Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Polymorphism of drugs has been the subject of intense interest in the pharmaceutical industry for over forty years. Although identical in chemical composition, polymorphs differ in bioavailability, solubility, dissolution rate, chemical and physical stability, melting point, colour, filterability, density, flow properties, and many other properties. The difference in solubility is particularly important for pharmaceuticals, as it can affect drug efficacy, bioavailability and safety. Despite significant investment in processes to find all the possible polymorphs of active pharmaceutical ingredients (APIs), new polymorphs can suddenly appear without warning. Polymorphs tend to convert spontaneously from less stable to more stable forms, and, therefore, it is best to discover and characterize the stable form as early as possible. Ideally the most stable polymorph will be found while the drug candidate is still in the discovery process, so that this is the form used for subsequent testing. The most stable polymorph will be the least soluble and solubility may be a limiting factor in the efficacy of the API. Despite the huge importance of polymorphism in the properties of materials, however, there is no method that can produce all the stable polymorphs of a compound, or even one that can provide confidence that the most stable polymorph has been obtained. Here we describe a new method, `potentiometric cycling for polymorph creation (PC)2', which is able to generate the most stable polymorph in aqueous solution. This new method has been applied to sulindac, a non-steroidal anti-inflammatory drug, which also shows promise in anticancer treatment, producing two polymorphs of this API, including a new more stable one. By adjusting the conditions, this method is able to produce either polymorph exclusively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889807007832/kk5012sup1.cif
Contains datablocks global, I

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S0021889807007832/kk5012Isup2.rtv
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889807007832/kk5012Isup3.hkl
Contains datablock I

CCDC reference: 637252

Computing details top

Program(s) used to solve structure: DASH, GSAS (see text for citations); program(s) used to refine structure: GSAS.

2-[6-fluoro-2-methyl-3- [(4-methylsulfinylphenyl)methylidene]inden-1-yl]- acetic acid top
Crystal data top
C20H17FO3SV = 1776.83 (6) Å3
Mr = 356.41Z = 4
Monoclinic, P21/cF(000) = 744
Hall symbol: -P 2ybcDx = 1.332 Mg m3
a = 12.6858 (3) ÅCo Kα radiation, λ = 1.78892 Å
b = 8.1894 (2) ÅT = 293 K
c = 17.7934 (5) Åyellow
β = 106.011 (3)°?, ? × ? × ? mm
Data collection top
Stoe Stadi-P
diffractometer
Scan method: step
Radiation source: Short-focus sealed ceramic tube2θmin = 2.126°, 2θmax = 70.116°, 2θstep = 0.01°
Ge (111) monochromator
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. #1(GU) = 763.466 #2(GV) = 0.000 #3(GW) = -5.792 #4(GP) = 0.000 #5(LX) = 8.510 #6(LY) = 0.000 #7(S/L) = 0.0130 #8(H/L) = 0.0350 #9(trns) = 0.00 #10(shft)= 0.0000 #11(stec)= 0.00 #12(ptec)= 0.00 #13(sfec)= 0.00 #14(L11) = 0.000 #15(L22) = 0.000 #16(L33) = 0.000 #17(L12) = 0.000 #18(L13) = 0.000 #19(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.038150 parameters
Rwp = 0.051145 restraints
Rexp = 0.031H atoms treated by a mixture of independent and constrained refinement
R(F2) = 0.07490(Δ/σ)max = 0.03
χ2 = 2.789Background function: GSAS Background function number 1 with 15 terms. Shifted Chebyshev function of 1st kind 1: 725.334 2: -363.062 3: -69.4872 4: 119.798 5: -10.2295 6: -70.0540 7: 33.7373 8: 39.3149 9: -45.5570 10: 3.81882 11: 29.1700 12: -21.7529 13: -10.9817 14: 16.8347 15: -8.63052
6800 data points
Crystal data top
C20H17FO3Sβ = 106.011 (3)°
Mr = 356.41V = 1776.83 (6) Å3
Monoclinic, P21/cZ = 4
a = 12.6858 (3) ÅCo Kα radiation, λ = 1.78892 Å
b = 8.1894 (2) ÅT = 293 K
c = 17.7934 (5) Å?, ? × ? × ? mm
Data collection top
Stoe Stadi-P
diffractometer
2θmin = 2.126°, 2θmax = 70.116°, 2θstep = 0.01°
Scan method: step
Refinement top
Rp = 0.0386800 data points
Rwp = 0.051150 parameters
Rexp = 0.031145 restraints
R(F2) = 0.07490H atoms treated by a mixture of independent and constrained refinement
χ2 = 2.789
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.5029 (4)0.0558 (8)0.3781 (3)0.197 (2)*
F10.0418 (6)0.3523 (10)0.0918 (4)0.197 (2)*
O10.3937 (8)0.1517 (9)0.0136 (6)0.197 (2)*
H170.396 (5)0.1028 (17)0.1134 (13)0.197 (2)*
O20.3906 (9)0.0020 (11)0.0898 (4)0.197 (2)*
O30.5407 (11)0.2059 (8)0.3439 (8)0.197 (2)*
C10.0519 (4)0.0399 (16)0.1829 (5)0.197 (2)*
C20.1712 (4)0.0334 (14)0.1646 (4)0.197 (2)*
C30.2157 (4)0.0983 (13)0.0930 (4)0.197 (2)*
C40.1340 (4)0.2304 (16)0.0104 (4)0.197 (2)*
H10.2011 (5)0.257 (4)0.0453 (12)0.197 (2)*
C50.0332 (5)0.2680 (16)0.0240 (4)0.197 (2)*
C60.0668 (4)0.2488 (16)0.0271 (5)0.197 (2)*
H20.1308 (5)0.271 (4)0.0133 (9)0.197 (2)*
C70.0685 (4)0.1733 (16)0.0992 (5)0.197 (2)*
H30.1357 (5)0.149 (4)0.1344 (12)0.197 (2)*
C80.0268 (4)0.1160 (14)0.1144 (4)0.197 (2)*
C90.1290 (4)0.1587 (16)0.0626 (5)0.197 (2)*
C100.0117 (4)0.0311 (11)0.2464 (4)0.197 (2)*
H40.0271 (6)0.067 (3)0.2806 (8)0.197 (2)*
C110.1301 (4)0.0322 (14)0.2809 (4)0.197 (2)*
C120.1840 (5)0.019 (2)0.3563 (5)0.197 (2)*
H50.1427 (8)0.053 (5)0.3893 (8)0.197 (2)*
C130.2962 (5)0.0197 (19)0.3837 (4)0.197 (2)*
H60.3293 (8)0.054 (5)0.4346 (9)0.197 (2)*
C140.3599 (4)0.0376 (16)0.3385 (3)0.197 (2)*
C150.3099 (5)0.0768 (16)0.2582 (4)0.197 (2)*
H70.3516 (9)0.121 (4)0.2278 (6)0.197 (2)*
C160.1984 (5)0.0739 (19)0.2312 (4)0.197 (2)*
H80.1652 (7)0.107 (5)0.1802 (8)0.197 (2)*
C170.2317 (7)0.0649 (12)0.2097 (5)0.197 (2)*
H90.187 (5)0.078 (14)0.263 (2)0.197 (2)*
H100.249 (9)0.170 (8)0.186 (7)0.197 (2)*
H110.298 (6)0.010 (7)0.210 (9)0.197 (2)*
C180.3338 (4)0.1076 (10)0.0486 (4)0.197 (2)*
H120.3480 (10)0.2121 (10)0.0221 (7)0.197 (2)*
H130.3785 (7)0.0986 (19)0.0848 (6)0.197 (2)*
C190.3655 (8)0.0286 (8)0.0122 (4)0.197 (2)*
C200.5445 (9)0.1001 (10)0.3369 (7)0.197 (2)*
H140.499 (6)0.193 (2)0.339 (9)0.197 (2)*
H150.539 (11)0.075 (8)0.283 (3)0.197 (2)*
H160.619 (4)0.125 (11)0.364 (5)0.197 (2)*
Geometric parameters (Å, º) top
S1—O31.5071 (17)C13—H60.9302 (17)
F1—C51.3688 (16)C13—C141.3708 (16)
O1—C191.2020 (16)H6—C130.9302 (17)
H17—O20.9202 (17)C14—C131.3708 (16)
O2—H170.9202 (17)C14—C151.4300 (16)
O2—C191.3473 (16)C15—C141.4300 (16)
O3—S11.5071 (17)C15—H70.9300 (17)
C1—C21.4593 (16)C15—C161.3623 (16)
C1—C81.4797 (16)H7—C150.9300 (17)
C1—C101.3278 (16)C16—C111.4392 (16)
C2—C11.4593 (16)C16—C151.3623 (16)
C2—C31.3513 (16)C16—H80.9299 (17)
C2—C171.4896 (17)H8—C160.9299 (17)
C3—C21.3513 (16)C17—C21.4896 (17)
C3—C91.4418 (16)C17—H90.9602 (17)
C3—C181.4904 (16)C17—H100.9601 (17)
C4—H10.9301 (17)C17—H110.9599 (17)
C4—C51.4001 (16)H9—C170.9602 (17)
C4—C91.4099 (16)H9—H101.568 (17)
H1—C40.9301 (17)H9—H111.567 (15)
C5—F11.3688 (16)H10—C170.9601 (17)
C5—C41.4001 (16)H10—H91.568 (17)
C5—C61.3500 (16)H10—H111.568 (13)
C6—C51.3500 (16)H11—C170.9599 (17)
C6—H20.9298 (17)H11—H91.567 (15)
C6—C71.4201 (16)H11—H101.568 (13)
H2—C60.9298 (17)C18—C31.4904 (16)
C7—C61.4201 (16)C18—H120.9702 (17)
C7—H30.9301 (17)C18—H130.9697 (17)
C7—C81.3908 (16)C18—C191.5284 (16)
H3—C70.9301 (17)H12—C180.9702 (17)
C8—C11.4797 (16)H12—H131.579 (4)
C8—C71.3908 (16)H13—C180.9697 (17)
C8—C91.4109 (16)H13—H121.579 (4)
C9—C31.4418 (16)C19—O11.2020 (16)
C9—C41.4099 (16)C19—O21.3473 (16)
C9—C81.4109 (16)C19—C181.5284 (16)
C10—C11.3278 (16)C20—H140.9600 (17)
C10—H40.9297 (17)C20—H150.9601 (17)
C10—C111.4583 (16)C20—H160.9602 (17)
H4—C100.9297 (17)H14—C200.9600 (17)
C11—C101.4583 (16)H14—H151.568 (12)
C11—C121.3918 (16)H14—H161.566 (12)
C11—C161.4392 (16)H15—C200.9601 (17)
C12—C111.3918 (16)H15—H141.568 (12)
C12—H50.9302 (17)H15—H161.569 (4)
C12—C131.3715 (16)H16—C200.9602 (17)
H5—C120.9302 (17)H16—H141.566 (12)
C13—C121.3715 (16)H16—H151.569 (4)
H17—O2—C19106.8 (14)H5—C12—C13119.0 (4)
C2—C1—C8106.1 (2)C12—C13—H6119.5 (5)
C2—C1—C10121.5 (2)C12—C13—C14120.7 (3)
C8—C1—C10131.9 (4)H6—C13—C14119.6 (4)
C1—C2—C3109.5 (3)C13—C14—C15119.5 (2)
C1—C2—C17123.8 (4)C14—C15—H7120.2 (3)
C3—C2—C17125.2 (3)C14—C15—C16118.7 (3)
C2—C3—C9109.0 (2)H7—C15—C16120.3 (5)
C2—C3—C18128.1 (3)C11—C16—C15122.0 (3)
C9—C3—C18122.9 (3)C11—C16—H8118.8 (5)
H1—C4—C5122.9 (3)C15—C16—H8119.1 (3)
H1—C4—C9120.9 (5)C2—C17—H9109.5 (4)
C5—C4—C9116.0 (3)C2—C17—H10109 (3)
F1—C5—C4114.1 (4)C2—C17—H11109.5 (19)
F1—C5—C6118.9 (3)H9—C17—H10109.4 (17)
C4—C5—C6126.3 (3)H9—C17—H11109.4 (16)
C5—C6—H2121.8 (4)H10—C17—H11109.5 (13)
C5—C6—C7115.8 (2)H10—H9—H1160.0 (5)
H2—C6—C7121.9 (5)H9—H10—H1160.0 (12)
C6—C7—H3118.9 (5)H9—H11—H1060.0 (8)
C6—C7—C8121.7 (2)C3—C18—H12109.1 (4)
H3—C7—C8118.9 (3)C3—C18—H13109.3 (4)
C1—C8—C7134.2 (3)C3—C18—C19111.6 (3)
C1—C8—C9106.0 (3)H12—C18—H13109.0 (4)
C7—C8—C9118.7 (3)H12—C18—C19108.8 (4)
C3—C9—C4130.0 (3)H13—C18—C19109.1 (4)
C3—C9—C8109.2 (3)O1—C19—O2121.0 (5)
C4—C9—C8120.3 (3)O1—C19—C18112.9 (4)
C1—C10—H4113.0 (5)O2—C19—C18123.4 (4)
C1—C10—C11132.4 (3)H14—C20—H15109.5 (12)
H4—C10—C11113.1 (3)H14—C20—H16109.3 (12)
C10—C11—C12125.4 (3)H15—C20—H16109.5 (4)
C10—C11—C16117.9 (3)H15—H14—H1660.1 (5)
C12—C11—C16116.4 (3)H14—H15—H1659.9 (3)
C11—C12—H5119.0 (5)H14—H16—H1560.0 (3)
C11—C12—C13122.0 (3)

Experimental details

Crystal data
Chemical formulaC20H17FO3S
Mr356.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.6858 (3), 8.1894 (2), 17.7934 (5)
β (°) 106.011 (3)
V3)1776.83 (6)
Z4
Radiation typeCo Kα, λ = 1.78892 Å
Specimen shape, size (mm)?, ? × ? × ?
Data collection
DiffractometerStoe Stadi-P
diffractometer
Specimen mounting?
Data collection mode?
Scan methodStep
2θ values (°)2θmin = 2.126 2θmax = 70.116 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.038, Rwp = 0.051, Rexp = 0.031, R(F2) = 0.07490, χ2 = 2.789
No. of data points6800
No. of parameters150
No. of restraints145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement

Computer programs: DASH, GSAS (see text for citations), GSAS.

 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds