Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The conversion of the spin state of complexes exhibiting thermal spin crossover from the 1A1 low-spin (LS) state to the 5T2 high-spin (HS) state is accompanied by a deformation of the lattice due to the larger bond lengths in the HS state as compared with the LS state. In a previous work [Kusz et al. (2000). J. Appl. Cryst. 33, 201–205], it has been shown that the deformation of the lattice, corrected for its temperature dependence, can be described by an almost temperature-independent tensor [epsilon] multiplied by the fraction of molecules in the HS state, γHS. Here the dependence of [epsilon] in a mixed single crystal of [Fe0.46Zn0.54(ptz)6](BF4)2 (ptz = propyltetrazole) with a transition temperature near 110 K is reported. In order to study the dependence of the metal–ligand bond length on the concentration of Zn, five structures were determined at 10 K: the neat iron and the mixed-crystal compound in both the excited HS state (LIESST) and the LS state, and the neat Zn compound. The comparison of the structures shows that neither the bond lengths nor their differences in the HS and LS states depend linearly on the Zn concentration. These deviations can be considered as consequences of elastic interactions directly observed by X-ray diffraction analysis. The lattice constants a and c also do not depend linearly on the Zn concentration, contrary to the unit-cell volume and the differences of a and c between the HS and LS states, a fact which is in agreement with the observed linear dependence of these parameters on the temperature-dependent HS fraction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889804011720/ko5005sup1.cif
Contains datablocks I, II, III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889804011720/ko5005Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889804011720/ko5005IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889804011720/ko5005IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889804011720/ko5005IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889804011720/ko5005Vsup6.hkl
Contains datablock V

CCDC references: 251390; 251391; 251392; 251393; 251394

Computing details top

For all compounds, data collection: CrysAlis (Oxford Diffraction, 2002); cell refinement: STADI4 (Stoe, 1995); data reduction: CrysAlis (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: PLATON (Spek,2003). Software used to prepare material for publication: SHELXL93 (Sheldrick, 1993) for (I), (II), (IV), (V); PLATON (Spek,2003) for (III).

Figures top
[Figure 1]
[Figure 2]
(I) top
Crystal data top
C24H48N24Zn·2(BF2)Dx = 1.412 Mg m3
Mr = 911.85Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 60 reflections
a = 10.8429 (7) Åθ = 30–40°
c = 31.607 (3) ŵ = 0.66 mm1
V = 3218.1 (4) Å3T = 10 K
Z = 3Plate, colourless
F(000) = 14160.6 × 0.6 × 0.3 mm
Data collection top
CCD-Kuma Difraction
diffractometer
1478 independent reflections
Radiation source: fine-focus sealed tube1439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ–scanθmax = 26.8°, θmin = 3.4°
Absorption correction: multi-scan
?
h = 1313
Tmin = 0.681, Tmax = 0.821k = 913
7605 measured reflectionsl = 3839
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061Calculated w = 1/[σ2(Fo2) + (0.0247P)2 + 6.3194P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1478 reflectionsΔρmax = 0.30 e Å3
122 parametersΔρmin = 0.34 e Å3
0 restraints
Crystal data top
C24H48N24Zn·2(BF2)Z = 3
Mr = 911.85Mo Kα radiation
Hexagonal, R3µ = 0.66 mm1
a = 10.8429 (7) ÅT = 10 K
c = 31.607 (3) Å0.6 × 0.6 × 0.3 mm
V = 3218.1 (4) Å3
Data collection top
CCD-Kuma Difraction
diffractometer
1478 independent reflections
Absorption correction: multi-scan
?
1439 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.821Rint = 0.039
7605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026122 parameters
wR(F2) = 0.0610 restraints
S = 1.09Δρmax = 0.30 e Å3
1478 reflectionsΔρmin = 0.34 e Å3
Special details top

Experimental. 'CrysAlis (Oxford Diffraction, 2002)'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.00361 (11)
N40.04742 (11)0.13522 (11)0.03879 (3)0.0062 (2)
C10.01774 (13)0.27580 (14)0.04096 (4)0.0063 (2)
H10.0931 (19)0.3373 (19)0.0266 (5)0.012 (4)*
N30.15957 (11)0.08552 (12)0.06627 (3)0.0077 (2)
N20.16222 (11)0.19178 (11)0.08422 (3)0.0080 (2)
N10.05113 (11)0.31173 (11)0.06857 (3)0.0059 (2)
C40.12058 (15)0.46411 (15)0.14385 (4)0.0116 (3)
H60.1361 (19)0.491 (2)0.1741 (6)0.019 (4)*
H70.209 (2)0.528 (2)0.1281 (6)0.020 (5)*
H80.0996 (19)0.367 (2)0.1401 (6)0.020 (4)*
C20.02678 (14)0.45410 (13)0.08019 (4)0.0078 (3)
H20.0539 (18)0.5201 (18)0.0645 (5)0.010 (4)*
H30.1077 (18)0.4586 (17)0.0699 (5)0.008 (4)*
C30.00274 (14)0.48068 (14)0.12752 (4)0.0089 (3)
H50.0149 (18)0.5765 (19)0.1312 (5)0.014 (4)*
H40.0895 (18)0.4163 (18)0.1430 (5)0.010 (4)*
F20.04678 (9)0.13801 (8)0.33486 (2)0.0122 (2)
F10.00000.00000.27606 (4)0.0124 (3)
B0.00000.00000.32021 (8)0.0070 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00263 (13)0.00263 (13)0.0056 (2)0.00131 (7)0.0000.000
N40.0043 (5)0.0061 (5)0.0074 (5)0.0021 (4)0.0001 (4)0.0003 (4)
C10.0059 (6)0.0062 (6)0.0067 (6)0.0030 (5)0.0002 (5)0.0001 (5)
N30.0068 (5)0.0081 (5)0.0090 (5)0.0043 (4)0.0008 (4)0.0001 (4)
N20.0062 (5)0.0055 (5)0.0113 (5)0.0022 (4)0.0005 (4)0.0002 (4)
N10.0051 (5)0.0043 (5)0.0082 (5)0.0023 (4)0.0007 (4)0.0000 (4)
C40.0112 (7)0.0109 (7)0.0115 (6)0.0047 (6)0.0017 (5)0.0007 (5)
C20.0099 (6)0.0036 (6)0.0114 (6)0.0045 (5)0.0000 (5)0.0012 (5)
C30.0096 (6)0.0062 (6)0.0110 (6)0.0040 (5)0.0006 (5)0.0015 (5)
F20.0143 (4)0.0054 (4)0.0152 (4)0.0036 (3)0.0029 (3)0.0014 (3)
F10.0137 (4)0.0137 (4)0.0098 (6)0.0068 (2)0.0000.000
B0.0054 (7)0.0054 (7)0.0101 (11)0.0027 (3)0.0000.000
Geometric parameters (Å, º) top
Zn1—N4i2.1613 (10)C4—C31.525 (2)
Zn1—N4ii2.1614 (10)C4—H60.99 (2)
Zn1—N4iii2.1613 (10)C4—H70.99 (2)
Zn1—N4iv2.1613 (10)C4—H80.97 (2)
Zn1—N42.1613 (10)C2—C31.521 (2)
Zn1—N4v2.1613 (10)C2—H20.95 (2)
N4—C11.323 (2)C2—H30.96 (2)
N4—N31.3667 (15)C3—H50.96 (2)
C1—N11.327 (2)C3—H40.98 (2)
C1—H10.88 (2)F2—B1.3971 (11)
N3—N21.297 (2)F1—B1.396 (3)
N2—N11.3491 (15)B—F2ii1.3971 (11)
N1—C21.477 (2)B—F2iii1.3971 (11)
N4i—Zn1—N4ii180.0N2—N1—C2121.57 (10)
N4i—Zn1—N4iii89.01 (4)C3—C4—H6108.8 (10)
N4ii—Zn1—N4iii90.99 (4)C3—C4—H7110.0 (11)
N4i—Zn1—N4iv90.99 (4)H6—C4—H7108.4 (15)
N4ii—Zn1—N4iv89.01 (4)C3—C4—H8110.1 (11)
N4iii—Zn1—N4iv89.01 (4)H6—C4—H8110.8 (15)
N4i—Zn1—N489.01 (4)H7—C4—H8108.8 (15)
N4ii—Zn1—N490.99 (4)N1—C2—C3111.51 (10)
N4iii—Zn1—N490.99 (4)N1—C2—H2105.9 (10)
N4iv—Zn1—N4180.0C3—C2—H2111.5 (10)
N4i—Zn1—N4v90.99 (4)N1—C2—H3106.2 (10)
N4ii—Zn1—N4v89.01 (4)C3—C2—H3113.5 (9)
N4iii—Zn1—N4v180.0H2—C2—H3107.8 (13)
N4iv—Zn1—N4v90.99 (4)C2—C3—C4112.81 (11)
N4—Zn1—N4v89.01 (4)C2—C3—H5104.1 (10)
C1—N4—N3106.18 (10)C4—C3—H5111.9 (10)
C1—N4—Zn1129.78 (9)C2—C3—H4110.2 (9)
N3—N4—Zn1124.02 (8)C4—C3—H4109.5 (10)
N4—C1—N1108.51 (11)H5—C3—H4108.1 (13)
N4—C1—H1127.3 (11)F1—B—F2109.35 (10)
N1—C1—H1124.2 (11)F1—B—F2ii109.35 (10)
N2—N3—N4109.76 (10)F2—B—F2ii109.59 (10)
N3—N2—N1106.88 (10)F1—B—F2iii109.35 (10)
C1—N1—N2108.67 (10)F2—B—F2iii109.59 (10)
C1—N1—C2129.61 (11)F2ii—B—F2iii109.59 (10)
N4i—Zn1—N4—C115.05 (11)Zn1—N4—C1—N1178.50 (8)
N4ii—Zn1—N4—C1164.95 (11)C1—N4—N3—N20.16 (13)
N4iii—Zn1—N4—C173.94 (13)Zn1—N4—N3—N2178.50 (8)
N4iv—Zn1—N4—C1133.41 (11)N4—N3—N2—N10.19 (13)
N4v—Zn1—N4—C1106.06 (13)N4—C1—N1—N20.06 (14)
N4i—Zn1—N4—N3163.27 (10)N4—C1—N1—C2175.60 (11)
N4ii—Zn1—N4—N316.73 (10)N3—N2—N1—C10.16 (13)
N4iii—Zn1—N4—N3107.73 (7)N3—N2—N1—C2176.12 (11)
N4iv—Zn1—N4—N344.92 (8)C1—N1—C2—C3123.94 (14)
N4v—Zn1—N4—N372.27 (7)N2—N1—C2—C361.03 (15)
N3—N4—C1—N10.06 (14)N1—C2—C3—C456.60 (15)
Symmetry codes: (i) y, x+y, z; (ii) y, xy, z; (iii) x+y, x, z; (iv) x, y, z; (v) xy, x, z.
(II) top
Crystal data top
C24H48N24Fe·2(BF2)Dx = 1.393 Mg m3
Mr = 902.33Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 60 reflections
a = 10.881 (2) Åθ = 30–40°
c = 31.480 (8) ŵ = 0.44 mm1
V = 3227.8 (12) Å3T = 10 K
Z = 3Plate, colourless
F(000) = 14040.7 × 0.5 × 0.3 mm
Data collection top
CCD-Kuma Difraction
diffractometer
1554 independent reflections
Radiation source: fine-focus rotating anode1257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ–scanθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
?
h = 1313
Tmin = 0.770, Tmax = 0.877k = 813
12546 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076Calculated w = 1/[σ2(Fo2) + (0.0331P)2 + 1.398P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1554 reflectionsΔρmax = 0.23 e Å3
122 parametersΔρmin = 0.57 e Å3
0 restraints
Crystal data top
C24H48N24Fe·2(BF2)Z = 3
Mr = 902.33Mo Kα radiation
Hexagonal, R3µ = 0.44 mm1
a = 10.881 (2) ÅT = 10 K
c = 31.480 (8) Å0.7 × 0.5 × 0.3 mm
V = 3227.8 (12) Å3
Data collection top
CCD-Kuma Difraction
diffractometer
1554 independent reflections
Absorption correction: multi-scan
?
1257 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.877Rint = 0.085
12546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032122 parameters
wR(F2) = 0.0760 restraints
S = 1.08Δρmax = 0.23 e Å3
1554 reflectionsΔρmin = 0.57 e Å3
Special details top

Experimental. 'CrysAlis (Oxford Diffraction, 2002)'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.00000.0053 (2)
N40.04711 (13)0.13647 (13)0.03938 (3)0.0069 (3)
C10.0186 (2)0.2766 (2)0.04160 (4)0.0069 (3)
H10.0992 (18)0.3415 (18)0.0277 (5)0.006 (4)*
N30.16026 (14)0.08745 (14)0.06660 (4)0.0084 (3)
N20.16291 (14)0.19392 (14)0.08426 (4)0.0087 (3)
N10.05097 (13)0.31330 (13)0.06879 (4)0.0065 (3)
C40.1209 (2)0.4652 (2)0.14404 (5)0.0130 (4)
H60.139 (2)0.492 (2)0.1744 (6)0.022 (5)*
H70.209 (2)0.525 (2)0.1277 (5)0.018 (5)*
H80.0990 (19)0.363 (2)0.1405 (5)0.017 (5)*
C20.0266 (2)0.4550 (2)0.08031 (5)0.0084 (3)
H20.0585 (18)0.5226 (17)0.0644 (5)0.002 (4)*
H30.109 (2)0.4624 (19)0.0699 (5)0.012 (4)*
C30.0015 (2)0.4821 (2)0.12776 (5)0.0098 (3)
H50.0158 (19)0.576 (2)0.1319 (5)0.014 (5)*
H40.0869 (18)0.4177 (18)0.1430 (5)0.004 (4)*
F20.04656 (10)0.13762 (10)0.33474 (2)0.0120 (2)
F10.00000.00000.27571 (4)0.0128 (4)
B0.00000.00000.32016 (8)0.0071 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0054 (2)0.0054 (2)0.0053 (2)0.00268 (10)0.0000.000
N40.0057 (7)0.0077 (7)0.0070 (6)0.0030 (6)0.0001 (5)0.0007 (5)
C10.0059 (8)0.0085 (8)0.0067 (6)0.0039 (7)0.0002 (6)0.0001 (6)
N30.0079 (7)0.0095 (7)0.0085 (6)0.0049 (6)0.0015 (5)0.0002 (5)
N20.0081 (7)0.0064 (7)0.0102 (6)0.0026 (6)0.0003 (5)0.0003 (5)
N10.0069 (7)0.0061 (7)0.0067 (6)0.0033 (6)0.0003 (5)0.0006 (5)
C40.0143 (9)0.0126 (9)0.0105 (7)0.0057 (8)0.0011 (6)0.0008 (6)
C20.0100 (8)0.0057 (8)0.0105 (7)0.0045 (7)0.0002 (6)0.0008 (6)
C30.0117 (9)0.0080 (9)0.0100 (7)0.0051 (7)0.0007 (6)0.0019 (6)
F20.0153 (5)0.0078 (5)0.0130 (4)0.0057 (4)0.0020 (4)0.0015 (4)
F10.0154 (6)0.0154 (6)0.0077 (7)0.0077 (3)0.0000.000
B0.0075 (10)0.0075 (10)0.0062 (12)0.0037 (5)0.0000.000
Geometric parameters (Å, º) top
Fe1—N4i2.1831 (12)C4—C31.521 (2)
Fe1—N4ii2.1831 (12)C4—H60.99 (2)
Fe1—N4iii2.1831 (12)C4—H70.99 (2)
Fe1—N42.1831 (12)C4—H81.02 (2)
Fe1—N4iv2.1831 (12)C2—C31.521 (2)
Fe1—N4v2.1831 (12)C2—H20.98 (2)
N4—C11.323 (2)C2—H30.99 (2)
N4—N31.370 (2)C3—H50.95 (2)
C1—N11.329 (2)C3—H40.97 (2)
C1—H10.92 (2)F2—B1.3969 (13)
N3—N21.298 (2)F1—B1.399 (3)
N2—N11.351 (2)B—F2i1.3969 (13)
N1—C21.473 (2)B—F2iii1.3969 (13)
N4i—Fe1—N4ii180.0N2—N1—C2121.45 (12)
N4i—Fe1—N4iii90.93 (4)C3—C4—H6110.4 (11)
N4ii—Fe1—N4iii89.07 (4)C3—C4—H7111.2 (10)
N4i—Fe1—N490.93 (4)H6—C4—H7108.9 (15)
N4ii—Fe1—N489.07 (4)C3—C4—H8110.7 (10)
N4iii—Fe1—N490.93 (4)H6—C4—H8109.0 (15)
N4i—Fe1—N4iv89.07 (4)H7—C4—H8106.6 (15)
N4ii—Fe1—N4iv90.93 (4)N1—C2—C3111.41 (12)
N4iii—Fe1—N4iv89.07 (4)N1—C2—H2105.5 (9)
N4—Fe1—N4iv180.0C3—C2—H2110.2 (9)
N4i—Fe1—N4v89.07 (4)N1—C2—H3107.7 (10)
N4ii—Fe1—N4v90.93 (4)C3—C2—H3113.1 (9)
N4iii—Fe1—N4v180.0H2—C2—H3108.6 (13)
N4—Fe1—N4v89.07 (4)C2—C3—C4113.02 (13)
N4iv—Fe1—N4v90.93 (4)C2—C3—H5105.1 (10)
C1—N4—N3106.14 (12)C4—C3—H5111.7 (11)
C1—N4—Fe1129.68 (10)C2—C3—H4109.4 (9)
N3—N4—Fe1124.14 (10)C4—C3—H4109.2 (10)
N4—C1—N1108.63 (13)H5—C3—H4108.3 (14)
N4—C1—H1128.3 (10)F2i—B—F2109.75 (11)
N1—C1—H1123.1 (10)F2i—B—F2iii109.75 (11)
N2—N3—N4109.69 (12)F2—B—F2iii109.75 (11)
N3—N2—N1106.99 (11)F2i—B—F1109.19 (11)
C1—N1—N2108.55 (12)F2—B—F1109.19 (11)
C1—N1—C2129.87 (13)F2iii—B—F1109.19 (11)
N4i—Fe1—N4—C1164.76 (12)Fe1—N4—C1—N1177.48 (9)
N4ii—Fe1—N4—C115.24 (12)C1—N4—N3—N20.4 (2)
N4iii—Fe1—N4—C173.81 (15)Fe1—N4—N3—N2177.59 (9)
N4iv—Fe1—N4—C15.E1 (10)N4—N3—N2—N10.26 (15)
N4v—Fe1—N4—C1106.19 (15)N4—C1—N1—N20.2 (2)
N4i—Fe1—N4—N317.77 (11)N4—C1—N1—C2175.67 (13)
N4ii—Fe1—N4—N3162.22 (11)N3—N2—N1—C10.05 (15)
N4iii—Fe1—N4—N3108.72 (8)N3—N2—N1—C2176.32 (12)
N4iv—Fe1—N4—N312.E1 (10)C1—N1—C2—C3122.4 (2)
N4v—Fe1—N4—N371.28 (8)N2—N1—C2—C362.2 (2)
N3—N4—C1—N10.3 (2)N1—C2—C3—C456.3 (2)
Symmetry codes: (i) y, xy, z; (ii) y, x+y, z; (iii) x+y, x, z; (iv) x, y, z; (v) xy, x, z.
(III) top
Crystal data top
C24H48N24Fe·2(BF2)Dx = 1.421 Mg m3
Mr = 902.33Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 60 reflections
a = 10.701 (2) Åθ = 30–40°
c = 31.900 (8) ŵ = 0.45 mm1
V = 3163.5 (12) Å3T = 10 K
Z = 3Plate, red
F(000) = 14040.7 × 0.5 × 0.3 mm
Data collection top
CCD-Kuma Difraction
diffractometer
1563 independent reflections
Radiation source: fine-focus rotating anode1322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ–scanθmax = 27.8°, θmin = 3.4°
Absorption correction: multi-scan
?
h = 813
Tmin = 0.732, Tmax = 0.766k = 1313
9516 measured reflectionsl = 3940
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088Calculated w = 1/[σ2(Fo2) + (0.0368P)2 + 5.8158P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1563 reflectionsΔρmax = 0.32 e Å3
122 parametersΔρmin = 0.58 e Å3
0 restraints
Crystal data top
C24H48N24Fe·2(BF2)Z = 3
Mr = 902.33Mo Kα radiation
Hexagonal, R3µ = 0.45 mm1
a = 10.701 (2) ÅT = 10 K
c = 31.900 (8) Å0.7 × 0.5 × 0.3 mm
V = 3163.5 (12) Å3
Data collection top
CCD-Kuma Difraction
diffractometer
1563 independent reflections
Absorption correction: multi-scan
?
1322 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.766Rint = 0.063
9516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036122 parameters
wR(F2) = 0.0880 restraints
S = 1.11Δρmax = 0.32 e Å3
1563 reflectionsΔρmin = 0.58 e Å3
Special details top

Experimental. CrysAlis (Oxford Diffraction, 2002)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.00000.0052 (2)
N40.04737 (14)0.12355 (14)0.03562 (4)0.0063 (3)
C10.0194 (2)0.2659 (2)0.03935 (5)0.0069 (3)
H10.104 (2)0.336 (2)0.0255 (6)0.008 (4)*
N30.16515 (15)0.07062 (15)0.06153 (4)0.0084 (3)
N20.16943 (15)0.17690 (15)0.07978 (4)0.0086 (3)
N10.05403 (14)0.29931 (14)0.06613 (4)0.0068 (3)
C40.1091 (2)0.4528 (2)0.14330 (5)0.0127 (4)
H60.121 (2)0.480 (2)0.1736 (7)0.019 (5)*
H70.205 (2)0.524 (2)0.1291 (6)0.017 (5)*
H80.095 (3)0.354 (3)0.1394 (7)0.024 (6)*
C20.0314 (2)0.4425 (2)0.07803 (5)0.0085 (3)
H20.059 (2)0.518 (2)0.0634 (5)0.008 (5)*
H30.115 (2)0.450 (2)0.0672 (5)0.007 (4)*
C30.0158 (2)0.4658 (2)0.12530 (5)0.0099 (3)
H50.004 (2)0.559 (2)0.1295 (6)0.012 (5)*
H40.104 (2)0.399 (2)0.1389 (6)0.006 (4)*
F20.03774 (11)0.13765 (10)0.33170 (3)0.0114 (2)
F10.00000.00000.27326 (5)0.0116 (4)
B0.00000.00000.31716 (9)0.0075 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0049 (2)0.0049 (2)0.0058 (3)0.00247 (10)0.0000.000
N40.0046 (6)0.0076 (7)0.0059 (6)0.0024 (6)0.0004 (5)0.0005 (5)
C10.0070 (8)0.0073 (8)0.0064 (7)0.0034 (7)0.0010 (6)0.0005 (6)
N30.0078 (7)0.0095 (7)0.0090 (6)0.0052 (6)0.0015 (5)0.0000 (5)
N20.0080 (7)0.0064 (7)0.0106 (6)0.0029 (6)0.0006 (5)0.0001 (5)
N10.0071 (7)0.0063 (7)0.0070 (6)0.0034 (6)0.0011 (5)0.0001 (5)
C40.0139 (9)0.0131 (9)0.0103 (8)0.0062 (7)0.0025 (6)0.0012 (6)
C20.0091 (8)0.0070 (8)0.0101 (7)0.0045 (7)0.0002 (6)0.0007 (6)
C30.0121 (8)0.0093 (8)0.0085 (7)0.0055 (7)0.0009 (6)0.0027 (6)
F20.0136 (5)0.0078 (5)0.0128 (5)0.0054 (4)0.0018 (4)0.0014 (4)
F10.0139 (5)0.0139 (5)0.0070 (7)0.0069 (3)0.0000.000
B0.0071 (9)0.0071 (9)0.0083 (13)0.0035 (5)0.0000.000
Geometric parameters (Å, º) top
Fe1—N4i1.9915 (13)C4—C31.524 (2)
Fe1—N4ii1.9915 (13)C4—H61.00 (2)
Fe1—N4iii1.9915 (13)C4—H71.03 (2)
Fe1—N41.9915 (13)C4—H81.00 (2)
Fe1—N4iv1.9915 (13)C2—C31.524 (2)
Fe1—N4v1.9915 (13)C2—H21.02 (2)
N4—C11.325 (2)C2—H30.99 (2)
N4—N31.371 (2)C3—H50.94 (2)
C1—N11.326 (2)C3—H40.96 (2)
C1—H10.95 (2)F2—B1.3975 (14)
N3—N21.299 (2)F1—B1.400 (3)
N2—N11.346 (2)B—F2i1.3975 (14)
N1—C21.476 (2)B—F2iv1.3975 (14)
N4i—Fe1—N4ii180.0N2—N1—C2121.42 (13)
N4i—Fe1—N4iii89.33 (5)C3—C4—H6108.9 (12)
N4ii—Fe1—N4iii90.67 (5)C3—C4—H7111.5 (12)
N4i—Fe1—N490.67 (5)H6—C4—H7106.3 (17)
N4ii—Fe1—N489.33 (5)C3—C4—H8111.8 (14)
N4iii—Fe1—N489.33 (5)H6—C4—H8111.1 (18)
N4i—Fe1—N4iv90.67 (5)H7—C4—H8107.2 (18)
N4ii—Fe1—N4iv89.33 (5)N1—C2—C3111.85 (13)
N4iii—Fe1—N4iv180.0N1—C2—H2107.9 (11)
N4—Fe1—N4iv90.67 (5)C3—C2—H2109.9 (10)
N4i—Fe1—N4v89.33 (5)N1—C2—H3107.7 (11)
N4ii—Fe1—N4v90.67 (5)C3—C2—H3111.0 (10)
N4iii—Fe1—N4v90.67 (5)H2—C2—H3108.3 (15)
N4—Fe1—N4v180.0C4—C3—C2112.77 (13)
N4iv—Fe1—N4v89.33 (5)C4—C3—H5112.4 (12)
C1—N4—N3106.08 (13)C2—C3—H5104.9 (11)
C1—N4—Fe1130.10 (11)C4—C3—H4110.1 (11)
N3—N4—Fe1123.81 (10)C2—C3—H4109.9 (11)
N4—C1—N1108.43 (14)H5—C3—H4106.6 (16)
N4—C1—H1128.1 (12)F2i—B—F2109.57 (12)
N1—C1—H1123.5 (12)F2i—B—F2iv109.57 (12)
N2—N3—N4109.64 (13)F2—B—F2iv109.57 (12)
N3—N2—N1106.88 (13)F2i—B—F1109.38 (12)
C1—N1—N2108.96 (13)F2—B—F1109.38 (12)
C1—N1—C2129.36 (14)F2iv—B—F1109.38 (12)
N4i—Fe1—N4—C1161.56 (13)Fe1—N4—C1—N1178.40 (10)
N4ii—Fe1—N4—C118.44 (13)C1—N4—N3—N20.5 (2)
N4iii—Fe1—N4—C1109.1 (2)Fe1—N4—N3—N2178.30 (10)
N4iv—Fe1—N4—C170.9 (2)N4—N3—N2—N10.5 (2)
N4v—Fe1—N4—C16.E1 (8)N4—C1—N1—N20.0 (2)
N4i—Fe1—N4—N319.91 (12)N4—C1—N1—C2174.17 (14)
N4ii—Fe1—N4—N3160.09 (12)N3—N2—N1—C10.3 (2)
N4iii—Fe1—N4—N369.41 (9)N3—N2—N1—C2175.04 (13)
N4iv—Fe1—N4—N3110.59 (9)C1—N1—C2—C3125.3 (2)
N4v—Fe1—N4—N312.E1 (8)N2—N1—C2—C361.1 (2)
N3—N4—C1—N10.3 (2)N1—C2—C3—C458.6 (2)
Symmetry codes: (i) y, xy, z; (ii) y, x+y, z; (iii) xy, x, z; (iv) x+y, x, z; (v) x, y, z.
(IV) top
Crystal data top
C24H48N24Fe0.46Zn0.54·2(BF2)Dx = 1.403 Mg m3
Mr = 907.47Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 60 reflections
a = 10.8575 (5) Åθ = 30–40°
c = 31.560 (3) ŵ = 0.56 mm1
V = 3222.0 (4) Å3T = 10 K
Z = 3Plate, colourless
F(000) = 14100.6 × 0.5 × 0.3 mm
Data collection top
CCD-Kuma Difraction
diffractometer
1469 independent reflections
Radiation source: fine-focus rotating anode1433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ–scanθmax = 26.8°, θmin = 3.8°
Absorption correction: multi-scan
?
h = 1313
Tmin = 0.724, Tmax = 0.846k = 1310
7865 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072Calculated w = 1/[σ2(Fo2) + (0.0368P)2 + 5.8158P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1469 reflectionsΔρmax = 0.29 e Å3
122 parametersΔρmin = 0.37 e Å3
0 restraints
Crystal data top
C24H48N24Fe0.46Zn0.54·2(BF2)Z = 3
Mr = 907.47Mo Kα radiation
Hexagonal, R3µ = 0.56 mm1
a = 10.8575 (5) ÅT = 10 K
c = 31.560 (3) Å0.6 × 0.5 × 0.3 mm
V = 3222.0 (4) Å3
Data collection top
CCD-Kuma Difraction
diffractometer
1469 independent reflections
Absorption correction: multi-scan
?
1433 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.846Rint = 0.028
7865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027122 parameters
wR(F2) = 0.0720 restraints
S = 1.10Δρmax = 0.29 e Å3
1469 reflectionsΔρmin = 0.37 e Å3
Special details top

Experimental. 'CrysAlis (Oxford Diffraction, 2002)'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.00000.00000.00000.00420 (13)0.46
Zn10.00000.00000.00000.00420 (13)0.54
N40.04733 (11)0.13580 (12)0.03912 (3)0.0064 (2)
C10.01807 (14)0.27608 (14)0.04125 (4)0.0069 (3)
H10.0939 (19)0.3387 (18)0.0269 (5)0.010 (4)*
N30.15982 (12)0.08657 (12)0.06643 (3)0.0078 (2)
N20.16259 (12)0.19269 (12)0.08427 (4)0.0080 (2)
N10.05095 (12)0.31233 (11)0.06871 (3)0.0061 (2)
C40.12076 (15)0.46450 (15)0.14387 (4)0.0115 (3)
H60.1372 (19)0.4909 (19)0.1744 (6)0.015 (4)*
H70.209 (2)0.528 (2)0.1281 (6)0.017 (4)*
H80.1011 (19)0.366 (2)0.1404 (6)0.016 (4)*
C20.02658 (15)0.45451 (14)0.08022 (4)0.0081 (3)
H20.0551 (19)0.5227 (18)0.0640 (5)0.012 (4)*
H30.1071 (18)0.4603 (17)0.0702 (5)0.006 (4)*
C30.00216 (15)0.48146 (14)0.12766 (4)0.0092 (3)
H50.0145 (18)0.577 (2)0.1320 (5)0.015 (4)*
H40.0895 (19)0.4172 (18)0.1435 (5)0.010 (4)*
F20.04693 (9)0.13781 (8)0.33484 (2)0.0124 (2)
F10.00000.00000.27594 (4)0.0127 (3)
B0.00000.00000.32018 (8)0.0068 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0036 (2)0.0036 (2)0.0054 (2)0.00179 (8)0.0000.000
Zn10.0036 (2)0.0036 (2)0.0054 (2)0.00179 (8)0.0000.000
N40.0049 (5)0.0067 (5)0.0072 (5)0.0027 (4)0.0002 (4)0.0004 (4)
C10.0062 (6)0.0073 (6)0.0071 (6)0.0035 (5)0.0002 (5)0.0000 (5)
N30.0070 (5)0.0081 (5)0.0084 (5)0.0039 (4)0.0010 (4)0.0006 (4)
N20.0066 (5)0.0057 (5)0.0106 (5)0.0022 (4)0.0005 (4)0.0000 (4)
N10.0054 (5)0.0053 (5)0.0077 (5)0.0028 (4)0.0003 (4)0.0000 (4)
C40.0116 (7)0.0111 (7)0.0111 (7)0.0051 (6)0.0016 (5)0.0006 (5)
C20.0104 (6)0.0044 (6)0.0110 (6)0.0047 (5)0.0001 (5)0.0010 (5)
C30.0106 (7)0.0076 (6)0.0100 (6)0.0050 (5)0.0010 (5)0.0019 (5)
F20.0149 (4)0.0060 (4)0.0150 (4)0.0042 (3)0.0031 (3)0.0014 (3)
F10.0151 (5)0.0151 (5)0.0079 (6)0.0075 (2)0.0000.000
B0.0062 (7)0.0062 (7)0.0081 (11)0.0031 (4)0.0000.000
Geometric parameters (Å, º) top
Fe1—N4i2.1726 (11)N3—N21.296 (2)
Fe1—N4ii2.1726 (11)N2—N11.3502 (15)
Fe1—N4iii2.1726 (11)N1—C21.475 (2)
Fe1—N4iv2.1726 (11)C4—C31.524 (2)
Fe1—N4v2.1726 (11)C4—H61.00 (2)
Fe1—N42.1726 (11)C4—H70.99 (2)
Zn1—N4i2.1726 (11)C4—H80.98 (2)
Zn1—N4ii2.1726 (11)C2—C31.523 (2)
Zn1—N4iii2.1726 (11)C2—H20.97 (2)
Zn1—N4iv2.1726 (11)C2—H30.96 (2)
Zn1—N4v2.1726 (11)C3—H50.97 (2)
Zn1—N42.1726 (11)C3—H40.99 (2)
N4—C11.322 (2)F2—B1.3965 (11)
N4—N31.3664 (15)F1—B1.396 (3)
C1—N11.328 (2)B—F2iv1.3965 (11)
C1—H10.89 (2)B—F2i1.3965 (11)
N4i—Fe1—N4ii180.0N3—N4—Fe1124.15 (8)
N4i—Fe1—N4iii89.11 (4)Zn1—N4—Fe10.0
N4ii—Fe1—N4iii90.89 (4)N4—C1—N1108.49 (12)
N4i—Fe1—N4iv90.89 (4)N4—C1—H1128.0 (11)
N4ii—Fe1—N4iv89.11 (4)N1—C1—H1123.5 (11)
N4iii—Fe1—N4iv89.11 (4)N2—N3—N4109.85 (10)
N4i—Fe1—N4v89.11 (4)N3—N2—N1106.78 (10)
N4ii—Fe1—N4v90.89 (4)C1—N1—N2108.69 (10)
N4iii—Fe1—N4v90.89 (4)C1—N1—C2129.68 (11)
N4iv—Fe1—N4v180.0N2—N1—C2121.48 (11)
N4i—Fe1—N490.89 (4)C3—C4—H6109.4 (10)
N4ii—Fe1—N489.11 (4)C3—C4—H7110.2 (11)
N4iii—Fe1—N4180.0H6—C4—H7108.3 (15)
N4iv—Fe1—N490.89 (4)C3—C4—H8111.4 (11)
N4v—Fe1—N489.11 (4)H6—C4—H8109.3 (15)
N4i—Zn1—N4ii180.0H7—C4—H8108.2 (15)
N4i—Zn1—N4iii89.11 (4)N1—C2—C3111.47 (10)
N4ii—Zn1—N4iii90.89 (4)N1—C2—H2106.6 (10)
N4i—Zn1—N4iv90.89 (4)C3—C2—H2111.5 (10)
N4ii—Zn1—N4iv89.11 (4)N1—C2—H3107.1 (10)
N4iii—Zn1—N4iv89.11 (4)C3—C2—H3112.8 (9)
N4i—Zn1—N4v89.11 (4)H2—C2—H3107.0 (14)
N4ii—Zn1—N4v90.89 (4)C2—C3—C4112.68 (11)
N4iii—Zn1—N4v90.89 (4)C2—C3—H5105.4 (10)
N4iv—Zn1—N4v180.0C4—C3—H5112.1 (10)
N4i—Zn1—N490.89 (4)C2—C3—H4110.4 (10)
N4ii—Zn1—N489.11 (4)C4—C3—H4109.5 (10)
N4iii—Zn1—N4180.0H5—C3—H4106.6 (14)
N4iv—Zn1—N490.89 (4)F1—B—F2iv109.35 (10)
N4v—Zn1—N489.11 (4)F1—B—F2i109.35 (10)
C1—N4—N3106.20 (10)F2iv—B—F2i109.59 (10)
C1—N4—Zn1129.63 (9)F1—B—F2109.35 (10)
N3—N4—Zn1124.15 (8)F2iv—B—F2109.59 (10)
C1—N4—Fe1129.63 (9)F2i—B—F2109.59 (10)
N4i—Zn1—N4—C1164.91 (11)N4iii—Fe1—N4—N34.13 (9)
N4ii—Zn1—N4—C115.09 (11)N4iv—Fe1—N4—N3108.21 (7)
N4iii—Zn1—N4—C1178.08 (11)N4v—Fe1—N4—N371.79 (7)
N4iv—Zn1—N4—C174.00 (13)N4i—Fe1—N4—Zn10.0
N4v—Zn1—N4—C1106.00 (13)N4ii—Fe1—N4—Zn10.0
N4i—Zn1—N4—N317.31 (10)N4iii—Fe1—N4—Zn10.0
N4ii—Zn1—N4—N3162.69 (10)N4iv—Fe1—N4—Zn10.0
N4iii—Zn1—N4—N34.13 (9)N4v—Fe1—N4—Zn10.0
N4iv—Zn1—N4—N3108.21 (7)N3—N4—C1—N10.01 (14)
N4v—Zn1—N4—N371.79 (7)Zn1—N4—C1—N1178.08 (8)
N4i—Zn1—N4—Fe10.0Fe1—N4—C1—N1178.08 (8)
N4ii—Zn1—N4—Fe10.0C1—N4—N3—N20.16 (14)
N4iii—Zn1—N4—Fe10.0Zn1—N4—N3—N2178.07 (8)
N4iv—Zn1—N4—Fe10.0Fe1—N4—N3—N2178.07 (8)
N4v—Zn1—N4—Fe10.0N4—N3—N2—N10.23 (13)
N4i—Fe1—N4—C1164.91 (11)N4—C1—N1—N20.13 (14)
N4ii—Fe1—N4—C115.09 (11)N4—C1—N1—C2175.55 (12)
N4iii—Fe1—N4—C1178.08 (11)N3—N2—N1—C10.22 (13)
N4iv—Fe1—N4—C174.00 (13)N3—N2—N1—C2176.10 (11)
N4v—Fe1—N4—C1106.00 (13)C1—N1—C2—C3123.48 (14)
N4i—Fe1—N4—N317.31 (10)N2—N1—C2—C361.61 (15)
N4ii—Fe1—N4—N3162.69 (10)N1—C2—C3—C456.40 (15)
Symmetry codes: (i) y, xy, z; (ii) y, x+y, z; (iii) x, y, z; (iv) x+y, x, z; (v) xy, x, z.
(V) top
Crystal data top
C24H48N24Fe0.46Zn0.54·2(BF2)Dx = 1.416 Mg m3
Mr = 907.47Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 60 reflections
a = 10.7719 (6) Åθ = 30–40°
c = 31.763 (3) ŵ = 0.56 mm1
V = 3191.8 (4) Å3T = 10 K
Z = 3Plate, red
F(000) = 14100.6 × 0.5 × 0.3 mm
Data collection top
CCD-Kuma Difraction
diffractometer
1462 independent reflections
Radiation source: fine-focus rotating anode1433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ–scanθmax = 26.8°, θmin = 3.8°
Absorption correction: multi-scan
?
h = 1313
Tmin = 0.721, Tmax = 0.845k = 1310
7725 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070Calculated w = 1/[σ2(Fo2) + (0.0368P)2 + 5.8158P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1462 reflectionsΔρmax = 0.33 e Å3
122 parametersΔρmin = 0.37 e Å3
0 restraints
Crystal data top
C24H48N24Fe0.46Zn0.54·2(BF2)Z = 3
Mr = 907.47Mo Kα radiation
Hexagonal, R3µ = 0.56 mm1
a = 10.7719 (6) ÅT = 10 K
c = 31.763 (3) Å0.6 × 0.5 × 0.3 mm
V = 3191.8 (4) Å3
Data collection top
CCD-Kuma Difraction
diffractometer
1462 independent reflections
Absorption correction: multi-scan
?
1433 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.845Rint = 0.030
7725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027122 parameters
wR(F2) = 0.0700 restraints
S = 1.06Δρmax = 0.33 e Å3
1462 reflectionsΔρmin = 0.37 e Å3
Special details top

Experimental. 'CrysAlis (Oxford Diffraction, 2002)'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.00000.00000.00000.00389 (12)0.46
Zn10.00000.00000.00000.00389 (12)0.54
N40.04743 (11)0.12938 (12)0.03725 (3)0.0084 (2)
C10.01872 (13)0.27080 (14)0.04016 (4)0.0083 (3)
H10.0985 (19)0.3355 (18)0.0264 (5)0.011 (4)*
N30.16227 (12)0.07833 (12)0.06396 (3)0.0108 (2)
N20.16574 (12)0.18443 (12)0.08212 (4)0.0115 (2)
N10.05210 (11)0.30596 (11)0.06742 (3)0.0084 (2)
C40.1153 (2)0.4589 (2)0.14362 (4)0.0137 (3)
H60.1270 (19)0.483 (2)0.1738 (6)0.018 (4)*
H70.206 (2)0.525 (2)0.1289 (6)0.024 (5)*
H80.0983 (18)0.3618 (19)0.1401 (5)0.015 (4)*
C20.02879 (14)0.44852 (14)0.07912 (4)0.0103 (3)
H20.0556 (19)0.5191 (18)0.0643 (5)0.013 (4)*
H30.1101 (18)0.4543 (17)0.0689 (5)0.009 (4)*
C30.00890 (15)0.4737 (2)0.12641 (4)0.0118 (3)
H50.0058 (18)0.5686 (19)0.1305 (5)0.013 (4)*
H40.0960 (18)0.4089 (18)0.1406 (5)0.010 (4)*
F20.04224 (9)0.13801 (8)0.33332 (2)0.0118 (2)
F10.00000.00000.27475 (4)0.0129 (3)
B0.00000.00000.31871 (8)0.0071 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00328 (15)0.00328 (15)0.0051 (2)0.00164 (7)0.0000.000
Zn10.00328 (15)0.00328 (15)0.0051 (2)0.00164 (7)0.0000.000
N40.0048 (5)0.0096 (5)0.0087 (5)0.0020 (4)0.0005 (4)0.0032 (4)
C10.0058 (6)0.0100 (6)0.0078 (6)0.0030 (5)0.0005 (4)0.0021 (5)
N30.0069 (5)0.0132 (6)0.0117 (5)0.0045 (5)0.0019 (4)0.0037 (4)
N20.0074 (5)0.0116 (6)0.0138 (5)0.0034 (4)0.0020 (4)0.0044 (4)
N10.0055 (5)0.0098 (5)0.0090 (5)0.0032 (4)0.0005 (4)0.0031 (4)
C40.0146 (7)0.0150 (7)0.0121 (6)0.0078 (6)0.0015 (5)0.0005 (5)
C20.0105 (6)0.0099 (6)0.0120 (6)0.0062 (5)0.0010 (5)0.0019 (5)
C30.0126 (7)0.0136 (7)0.0112 (6)0.0081 (6)0.0020 (5)0.0009 (5)
F20.0133 (4)0.0064 (4)0.0150 (4)0.0043 (3)0.0019 (3)0.0016 (3)
F10.0151 (4)0.0151 (4)0.0084 (6)0.0076 (2)0.0000.000
B0.0062 (7)0.0062 (7)0.0089 (11)0.0031 (3)0.0000.000
Geometric parameters (Å, º) top
Fe1—N4i2.0774 (11)N3—N21.297 (2)
Fe1—N4ii2.0774 (11)N2—N11.3519 (15)
Fe1—N42.0774 (11)N1—C21.474 (2)
Fe1—N4iii2.0774 (11)C4—C31.526 (2)
Fe1—N4iv2.0774 (11)C4—H60.99 (2)
Fe1—N4v2.0774 (11)C4—H70.99 (2)
Zn1—N4i2.0774 (11)C4—H80.97 (2)
Zn1—N4ii2.0774 (11)C2—C31.522 (2)
Zn1—N42.0774 (11)C2—H20.97 (2)
Zn1—N4iii2.0774 (11)C2—H30.97 (2)
Zn1—N4iv2.0774 (11)C3—H50.96 (2)
Zn1—N4v2.0774 (11)C3—H40.96 (2)
N4—C11.323 (2)F2—B1.3986 (11)
N4—N31.3682 (15)F1—B1.396 (3)
C1—N11.328 (2)B—F2iii1.3986 (11)
C1—H10.90 (2)B—F2i1.3986 (11)
N4i—Fe1—N4ii180.0N3—N4—Fe1124.04 (8)
N4i—Fe1—N490.77 (4)Zn1—N4—Fe10.0
N4ii—Fe1—N489.23 (4)N4—C1—N1108.56 (11)
N4i—Fe1—N4iii90.77 (4)N4—C1—H1127.7 (10)
N4ii—Fe1—N4iii89.23 (4)N1—C1—H1123.8 (10)
N4—Fe1—N4iii90.77 (4)N2—N3—N4109.88 (10)
N4i—Fe1—N4iv89.23 (4)N3—N2—N1106.77 (10)
N4ii—Fe1—N4iv90.77 (4)C1—N1—N2108.67 (11)
N4—Fe1—N4iv180.0C1—N1—C2129.67 (11)
N4iii—Fe1—N4iv89.23 (4)N2—N1—C2121.45 (11)
N4i—Fe1—N4v89.23 (4)C3—C4—H6108.8 (10)
N4ii—Fe1—N4v90.77 (4)C3—C4—H7111.3 (11)
N4—Fe1—N4v89.23 (4)H6—C4—H7108.6 (15)
N4iii—Fe1—N4v180.0C3—C4—H8111.6 (10)
N4iv—Fe1—N4v90.77 (4)H6—C4—H8109.1 (15)
N4i—Zn1—N4ii180.0H7—C4—H8107.4 (15)
N4i—Zn1—N490.77 (4)N1—C2—C3111.71 (11)
N4ii—Zn1—N489.23 (4)N1—C2—H2107.5 (10)
N4i—Zn1—N4iii90.77 (4)C3—C2—H2110.2 (10)
N4ii—Zn1—N4iii89.23 (4)N1—C2—H3107.1 (10)
N4—Zn1—N4iii90.77 (4)C3—C2—H3111.9 (9)
N4i—Zn1—N4iv89.23 (4)H2—C2—H3108.2 (13)
N4ii—Zn1—N4iv90.77 (4)C2—C3—C4112.79 (11)
N4—Zn1—N4iv180.0C2—C3—H5104.8 (10)
N4iii—Zn1—N4iv89.23 (4)C4—C3—H5112.1 (10)
N4i—Zn1—N4v89.23 (4)C2—C3—H4109.5 (10)
N4ii—Zn1—N4v90.77 (4)C4—C3—H4110.3 (10)
N4—Zn1—N4v89.23 (4)H5—C3—H4107.1 (13)
N4iii—Zn1—N4v180.0F1—B—F2iii109.38 (10)
N4iv—Zn1—N4v90.77 (4)F1—B—F2i109.38 (10)
C1—N4—N3106.12 (11)F2iii—B—F2i109.57 (10)
C1—N4—Zn1129.83 (9)F1—B—F2109.38 (10)
N3—N4—Zn1124.04 (8)F2iii—B—F2109.57 (10)
C1—N4—Fe1129.83 (9)F2i—B—F2109.57 (10)
N4i—Zn1—N4—C1163.25 (10)N4iii—Fe1—N4—N3109.14 (7)
N4ii—Zn1—N4—C116.75 (10)N4iv—Fe1—N4—N313.E1 (10)
N4iii—Zn1—N4—C172.48 (13)N4v—Fe1—N4—N370.86 (7)
N4iv—Zn1—N4—C15.E1 (10)N4i—Fe1—N4—Zn10.0
N4v—Zn1—N4—C1107.52 (13)N4ii—Fe1—N4—Zn10.0
N4i—Zn1—N4—N318.36 (10)N4iii—Fe1—N4—Zn10.0
N4ii—Zn1—N4—N3161.64 (10)N4iv—Fe1—N4—Zn10.0
N4iii—Zn1—N4—N3109.14 (7)N4v—Fe1—N4—Zn10.0
N4iv—Zn1—N4—N313.E1 (10)N3—N4—C1—N10.10 (13)
N4v—Zn1—N4—N370.86 (7)Zn1—N4—C1—N1178.50 (8)
N4i—Zn1—N4—Fe10.0Fe1—N4—C1—N1178.50 (8)
N4ii—Zn1—N4—Fe10.0C1—N4—N3—N20.25 (13)
N4iii—Zn1—N4—Fe10.0Zn1—N4—N3—N2178.46 (8)
N4iv—Zn1—N4—Fe10.0Fe1—N4—N3—N2178.46 (8)
N4v—Zn1—N4—Fe10.0N4—N3—N2—N10.30 (13)
N4i—Fe1—N4—C1163.25 (10)N4—C1—N1—N20.07 (14)
N4ii—Fe1—N4—C116.75 (10)N4—C1—N1—C2174.71 (11)
N4iii—Fe1—N4—C172.48 (13)N3—N2—N1—C10.23 (13)
N4iv—Fe1—N4—C15.E1 (10)N3—N2—N1—C2175.39 (11)
N4v—Fe1—N4—C1107.52 (13)C1—N1—C2—C3124.81 (14)
N4i—Fe1—N4—N318.36 (10)N2—N1—C2—C361.14 (15)
N4ii—Fe1—N4—N3161.64 (10)N1—C2—C3—C457.49 (15)
Symmetry codes: (i) y, xy, z; (ii) y, x+y, z; (iii) x+y, x, z; (iv) x, y, z; (v) xy, x, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC24H48N24Zn·2(BF2)C24H48N24Fe·2(BF2)C24H48N24Fe·2(BF2)C24H48N24Fe0.46Zn0.54·2(BF2)
Mr911.85902.33902.33907.47
Crystal system, space groupHexagonal, R3Hexagonal, R3Hexagonal, R3Hexagonal, R3
Temperature (K)10101010
a, c (Å)10.8429 (7), 31.607 (3)10.881 (2), 31.480 (8)10.701 (2), 31.900 (8)10.8575 (5), 31.560 (3)
V3)3218.1 (4)3227.8 (12)3163.5 (12)3222.0 (4)
Z3333
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.660.440.450.56
Crystal size (mm)0.6 × 0.6 × 0.30.7 × 0.5 × 0.30.7 × 0.5 × 0.30.6 × 0.5 × 0.3
Data collection
DiffractometerCCD-Kuma Difraction
diffractometer
CCD-Kuma Difraction
diffractometer
CCD-Kuma Difraction
diffractometer
CCD-Kuma Difraction
diffractometer
Absorption correctionMulti-scanMulti-scanMulti-scanMulti-scan
Tmin, Tmax0.681, 0.8210.770, 0.8770.732, 0.7660.724, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
7605, 1478, 1439 12546, 1554, 1257 9516, 1563, 1322 7865, 1469, 1433
Rint0.0390.0850.0630.028
(sin θ/λ)max1)0.6340.6490.6560.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.09 0.032, 0.076, 1.08 0.036, 0.088, 1.11 0.027, 0.072, 1.10
No. of reflections1478155415631469
No. of parameters122122122122
Δρmax, Δρmin (e Å3)0.30, 0.340.23, 0.570.32, 0.580.29, 0.37


(V)
Crystal data
Chemical formulaC24H48N24Fe0.46Zn0.54·2(BF2)
Mr907.47
Crystal system, space groupHexagonal, R3
Temperature (K)10
a, c (Å)10.7719 (6), 31.763 (3)
V3)3191.8 (4)
Z3
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.6 × 0.5 × 0.3
Data collection
DiffractometerCCD-Kuma Difraction
diffractometer
Absorption correctionMulti-scan
Tmin, Tmax0.721, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
7725, 1462, 1433
Rint0.030
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.06
No. of reflections1462
No. of parameters122
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: CrysAlis (Oxford Diffraction, 2002), STADI4 (Stoe, 1995), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), PLATON (Spek,2003).

 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds