Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A linear-transmission Fresnel-zone-plate lens is used for coupling a monochromatic X-ray beam of 13.2 keV into a planar X-ray waveguide. The zone plate focuses the beam parallel to the entrance of the waveguide, by which means a flux enhancement of a factor of 54 inside the waveguide is obtained. This substantially enlarges the range of X-ray diffraction experiments that can be performed on samples confined within the waveguide. The coherent properties of the beam, as obtained at a third-generation synchrotron facility, are investigated by comparing the experimental data with numerical calculations in which partial coherence is taken into account by propagation of the mutual intensity function. The conditions for which the X-rays travelling through the waveguide are coherent are discussed.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds