Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
This paper reports recent tests performed on the Bonse–Hart-type ultra-small-angle X-ray scattering (USAXS) instrument at the Advanced Photon Source with higher-order reflection optics – Si(440) instead of Si(220) – and with X-ray energies greater than 20 keV. The results obtained demonstrate the feasibility of high-energy operation with narrower crystal reflectivity curves, which provides access to a scattering q range from ∼2 × 10−5 to 1.8 Å−1 and up to 12 decades in the associated sample-dependent scattering intensity range. The corresponding size range of the scattering features spans about five decades – from less than 10 Å to ∼15 µm. These tests have indicated that mechanical upgrades are required to ensure the alignment capability and operational stability of this instrument for general user operations because of the tighter angular-resolution constraints of the higher-order crystal optics.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds