics of such chemical short-range order (SRO) in perovskite-structured ceramics is limited. In the present study, two distinct methods are compared for the determination of the B-cation SRO parameters from the total scattering pair-distribution function (PDF). Both methods rely on reverse Monte Carlo refinements of the structural models but differ in the procedures used to extract the SRO characteristics. The accuracy of these methods was tested using synthetic PDF data generated for models of prototype Ca(Zr,Ti)O3 solid solutions. One of the approaches developed in the present study, which proved to yield the most accurate results, was used to analyze the SRO of Ti and Zr in powder samples of Ca(Zr,Ti)O3.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds