organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Meth­­oxy-2-phenyl­chroman-4-one

aFaculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
*Correspondence e-mail: agata.piaskowska@uj.edu.pl

(Received 7 October 2012; accepted 15 January 2013; online 23 January 2013)

In the title compound, C16H14O3, the ring O atom and the two adjacent non-fused C atoms, as well as the attached phenyl ring, exhibit static disorder [occupancy ratio 0.559 (12):0.441 (12)]. The crystal packing features ππ [centroid–centroid distance = 3.912 (1) Å] and C—H⋯π inter­actions.

Related literature

For aromatase inhibition of flavanones, see: Hong & Chen (2006[Hong, Y. & Chen, S. (2006). Ann. N. Y. Acad. Sci. 1089, 237-251.]). For the properties of 7-meth­oxy­flavanone, see: Pouget et al. (2001[Pouget, C., Lauthier, F., Simon, A., Fagnere, C., Basly, J.-P., Delage, C. & Chulia, A.-J. (2001). Bioorg. Med. Chem. Lett. 11, 3095-3097.]); Le Bail et al. (1998[Le Bail, J. C., Varnat, F., Nicolas, J. C. & Habrioux, G. (1998). Cancer Lett., 130, 209-216.]); Kostrzewa-Susłow et al. (2010[Kostrzewa-Susłow, E., Dmochowska-Gładysz, J. & Janeczko, T. (2010). Z. Naturforsch. Teil C, 65, 55-60.]). For classification of X—H⋯π inter­actions, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O3

  • Mr = 254.27

  • Monoclinic, P 21 /c

  • a = 8.5600 (3) Å

  • b = 6.6320 (2) Å

  • c = 23.4130 (7) Å

  • β = 90.742 (2)°

  • V = 1329.04 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.55 × 0.16 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.954, Tmax = 0.991

  • 15170 measured reflections

  • 2710 independent reflections

  • 1765 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.280

  • S = 1.18

  • 2710 reflections

  • 165 parameters

  • 122 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg4 and Cg5 are the centroids of the C5–C10, C11A–C16A and C11B–C16B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13ACg4i 0.93 2.80 3.598 (11) 144
C13A—H13ACg5i 0.93 2.71 3.515 (11) 146
C13B—H13BCg4i 0.93 2.82 3.695 (12) 158
C13B—H13BCg5i 0.93 2.76 3.639 (13) 157
C19—H19BCg4ii 0.96 2.72 3.619 (7) 156
C19—H19BCg5ii 0.96 2.76 3.660 (7) 157
C15B—H15BCg3iii 0.93 2.65 3.497 (14) 151
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Flavanones are of interest because of their anticancer effect as the aromatase inhibitors. By competing with androgens for binding with aromatase these compounds prevent the hydroxylation of C18 androgens to aromatic C19 estrogenic steroids (Hong & Chen, 2006). This suppresses the overexpression of aromatase in breast cancer (Pouget et al., 2001).

The heterocyclic ring contains O1, C2 and C3 atoms exhibiting static disorder. This disorder is propagated into the attached phenyl. The dihedral angle between the C5—C10 aromatic ring plane and the phenyl ring plane is 88.6 (1)° for the major disorder component (C11A—C16A) and 87.3 (1)° for the minor component (C11B—C16B). The structure is stabilized by ππ and C—H···π interactions (Table 1). The C5—C10 ring displays a ππ interaction with the C5i—C10i ring (Fig. 2 b) with a perpendicular distance of 3.543 (1) Å, a centroid-to-centroid distance of 3.912 (1) Å and a slippage of 1.658 Å [symmetry code: (i) 1 - x, -y, -z]. There are three types of C—H···π interactions: C13A—H13A···Cg4i (C13B—13B··· Cg4i in the minor disorder component), C19—H19B··· Cg4ii (Fig. 2a) and C15B—H15B···Cg3iii (Fig. 2 a) [symmetry codes: (i) -x, y+1/2, 1/2-z, (ii) 1 - x, 1 - y, -z, (iii) x - 1, y, z]. The first interaction falls into type III X—H···pi interactions while the rest can be classified as type I according to Malone and coworkers (Malone et al. (1997)).

Related literature top

For aromatase inhibition of flavanones, see: Hong & Chen (2006). For the properties of 7-methoxyflavanone, see: Pouget et al. (2001); Le Bail et al. (1998); Kostrzewa-Susłow et al. (2010). For classification of X—H···π interactions, see: Malone et al. (1997).

Experimental top

The title compound was purchased from Sigma-Aldrich and used without further purification. Single crystals were obtained by slow evaporation of MeOH solution.

Refinement top

All hydrogen atom positions were observed in difference Fourier map. Nevertheless, in the refinement procedure the hydrogen atoms were positioned geometrically and refined using a riding model (including free rotation about the C—C bond for CH3groups), with C—H = 0.93—0.96 Å (C—H = 0.97 Å for CH2 groups, 0.96 Å for CH3 groups, and 0.93 Å for aromatic CH) and with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all other H atoms. Disordered non-H atoms were refined with isotropic displacement parameters.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 2012) drawing of the title compound with labels. Displacement ellipsoids of non-H atoms drawn at 30% probabilty level.
[Figure 2] Fig. 2. C—H···π and interactions in the crystal packing. Thermal ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, y-½, ½-z, (ii) -x, y+½, ½-z, (iii) 1 - x, 1 - y, -z.]
[Figure 3] Fig. 3. ππ interactions in the crystal packing. Thermal ellipsoids are drawn at the 30% probability level. [Symmetry codes: (iv) 1 - x, -y, -z, (v) 2 - x, -y, -z, (vi) x + 1, y, z.]
7-Methoxy-2-phenylchroman-4-one top
Crystal data top
C16H14O3F(000) = 536
Mr = 254.27Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13054 reflections
a = 8.5600 (3) Åθ = 0.4–26.4°
b = 6.6320 (2) ŵ = 0.09 mm1
c = 23.4130 (7) ÅT = 293 K
β = 90.742 (2)°Prism, colourless
V = 1329.04 (7) Å30.55 × 0.16 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2710 independent reflections
Radiation source: fine-focus sealed tube1765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 9 pixels mm-1θmax = 26.4°, θmin = 2.9°
CCD scansh = 810
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 88
Tmin = 0.954, Tmax = 0.991l = 2929
15170 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.280H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.1433P)2 + 0.4478P]
where P = (Fo2 + 2Fc2)/3
2710 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.65 e Å3
122 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H14O3V = 1329.04 (7) Å3
Mr = 254.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5600 (3) ŵ = 0.09 mm1
b = 6.6320 (2) ÅT = 293 K
c = 23.4130 (7) Å0.55 × 0.16 × 0.10 mm
β = 90.742 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2710 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
1765 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.991Rint = 0.072
15170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.086122 restraints
wR(F2) = 0.280H-atom parameters constrained
S = 1.18Δρmax = 0.65 e Å3
2710 reflectionsΔρmin = 0.35 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O170.5477 (4)0.2944 (5)0.18360 (14)0.0728 (11)
O180.8157 (4)0.1840 (5)0.02843 (13)0.0638 (9)
C40.5036 (5)0.1399 (6)0.15982 (17)0.0534 (11)
C50.5802 (5)0.0580 (6)0.10887 (16)0.0476 (10)
C60.7077 (5)0.1537 (7)0.08388 (19)0.0592 (12)
H60.74260.27590.09880.071*
C70.7821 (5)0.0726 (7)0.03831 (18)0.0577 (12)
H70.86680.13860.02240.069*
C80.7298 (5)0.1117 (6)0.01556 (16)0.0483 (10)
C90.6034 (5)0.2073 (6)0.03813 (16)0.0483 (10)
H90.56840.32860.02270.058*
C100.5271 (4)0.1219 (6)0.08444 (15)0.0429 (9)
C190.7766 (7)0.3789 (8)0.0506 (2)0.0777 (16)
H19A0.66950.37930.06340.116*
H19B0.84310.40980.08220.116*
H19C0.79080.47840.02130.116*
O1A0.4127 (8)0.2362 (10)0.1081 (3)0.043 (2)*0.559 (12)
C2A0.3587 (8)0.1876 (10)0.1623 (3)0.043 (2)*0.559 (12)
H2A0.42890.26770.18670.052*0.559 (12)
C3A0.3801 (12)0.0050 (14)0.1850 (4)0.049 (3)*0.559 (12)
H3A10.28100.07540.18190.059*0.559 (12)
H3A20.40390.01000.22540.059*0.559 (12)
C11A0.2053 (10)0.2932 (13)0.1710 (4)0.047 (2)*0.559 (12)
C12A0.2038 (13)0.4478 (18)0.2065 (6)0.065 (4)*0.559 (12)
H12A0.29610.48050.22580.078*0.559 (12)
C13A0.0813 (12)0.5567 (15)0.2160 (4)0.062 (3)*0.559 (12)
H13A0.09010.66570.24080.074*0.559 (12)
C14A0.0591 (11)0.5178 (13)0.1912 (4)0.050 (2)*0.559 (12)
H14A0.14530.59770.19920.060*0.559 (12)
C15A0.0727 (12)0.3545 (19)0.1530 (5)0.068 (4)*0.559 (12)
H15A0.16780.32220.13560.082*0.559 (12)
C16A0.0671 (13)0.2391 (16)0.1419 (5)0.061 (3)*0.559 (12)
H16A0.06550.13220.11620.073*0.559 (12)
O1B0.3856 (10)0.2064 (12)0.0994 (3)0.036 (2)*0.441 (12)
C2B0.2931 (11)0.1055 (15)0.1386 (4)0.050 (3)*0.441 (12)
H2B0.22760.02440.11280.060*0.441 (12)
C3B0.3513 (14)0.0439 (19)0.1748 (5)0.046 (3)*0.441 (12)
H3B10.27340.14970.17700.055*0.441 (12)
H3B20.36240.01370.21270.055*0.441 (12)
C11B0.1728 (13)0.2564 (14)0.1603 (4)0.040 (3)*0.441 (12)
C12B0.1843 (14)0.424 (2)0.1974 (7)0.062 (5)*0.441 (12)
H12B0.27920.46170.21400.074*0.441 (12)
C13B0.0404 (14)0.5362 (17)0.2086 (5)0.052 (3)*0.441 (12)
H13B0.03930.64630.23330.062*0.441 (12)
C14B0.0916 (11)0.4712 (16)0.1813 (4)0.044 (3)*0.441 (12)
H14B0.18520.53880.18710.053*0.441 (12)
C15B0.0895 (15)0.313 (2)0.1463 (7)0.068 (5)*0.441 (12)
H15B0.18180.27470.12800.082*0.441 (12)
C16B0.0329 (14)0.213 (2)0.1373 (6)0.063 (5)*0.441 (12)
H16B0.02560.10260.11300.076*0.441 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O170.072 (2)0.069 (2)0.078 (2)0.0210 (17)0.0127 (17)0.0313 (17)
O180.065 (2)0.063 (2)0.0643 (18)0.0106 (15)0.0277 (15)0.0115 (14)
C40.054 (3)0.053 (2)0.053 (2)0.004 (2)0.0016 (19)0.0095 (19)
C50.045 (2)0.048 (2)0.050 (2)0.0077 (18)0.0035 (17)0.0043 (17)
C60.058 (3)0.053 (2)0.066 (3)0.015 (2)0.007 (2)0.011 (2)
C70.052 (3)0.059 (3)0.063 (3)0.015 (2)0.017 (2)0.003 (2)
C80.045 (2)0.053 (2)0.047 (2)0.0039 (18)0.0085 (17)0.0032 (17)
C90.050 (2)0.046 (2)0.049 (2)0.0081 (18)0.0058 (18)0.0056 (16)
C100.041 (2)0.046 (2)0.0426 (19)0.0041 (16)0.0048 (16)0.0013 (16)
C190.095 (4)0.065 (3)0.074 (3)0.008 (3)0.036 (3)0.016 (2)
Geometric parameters (Å, º) top
O17—C41.224 (5)C11A—C16A1.404 (12)
O18—C81.361 (5)C12A—C13A1.295 (11)
O18—C191.432 (6)C12A—H12A0.9300
C4—C51.472 (6)C13A—C14A1.353 (11)
C4—C3B1.496 (12)C13A—H13A0.9300
C4—C3A1.510 (10)C14A—C15A1.409 (12)
C5—C101.397 (5)C14A—H14A0.9300
C5—C61.398 (6)C15A—C16A1.447 (12)
C6—C71.360 (6)C15A—H15A0.9300
C6—H60.9300C16A—H16A0.9300
C7—C81.404 (6)O1B—C2B1.392 (11)
C7—H70.9300C2B—C3B1.391 (14)
C8—C91.366 (5)C2B—C11B1.527 (13)
C9—C101.393 (5)C2B—H2B0.9800
C9—H90.9300C3B—H3B10.9700
C10—O1A1.362 (7)C3B—H3B20.9700
C10—O1B1.384 (8)C11B—C16B1.337 (13)
C19—H19A0.9600C11B—C12B1.414 (13)
C19—H19B0.9600C12B—C13B1.465 (13)
C19—H19C0.9600C12B—H12B0.9300
O1A—C2A1.394 (9)C13B—C14B1.362 (13)
C2A—C3A1.395 (11)C13B—H13B0.9300
C2A—C11A1.504 (10)C14B—C15B1.330 (13)
C2A—H2A0.9800C14B—H14B0.9300
C3A—H3A10.9700C15B—C16B1.260 (13)
C3A—H3A20.9700C15B—H15B0.9300
C11A—C12A1.321 (12)C16B—H16B0.9300
C8—O18—C19117.8 (3)C12A—C11A—C2A117.5 (8)
O17—C4—C5122.6 (4)C16A—C11A—C2A123.2 (8)
O17—C4—C3B121.0 (5)C13A—C12A—C11A123.8 (10)
C5—C4—C3B115.5 (5)C13A—C12A—H12A118.1
O17—C4—C3A122.1 (5)C11A—C12A—H12A118.1
C5—C4—C3A114.8 (5)C12A—C13A—C14A122.4 (9)
C3B—C4—C3A16.3 (6)C12A—C13A—H13A118.8
C10—C5—C6117.9 (4)C14A—C13A—H13A118.8
C10—C5—C4120.1 (3)C13A—C14A—C15A119.0 (7)
C6—C5—C4122.0 (4)C13A—C14A—H14A120.5
C7—C6—C5121.6 (4)C15A—C14A—H14A120.5
C7—C6—H6119.2C14A—C15A—C16A117.3 (8)
C5—C6—H6119.2C14A—C15A—H15A121.4
C6—C7—C8119.4 (4)C16A—C15A—H15A121.4
C6—C7—H7120.3C11A—C16A—C15A118.1 (8)
C8—C7—H7120.3C11A—C16A—H16A120.9
O18—C8—C9124.6 (4)C15A—C16A—H16A120.9
O18—C8—C7114.9 (3)C10—O1B—C2B118.7 (6)
C9—C8—C7120.5 (4)C3B—C2B—O1B122.8 (9)
C8—C9—C10119.6 (4)C3B—C2B—C11B120.2 (8)
C8—C9—H9120.2O1B—C2B—C11B107.2 (7)
C10—C9—H9120.2C3B—C2B—H2B100.5
O1A—C10—O1B15.2 (4)O1B—C2B—H2B100.5
O1A—C10—C9115.9 (4)C11B—C2B—H2B100.5
O1B—C10—C9116.9 (4)C2B—C3B—C4117.9 (8)
O1A—C10—C5122.8 (4)C2B—C3B—H3B1107.8
O1B—C10—C5121.6 (4)C4—C3B—H3B1107.8
C9—C10—C5120.9 (3)C2B—C3B—H3B2107.8
O18—C19—H19A109.5C4—C3B—H3B2107.8
O18—C19—H19B109.5H3B1—C3B—H3B2107.2
H19A—C19—H19B109.5C16B—C11B—C12B118.0 (8)
O18—C19—H19C109.5C16B—C11B—C2B109.3 (9)
H19A—C19—H19C109.5C12B—C11B—C2B132.7 (10)
H19B—C19—H19C109.5C11B—C12B—C13B117.3 (9)
C10—O1A—C2A119.3 (5)C11B—C12B—H12B121.4
O1A—C2A—C3A121.0 (6)C13B—C12B—H12B121.4
O1A—C2A—C11A108.4 (6)C14B—C13B—C12B116.6 (9)
C3A—C2A—C11A119.0 (7)C14B—C13B—H13B121.7
O1A—C2A—H2A101.4C12B—C13B—H13B121.7
C3A—C2A—H2A101.4C15B—C14B—C13B121.5 (9)
C11A—C2A—H2A101.4C15B—C14B—H14B119.3
C2A—C3A—C4118.9 (7)C13B—C14B—H14B119.3
C2A—C3A—H3A1107.6C16B—C15B—C14B122.3 (11)
C4—C3A—H3A1107.6C16B—C15B—H15B118.8
C2A—C3A—H3A2107.6C14B—C15B—H15B118.8
C4—C3A—H3A2107.6C15B—C16B—C11B124.3 (11)
H3A1—C3A—H3A2107.0C15B—C16B—H16B117.9
C12A—C11A—C16A119.3 (8)C11B—C16B—H16B117.9
O17—C4—C5—C10178.3 (4)O1A—C2A—C11A—C12A107.5 (10)
C3B—C4—C5—C1012.2 (8)C3A—C2A—C11A—C12A108.8 (11)
C3A—C4—C5—C105.9 (7)O1A—C2A—C11A—C16A70.2 (10)
O17—C4—C5—C60.8 (7)C3A—C2A—C11A—C16A73.4 (12)
C3B—C4—C5—C6168.7 (7)C16A—C11A—C12A—C13A0.8 (19)
C3A—C4—C5—C6173.3 (6)C2A—C11A—C12A—C13A177.1 (11)
C10—C5—C6—C72.1 (7)C11A—C12A—C13A—C14A2 (2)
C4—C5—C6—C7177.1 (4)C12A—C13A—C14A—C15A0.8 (16)
C5—C6—C7—C80.1 (7)C13A—C14A—C15A—C16A1.0 (16)
C19—O18—C8—C93.7 (6)C12A—C11A—C16A—C15A1.0 (16)
C19—O18—C8—C7175.1 (4)C2A—C11A—C16A—C15A178.8 (9)
C6—C7—C8—O18177.5 (4)C14A—C15A—C16A—C11A1.8 (16)
C6—C7—C8—C91.3 (7)C9—C10—O1B—C2B169.1 (7)
O18—C8—C9—C10178.0 (4)C5—C10—O1B—C2B1.6 (10)
C7—C8—C9—C100.7 (6)C10—O1B—C2B—C3B17.8 (14)
C8—C9—C10—O1A173.5 (5)C10—O1B—C2B—C11B163.4 (7)
C8—C9—C10—O1B169.5 (5)O1B—C2B—C3B—C417.8 (16)
C8—C9—C10—C51.3 (6)C11B—C2B—C3B—C4159.3 (9)
C6—C5—C10—O1A174.3 (5)O17—C4—C3B—C2B167.1 (8)
C4—C5—C10—O1A4.9 (7)C5—C4—C3B—C2B2.6 (13)
C6—C5—C10—O1B167.7 (6)C3B—C2B—C11B—C16B107.0 (13)
C4—C5—C10—O1B13.1 (7)O1B—C2B—C11B—C16B106.3 (11)
C6—C5—C10—C92.7 (6)C3B—C2B—C11B—C12B74.0 (17)
C4—C5—C10—C9176.5 (4)O1B—C2B—C11B—C12B72.7 (15)
C9—C10—O1A—C2A163.7 (5)C16B—C11B—C12B—C13B1.1 (19)
C5—C10—O1A—C2A8.3 (9)C2B—C11B—C12B—C13B180.0 (10)
C10—O1A—C2A—C3A20.7 (11)C11B—C12B—C13B—C14B1.4 (19)
C10—O1A—C2A—C11A163.5 (6)C12B—C13B—C14B—C15B0.4 (18)
O1A—C2A—C3A—C419.2 (13)C13B—C14B—C15B—C16B1 (2)
C11A—C2A—C3A—C4158.2 (7)C14B—C15B—C16B—C11B1 (3)
O17—C4—C3A—C2A166.8 (7)C12B—C11B—C16B—C15B0 (2)
C5—C4—C3A—C2A5.7 (11)C2B—C11B—C16B—C15B178.9 (15)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroid of the C5–C10, C11A–C16A and C11B–C16B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···Cg4i0.932.803.598 (11)144
C13A—H13A···Cg5i0.932.713.515 (11)146
C13B—H13B···Cg4i0.932.823.695 (12)158
C13B—H13B···Cg5i0.932.763.639 (13)157
C19—H19B···Cg4ii0.962.723.619 (7)156
C19—H19B···Cg5ii0.962.763.660 (7)157
C15B—H15B···Cg3iii0.932.653.497 (14)151
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14O3
Mr254.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5600 (3), 6.6320 (2), 23.4130 (7)
β (°) 90.742 (2)
V3)1329.04 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.954, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15170, 2710, 1765
Rint0.072
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.280, 1.18
No. of reflections2710
No. of parameters165
No. of restraints122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.35

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroid of the C5–C10, C11A–C16A and C11B–C16B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···Cg4i0.932.803.598 (11)144
C13A—H13A···Cg5i0.932.713.515 (11)146
C13B—H13B···Cg4i0.932.823.695 (12)158
C13B—H13B···Cg5i0.932.763.639 (13)157
C19—H19B···Cg4ii0.962.723.619 (7)156
C19—H19B···Cg5ii0.962.763.660 (7)157
C15B—H15B···Cg3iii0.932.653.497 (14)151
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y, z.
 

Acknowledgements

The authors thank the Joint X-ray Laboratory, Faculty of Chemistry, Jagiellonian University, for making the Nonius KappaCCD diffractometer available.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHong, Y. & Chen, S. (2006). Ann. N. Y. Acad. Sci. 1089, 237–251.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKostrzewa-Susłow, E., Dmochowska-Gładysz, J. & Janeczko, T. (2010). Z. Naturforsch. Teil C, 65, 55–60.  Google Scholar
First citationLe Bail, J. C., Varnat, F., Nicolas, J. C. & Habrioux, G. (1998). Cancer Lett., 130, 209–216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPouget, C., Lauthier, F., Simon, A., Fagnere, C., Basly, J.-P., Delage, C. & Chulia, A.-J. (2001). Bioorg. Med. Chem. Lett. 11, 3095–3097.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds