metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N-Di­methyl-N′-[phen­yl(2-pyrid­yl)methyl­ene]ethane-1,2-di­amine-κ3N,N′,N′′}di­thio­cyanato-κN,κS-copper(II)

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
*Correspondence e-mail: gxnuchem312@yahoo.com.cn

(Received 4 September 2009; accepted 16 November 2009; online 21 November 2009)

In the title complex, [Cu(NCS)2(C16H19N3)], the CuII atom is coordinated by a total of four N atoms; three from one tridentate Schiff base ligand and one from one of the NCS ions. The S atom from the other NCS ion completes the distorted square-pyramidal coordination.

Related literature

For general background to Schiff base complexes, see: Shi et al. (2004[Shi, Q., Xu, L.-J., Ji, J.-X., Li, Y.-M., Wang, R.-H., Zhou, Z.-Y., Cao, R., Hong, M.-C. & Chan, A. S. C. (2004). Inorg. Chem. Commun. 7, 1254-1257.]); Chandra & Sangeetika (2004[Chandra, S. & Sangeetika, X. (2004). Spectrochim. Acta Part A, 60, 147-153.]); Ramesh & Maheswaran (2003[Ramesh, R. & Maheswaran, S. (2003). J. Inorg. Biochem. 96, 457-462.]); Guo et al. (2009[Guo, Z., Li, L., Wang, C., Li, J. & Xu, T. (2009). Acta Cryst. E65, m1049.]). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C16H19N3)]

  • Mr = 433.04

  • Orthorhombic, P 21 21 21

  • a = 7.6524 (13) Å

  • b = 9.2048 (15) Å

  • c = 27.931 (5) Å

  • V = 1967.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 294 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.748, Tmax = 1.000

  • 11093 measured reflections

  • 3978 independent reflections

  • 3035 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 1.07

  • 3978 reflections

  • 238 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands have been extensively studied in coordination chemistry mainly due to their facile synthesis, easily tunable steric, electronic properties and good solubility in common solvents (Shi et al., 2004). Schiff bases have very wide applications as antibacterial, antiviral, antifungal agents (Chandra et al., 2004; Ramesh et al., 2003), and anticancer drugs (Guo et al., 2009). Herein, we report the CuII complex with the related Schiff base ligand N,N-dimethyl-N'-(α-(2-pyridyl)benzylidene)ethane-1,2-diamine. The molecular structure of the title compound is shown in Fig. 1. The coordination polyhedron could be determined by using the index τ = (β - α)/60, where β is the largest angle and α is the second. This index is unity for trigonal-bipyramidal geometry and zero for square-pyramidal geometry (Addison et al., 1984). The calculated value for the title compound 0.08, indicating a slightly distorted square pyramidal geometry for the copper atoms. The basal sites are occupied by four nitrogen atoms from one ligand and one NCS- ion with the Cu—N bond lengths ranging from 1.937 (4) to 2.071 (4) Å. In the apical position, another NCS- ion S coordinates to CuII atom with the Cu—S bond length of 2.679 (2) Å. All bond distances and bond angles have normal values.The dihedral angle between the benzene and pyridine rings is 69.22 (2)°.

Related literature top

For general background to Schiff base complexes, see: Shi et al. (2004); Chandra & Sangeetika (2004); Ramesh & Maheswaran (2003); Guo et al. (2009). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984).

Experimental top

2-Benzoylpyridine (0.5 mmol) in 5 ml of methanol solution was added to 5 ml of methanol solution containing 0.5 mmol of N,N-dimethylethyldiamine. The solution was stirred for 4 h at 60 °C. Then, 0.5 mmol CuSO4.5H2O in 5 ml distilled water and 1 mmol NH4SCN solid was added. The mixture was stirred at 60 °C for 2 h and then cooled and filtered. The filtrate was allowed to slowly evaporate at room temperature. One month later, blue block crystal was obtained.

Refinement top

The structure was refined as a racemic twin with twin ratio 0.56 (3) : 0.44. H atoms on C atoms were positoned geometrically and refined using a riding model (C—H = 0.93 Å for C-Haromatic, C—H = 0.97 Å for C-Hmethylene and C—H = 0.96 Å for C-Hmethyl). The displacement parameters of atom N2 were mildly restrained to isotropicity (standard uncertainty of 0.01 Å2).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids. All H atoms were omitted for clarity.
{N,N-Dimethyl-N'-[phenyl(2-pyridyl)methylene]ethane- 1,2-diamine-κ3N,N',N''}dithiocyanato- κN,κS-copper(II) top
Crystal data top
[Cu(NCS)2(C16H19N3)]Dx = 1.462 Mg m3
Mr = 433.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3480 reflections
a = 7.6524 (13) Åθ = 2.7–25.6°
b = 9.2048 (15) ŵ = 1.33 mm1
c = 27.931 (5) ÅT = 294 K
V = 1967.4 (6) Å3Block, blue
Z = 40.30 × 0.24 × 0.20 mm
F(000) = 892
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3978 independent reflections
Radiation source: fine-focus sealed tube3035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.748, Tmax = 1.000k = 119
11093 measured reflectionsl = 3431
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0567P)2 + 2.0946P]
where P = (Fo2 + 2Fc2)/3
3978 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.80 e Å3
6 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(NCS)2(C16H19N3)]V = 1967.4 (6) Å3
Mr = 433.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6524 (13) ŵ = 1.33 mm1
b = 9.2048 (15) ÅT = 294 K
c = 27.931 (5) Å0.30 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3978 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3035 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 1.000Rint = 0.034
11093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0506 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.07Δρmax = 0.80 e Å3
3978 reflectionsΔρmin = 0.51 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26036 (8)0.95205 (6)0.07382 (2)0.04339 (19)
S10.0307 (2)0.9109 (2)0.07293 (6)0.0670 (5)
S20.0488 (3)1.1662 (2)0.10308 (7)0.0735 (5)
N10.1524 (7)0.9185 (6)0.01206 (16)0.0609 (14)
N20.0282 (8)1.0836 (9)0.1945 (2)0.098 (2)
N30.1284 (5)0.7992 (5)0.11202 (15)0.0415 (10)
N40.4058 (5)0.9435 (5)0.13148 (14)0.0391 (9)
N50.4643 (6)1.0786 (5)0.04853 (14)0.0429 (10)
C10.0763 (7)0.9159 (6)0.02339 (18)0.0422 (12)
C20.0070 (9)1.1144 (8)0.1584 (3)0.071 (2)
C30.0085 (7)0.7208 (7)0.0973 (2)0.0509 (14)
H30.06060.74160.06800.061*
C40.0730 (9)0.6097 (9)0.1250 (3)0.078 (2)
H40.16450.55270.11370.093*
C50.0016 (9)0.5823 (8)0.1698 (3)0.077 (2)
H50.04540.50800.18890.092*
C60.1341 (8)0.6666 (7)0.1854 (2)0.0561 (16)
H60.18210.65200.21560.067*
C70.1993 (6)0.7740 (6)0.15551 (17)0.0388 (12)
C80.3525 (7)0.8643 (6)0.16633 (16)0.0376 (11)
C90.4422 (7)0.8568 (6)0.21348 (18)0.0414 (12)
C100.6136 (9)0.8125 (9)0.2169 (3)0.075 (2)
H100.67370.78540.18940.090*
C110.6961 (10)0.8079 (9)0.2600 (3)0.083 (2)
H110.81030.77390.26180.100*
C120.6143 (10)0.8520 (9)0.2999 (2)0.072 (2)
H120.67270.85230.32910.086*
C130.4464 (12)0.8959 (10)0.2973 (2)0.094 (3)
H130.38890.92480.32500.113*
C140.3591 (10)0.8986 (9)0.2545 (2)0.076 (2)
H140.24330.92890.25340.091*
C150.5594 (7)1.0370 (7)0.13190 (19)0.0511 (14)
H15A0.66420.97990.12650.061*
H15B0.56991.08550.16260.061*
C160.5371 (8)1.1467 (6)0.0926 (2)0.0508 (14)
H16A0.45911.22320.10340.061*
H16B0.64931.19040.08530.061*
C170.4088 (9)1.1937 (7)0.0152 (2)0.0620 (17)
H17A0.50651.25520.00800.093*
H17B0.31791.25050.02980.093*
H17C0.36561.15050.01370.093*
C180.5928 (9)0.9836 (8)0.0258 (2)0.0673 (18)
H18A0.54540.94560.00340.101*
H18B0.62070.90490.04700.101*
H18C0.69691.03800.01890.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0457 (3)0.0544 (3)0.0300 (3)0.0063 (4)0.0057 (3)0.0011 (3)
S10.0712 (10)0.0874 (12)0.0424 (8)0.0034 (9)0.0207 (8)0.0084 (9)
S20.0689 (11)0.0779 (12)0.0737 (12)0.0142 (10)0.0035 (9)0.0054 (10)
N10.071 (3)0.078 (4)0.034 (2)0.011 (3)0.014 (2)0.000 (3)
N20.075 (4)0.151 (6)0.067 (4)0.047 (4)0.029 (3)0.049 (4)
N30.035 (2)0.050 (3)0.040 (2)0.003 (2)0.0030 (19)0.007 (2)
N40.038 (2)0.047 (2)0.032 (2)0.002 (2)0.0039 (17)0.000 (2)
N50.047 (2)0.047 (3)0.035 (2)0.005 (2)0.0029 (19)0.006 (2)
C10.046 (3)0.043 (3)0.038 (3)0.009 (2)0.000 (2)0.005 (2)
C20.054 (4)0.080 (5)0.079 (5)0.010 (3)0.009 (4)0.020 (4)
C30.041 (3)0.064 (4)0.048 (3)0.003 (3)0.004 (3)0.002 (3)
C40.050 (4)0.088 (5)0.095 (6)0.030 (4)0.005 (4)0.009 (4)
C50.054 (4)0.083 (5)0.094 (5)0.025 (4)0.011 (4)0.027 (4)
C60.048 (3)0.070 (4)0.050 (3)0.000 (3)0.001 (3)0.018 (3)
C70.032 (3)0.052 (3)0.032 (3)0.004 (2)0.006 (2)0.001 (2)
C80.041 (3)0.042 (3)0.030 (2)0.015 (2)0.002 (2)0.003 (2)
C90.048 (3)0.043 (3)0.033 (3)0.004 (3)0.004 (2)0.001 (2)
C100.058 (4)0.111 (6)0.056 (4)0.034 (4)0.006 (3)0.008 (4)
C110.064 (5)0.124 (7)0.061 (4)0.016 (4)0.023 (3)0.016 (4)
C120.081 (5)0.085 (5)0.050 (4)0.014 (4)0.026 (4)0.022 (4)
C130.107 (7)0.134 (8)0.041 (4)0.031 (6)0.009 (4)0.007 (4)
C140.069 (4)0.124 (6)0.035 (3)0.044 (4)0.006 (3)0.010 (4)
C150.045 (3)0.063 (4)0.045 (3)0.004 (3)0.011 (2)0.006 (3)
C160.059 (3)0.051 (3)0.043 (3)0.010 (3)0.009 (3)0.003 (3)
C170.071 (4)0.069 (4)0.046 (3)0.010 (3)0.002 (3)0.019 (3)
C180.068 (4)0.067 (4)0.067 (4)0.002 (3)0.019 (3)0.002 (3)
Geometric parameters (Å, º) top
Cu1—N11.937 (4)C7—C81.468 (7)
Cu1—N41.959 (4)C8—C91.487 (7)
Cu1—N32.034 (4)C9—C141.365 (8)
Cu1—N52.071 (4)C9—C101.376 (8)
Cu1—S22.679 (2)C10—C111.361 (9)
S1—C11.609 (5)C10—H100.9300
S2—C21.648 (9)C11—C121.341 (10)
N1—C11.149 (7)C11—H110.9300
N2—C21.082 (9)C12—C131.349 (11)
N3—C31.337 (7)C12—H120.9300
N3—C71.351 (6)C13—C141.369 (9)
N4—C81.283 (6)C13—H130.9300
N4—C151.457 (7)C14—H140.9300
N5—C181.461 (7)C15—C161.501 (8)
N5—C171.472 (7)C15—H15A0.9700
N5—C161.490 (7)C15—H15B0.9700
C3—C41.373 (9)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.389 (10)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.368 (9)C17—H17C0.9600
C5—H50.9300C18—H18A0.9600
C6—C71.386 (8)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
N1—Cu1—N4165.4 (2)C7—C8—C9121.7 (4)
N1—Cu1—N398.3 (2)C14—C9—C10118.0 (6)
N4—Cu1—N379.81 (18)C14—C9—C8121.0 (5)
N1—Cu1—N596.2 (2)C10—C9—C8121.0 (5)
N4—Cu1—N582.82 (17)C11—C10—C9120.8 (7)
N3—Cu1—N5160.36 (17)C11—C10—H10119.6
N1—Cu1—S297.53 (18)C9—C10—H10119.6
N4—Cu1—S297.02 (13)C12—C11—C10120.7 (7)
N3—Cu1—S292.79 (13)C12—C11—H11119.7
N5—Cu1—S298.38 (13)C10—C11—H11119.7
C2—S2—Cu1101.0 (3)C11—C12—C13119.3 (6)
C1—N1—Cu1170.7 (5)C11—C12—H12120.4
C3—N3—C7119.9 (5)C13—C12—H12120.4
C3—N3—Cu1127.0 (4)C12—C13—C14121.2 (7)
C7—N3—Cu1113.0 (3)C12—C13—H13119.4
C8—N4—C15125.9 (4)C14—C13—H13119.4
C8—N4—Cu1117.8 (3)C9—C14—C13120.0 (7)
C15—N4—Cu1116.2 (3)C9—C14—H14120.0
C18—N5—C17110.5 (5)C13—C14—H14120.0
C18—N5—C16111.0 (5)N4—C15—C16107.4 (4)
C17—N5—C16109.1 (4)N4—C15—H15A110.2
C18—N5—Cu1108.6 (4)C16—C15—H15A110.2
C17—N5—Cu1113.7 (4)N4—C15—H15B110.2
C16—N5—Cu1103.7 (3)C16—C15—H15B110.2
N1—C1—S1179.5 (6)H15A—C15—H15B108.5
N2—C2—S2176.5 (8)N5—C16—C15111.3 (5)
N3—C3—C4120.7 (6)N5—C16—H16A109.4
N3—C3—H3119.6C15—C16—H16A109.4
C4—C3—H3119.6N5—C16—H16B109.4
C3—C4—C5120.0 (6)C15—C16—H16B109.4
C3—C4—H4120.0H16A—C16—H16B108.0
C5—C4—H4120.0N5—C17—H17A109.5
C6—C5—C4118.9 (6)N5—C17—H17B109.5
C6—C5—H5120.6H17A—C17—H17B109.5
C4—C5—H5120.6N5—C17—H17C109.5
C5—C6—C7119.1 (6)H17A—C17—H17C109.5
C5—C6—H6120.5H17B—C17—H17C109.5
C7—C6—H6120.5N5—C18—H18A109.5
N3—C7—C6121.3 (5)N5—C18—H18B109.5
N3—C7—C8114.1 (4)H18A—C18—H18B109.5
C6—C7—C8124.5 (5)N5—C18—H18C109.5
N4—C8—C7114.8 (4)H18A—C18—H18C109.5
N4—C8—C9123.5 (5)H18B—C18—H18C109.5
N1—Cu1—S2—C2134.4 (3)C3—C4—C5—C60.7 (11)
N4—Cu1—S2—C244.5 (3)C4—C5—C6—C71.7 (10)
N3—Cu1—S2—C235.6 (3)C3—N3—C7—C60.7 (8)
N5—Cu1—S2—C2128.2 (3)Cu1—N3—C7—C6175.7 (4)
N1—Cu1—N3—C38.9 (5)C3—N3—C7—C8177.9 (4)
N4—Cu1—N3—C3174.2 (5)Cu1—N3—C7—C81.5 (5)
N5—Cu1—N3—C3146.0 (5)C5—C6—C7—N31.7 (9)
S2—Cu1—N3—C389.2 (4)C5—C6—C7—C8175.2 (5)
N1—Cu1—N3—C7167.2 (4)C15—N4—C8—C7176.7 (5)
N4—Cu1—N3—C71.9 (3)Cu1—N4—C8—C78.0 (6)
N5—Cu1—N3—C730.1 (7)C15—N4—C8—C90.2 (8)
S2—Cu1—N3—C794.7 (3)Cu1—N4—C8—C9175.1 (4)
N1—Cu1—N4—C889.6 (9)N3—C7—C8—N46.1 (6)
N3—Cu1—N4—C85.7 (4)C6—C7—C8—N4171.0 (5)
N5—Cu1—N4—C8176.5 (4)N3—C7—C8—C9176.9 (4)
S2—Cu1—N4—C885.9 (4)C6—C7—C8—C96.0 (8)
N1—Cu1—N4—C1594.7 (9)N4—C8—C9—C14118.4 (7)
N3—Cu1—N4—C15178.6 (4)C7—C8—C9—C1464.9 (7)
N5—Cu1—N4—C157.8 (4)N4—C8—C9—C1059.2 (8)
S2—Cu1—N4—C1589.8 (4)C7—C8—C9—C10117.5 (7)
N1—Cu1—N5—C1875.9 (4)C14—C9—C10—C111.3 (11)
N4—Cu1—N5—C1889.4 (4)C8—C9—C10—C11179.0 (7)
N3—Cu1—N5—C1861.5 (7)C9—C10—C11—C122.7 (13)
S2—Cu1—N5—C18174.5 (4)C10—C11—C12—C132.5 (13)
N1—Cu1—N5—C1747.6 (4)C11—C12—C13—C141.1 (14)
N4—Cu1—N5—C17147.1 (4)C10—C9—C14—C130.1 (11)
N3—Cu1—N5—C17175.0 (5)C8—C9—C14—C13177.6 (7)
S2—Cu1—N5—C1751.0 (4)C12—C13—C14—C90.2 (14)
N1—Cu1—N5—C16165.9 (4)C8—N4—C15—C16159.8 (5)
N4—Cu1—N5—C1628.7 (3)Cu1—N4—C15—C1615.6 (6)
N3—Cu1—N5—C1656.7 (6)C18—N5—C16—C1570.3 (6)
S2—Cu1—N5—C1667.3 (3)C17—N5—C16—C15167.6 (5)
C7—N3—C3—C43.2 (8)Cu1—N5—C16—C1546.1 (5)
Cu1—N3—C3—C4172.7 (5)N4—C15—C16—N541.5 (6)
N3—C3—C4—C53.2 (10)

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C16H19N3)]
Mr433.04
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)7.6524 (13), 9.2048 (15), 27.931 (5)
V3)1967.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.748, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11093, 3978, 3035
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 1.07
No. of reflections3978
No. of parameters238
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge the Science Foundation of Guangxi (No.07311052) and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of MOE, China.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. & Sangeetika, X. (2004). Spectrochim. Acta Part A, 60, 147–153.  Web of Science CrossRef Google Scholar
First citationGuo, Z., Li, L., Wang, C., Li, J. & Xu, T. (2009). Acta Cryst. E65, m1049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamesh, R. & Maheswaran, S. (2003). J. Inorg. Biochem. 96, 457–462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Q., Xu, L.-J., Ji, J.-X., Li, Y.-M., Wang, R.-H., Zhou, Z.-Y., Cao, R., Hong, M.-C. & Chan, A. S. C. (2004). Inorg. Chem. Commun. 7, 1254–1257.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds