Download citation
Download citation
link to html
Single crystals of tetra(isopropylammonium) decachlorotricadmate(II) as a rare example of a two-dimensional cadmium(II) halide network of [Cd3Cl10]_n^{4 - } have been synthesized and characterized by means of calorimetry and X-ray diffraction. The crystals exhibit polymorphism in a relatively narrow temperature range (three phase transitions at 353, 294 and 259 K). Our main focus was to establish the mechanism of these successive transformations. The crystal structure was solved and refined in the space group Cmce at 375 K (Phase I), Pbca at 320 K (Phase II) and P212121 (Phase III) at 275 K in the same unit-cell metric. The structure is composed of face-sharing polyanionic [Cd3Cl10]4− units which are interconnected at the bridging Cl atom into four-membered rings forming a unique two-dimensional network of [Cd3Cl10]_n^{4 - }. The interstitial voids within the network are large enough to accommodate isopropylammonium cations and permit thermally activated rotations. While in Phase I isopropylammonium tetrahedra rotate almost freely about the C—N bond, the low-temperature phases are the playground of competition between the thermally activated disorder of isopropylammonium cations and stabilizing N—H...Cl hydrogen-bond interactions. The transition from Phase I to II is dominated by a displacive mechanism that leads to significant rearrangement of the polyanionic units. Cation order–disorder phenomena become prominent at lower temperatures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768110054583/kd5047sup1.cif
Contains datablocks Cmce, pbca, P212121

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054583/kd5047Cmcesup2.hkl
Contains datablock Cmce

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054583/kd5047pbcasup3.hkl
Contains datablock pbca

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110054583/kd5047P212121sup4.hkl
Contains datablock P212121

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768110054583/kd5047sup5.pdf
Tables of symmetry modes and ampllitudes

CCDC references: 822632; 822633; 822634

Computing details top

For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
(Cmce) top
Crystal data top
C12H40Cd3Cl10N4Dx = 1.918 Mg m3
Mr = 932.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmceCell parameters from 2337 reflections
a = 7.4634 (2) Åθ = 2.8–29.8°
b = 22.0476 (10) ŵ = 2.79 mm1
c = 19.6139 (9) ÅT = 375 K
V = 3227.5 (2) Å3, colorles
Z = 40.25 × 0.2 × 0.08 mm
F(000) = 1816
Data collection top
KUMA KM4-CCD
diffractometer
1659 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 29.8°, θmin = 2.8°
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 104
Tmin = 0.49, Tmax = 0.79k = 2927
14304 measured reflectionsl = 2625
2333 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.041
S = 0.90Δρmax = 0.35 e Å3
2333 reflectionsΔρmin = 0.41 e Å3
101 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00042 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H40Cd3Cl10N4V = 3227.5 (2) Å3
Mr = 932.18Z = 4
Orthorhombic, CmceMo Kα radiation
a = 7.4634 (2) ŵ = 2.79 mm1
b = 22.0476 (10) ÅT = 375 K
c = 19.6139 (9) Å0.25 × 0.2 × 0.08 mm
Data collection top
KUMA KM4-CCD
diffractometer
2333 independent reflections
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
1659 reflections with I > 2σ(I)
Tmin = 0.49, Tmax = 0.79Rint = 0.031
14304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025101 parameters
wR(F2) = 0.0540 restraints
S = 0.90Δρmax = 0.35 e Å3
2333 reflectionsΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.431045 (6)0.158375 (5)0.05344 (3)
Cd20.50000.50000.00000.05485 (5)
Cl10.50000.31990 (2)0.17909 (3)0.0993 (2)
Cl20.25000.45344 (3)0.25000.09614 (16)
Cl30.25720 (4)0.427020 (15)0.055561 (16)0.07037 (9)
Cl40.50000.54794 (2)0.12048 (2)0.06233 (12)
C1B0.00000.60000 (10)0.13936 (15)0.1253 (11)
H1B0.11940.60730.14820.150*0.50
N2B0.00000.53801 (8)0.11713 (14)0.1337 (9)
H2B10.04780.53590.07560.201*0.50
H2B20.11200.52440.11590.201*0.50
H2B30.06430.51580.14590.201*0.50
C3B0.0704 (5)0.60897 (18)0.20523 (15)0.1257 (17)0.50
H3B10.02160.62270.23430.189*0.50
H3B20.11960.57140.22060.189*0.50
H3B30.16430.63890.20190.189*0.50
C4B0.0399 (10)0.64305 (14)0.09523 (16)0.1932 (19)0.50
H4B10.02800.67740.10140.290*0.50
H4B20.17090.65510.10700.290*0.50
H4B30.04410.62790.05110.290*0.50
C1A0.4578 (3)0.27109 (10)0.37415 (15)0.0855 (11)0.50
H1A0.33020.26130.37870.103*0.50
N2A0.50000.33199 (7)0.34705 (8)0.0819 (5)
H2A10.38770.34510.34380.123*0.50
H2A20.55070.33160.30620.123*0.50
H2A30.56160.35620.37480.123*0.50
C3A0.5748 (6)0.26615 (14)0.44216 (18)0.139 (2)0.50
H3A10.52110.23310.46510.209*0.50
H3A20.55500.30330.46620.209*0.50
H3A30.70250.25950.43770.209*0.50
C4A0.5689 (7)0.22649 (14)0.33495 (18)0.153 (2)0.50
H4A10.50000.18980.34580.229*0.50
H4A20.69390.22200.34770.229*0.50
H4A30.55750.23710.28930.229*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05283 (6)0.06686 (7)0.04061 (6)0.0000.0000.00278 (5)
Cd20.04654 (7)0.08378 (12)0.03422 (7)0.0000.0000.00565 (8)
Cl10.1522 (5)0.0612 (3)0.0843 (3)0.0000.0000.0041 (3)
Cl20.1045 (3)0.1032 (4)0.0807 (3)0.0000.0542 (2)0.000
Cl30.05409 (13)0.0940 (2)0.06299 (17)0.02035 (14)0.00125 (14)0.00214 (16)
Cl40.0789 (2)0.0647 (2)0.0433 (2)0.0000.0000.00422 (18)
C1B0.183 (3)0.0660 (13)0.126 (2)0.0000.0000.0262 (14)
N2B0.1233 (15)0.0710 (11)0.207 (2)0.0000.0000.0508 (13)
C3B0.146 (4)0.169 (3)0.0622 (17)0.005 (2)0.0146 (17)0.005 (2)
C4B0.346 (5)0.106 (2)0.128 (2)0.037 (4)0.134 (3)0.0345 (18)
C1A0.067 (2)0.0747 (15)0.1152 (19)0.0055 (12)0.0045 (14)0.0144 (15)
N2A0.1107 (11)0.0589 (9)0.0759 (11)0.0000.0000.0053 (8)
C3A0.225 (7)0.099 (2)0.094 (2)0.007 (2)0.017 (3)0.0194 (19)
C4A0.233 (6)0.0659 (17)0.159 (3)0.034 (2)0.058 (3)0.0015 (19)
Geometric parameters (Å, º) top
Cd1—Cl12.4839 (5)N2B—H2B30.8879
Cd1—Cl2i2.6372 (2)C3B—H3B10.9425
Cd1—Cl22.6372 (2)C3B—H3B20.9541
Cd1—Cl42.6823 (5)C3B—H3B30.9646
Cd1—Cl32.7126 (3)C4B—H4B10.9187
Cd1—Cl3ii2.7126 (3)C4B—H4B21.0387
Cd1—Cd23.4584 (2)C4B—H4B30.9295
Cd2—Cl42.5888 (4)C1A—C4A1.499 (4)
Cd2—Cl4iii2.5888 (4)C1A—N2A1.478 (3)
Cd2—Cl3iii2.6571 (3)C1A—C3A1.598 (5)
Cd2—Cl3iv2.6571 (3)C1A—H1A0.9800
Cd2—Cl32.6571 (3)N2A—C1Aii1.478 (3)
Cd2—Cl3ii2.6571 (3)N2A—H2A10.8887
Cd2—Cd1iii3.4584 (2)N2A—H2A20.8862
Cl2—Cd1v2.6372 (2)N2A—H2A30.8907
C1B—C4Bvi1.319 (4)C3A—C1Aii1.360 (4)
C1B—C4B1.319 (4)C3A—H3A10.9444
C1B—C3Bvi1.409 (4)C3A—H3A20.9562
C1B—C3B1.409 (4)C3A—H3A30.9684
C1B—N2B1.435 (3)C4A—C1Aii1.264 (4)
C1B—H1B0.9223C4A—H4A10.9817
N2B—H2B10.8897C4A—H4A20.9709
N2B—H2B20.8887C4A—H4A30.9288
Cl1—Cd1—Cl2i94.199 (16)C3B—C1B—N2B114.4 (3)
Cl1—Cd1—Cl294.199 (16)C4Bvi—C1B—H1B102.5
Cl2i—Cd1—Cl290.066 (7)N2B—C1B—H1B103.0
Cl1—Cd1—Cl4173.327 (17)C1B—N2B—H2B1109.1
Cl2i—Cd1—Cl490.513 (15)C1B—N2B—H2B2109.3
Cl2—Cd1—Cl490.513 (15)H2B1—N2B—H2B2109.6
Cl1—Cd1—Cl395.124 (13)C1B—N2B—H2B3109.4
Cl2i—Cd1—Cl3170.188 (15)H2B1—N2B—H2B3109.7
Cl2—Cd1—Cl392.297 (7)H2B2—N2B—H2B3109.8
Cl4—Cd1—Cl379.948 (10)C1B—C3B—H3B1109.2
Cl1—Cd1—Cl3ii95.124 (13)H1B—C3B—H3B1144.3
Cl2i—Cd1—Cl3ii92.297 (7)C1B—C3B—H3B2108.1
Cl2—Cd1—Cl3ii170.188 (15)H1B—C3B—H3B298.9
Cl4—Cd1—Cl3ii79.948 (10)H3B1—C3B—H3B2111.5
Cl3—Cd1—Cl3ii83.832 (13)C1B—C3B—H3B3107.7
Cl1—Cd1—Cd2125.491 (14)H3B1—C3B—H3B3110.6
Cl2i—Cd1—Cd2121.992 (9)H3B2—C3B—H3B3109.6
Cl2—Cd1—Cd2121.992 (9)C1B—C4B—H4B1112.4
Cl4—Cd1—Cd247.836 (9)H1B—C4B—H4B1125.8
Cl3—Cd1—Cd249.206 (7)C1B—C4B—H4B2104.5
Cl3ii—Cd1—Cd249.206 (7)H1B—C4B—H4B265.7
Cl4—Cd2—Cl4iii180.000 (19)H4B1—C4B—H4B2106.3
Cl4—Cd2—Cl3iii97.304 (10)C1B—C4B—H4B3111.1
Cl4iii—Cd2—Cl3iii82.696 (10)H1B—C4B—H4B3117.7
Cl4—Cd2—Cl3iv97.305 (10)H4B1—C4B—H4B3116.0
Cl4iii—Cd2—Cl3iv82.696 (10)H4B2—C4B—H4B3105.5
Cl3iii—Cd2—Cl3iv85.998 (14)C4A—C1A—N2A107.1 (2)
Cl4—Cd2—Cl382.696 (10)C4A—C1A—C3A94.6 (2)
Cl4iii—Cd2—Cl397.304 (10)N2A—C1A—C3A104.2 (2)
Cl3iii—Cd2—Cl3180.0C4A—C1A—H1A116.1
Cl3iv—Cd2—Cl394.002 (14)N2A—C1A—H1A116.1
Cl4—Cd2—Cl3ii82.696 (10)C3A—C1A—H1A116.1
Cl4iii—Cd2—Cl3ii97.304 (10)C1A—N2A—H2A196.9
Cl3iii—Cd2—Cl3ii94.002 (14)C1Aii—N2A—H2A1121.5
Cl3iv—Cd2—Cl3ii180.000 (11)C1A—N2A—H2A2114.1
Cl3—Cd2—Cl3ii85.998 (14)C1Aii—N2A—H2A2103.1
Cl4—Cd2—Cd150.175 (10)H2A1—N2A—H2A2109.9
Cl4iii—Cd2—Cd1129.825 (10)C1A—N2A—H2A3115.8
Cl3iii—Cd2—Cd1129.388 (7)C1Aii—N2A—H2A3102.4
Cl3iv—Cd2—Cd1129.388 (7)H2A1—N2A—H2A3109.5
Cl3—Cd2—Cd150.612 (7)H2A2—N2A—H2A3109.7
Cl3ii—Cd2—Cd150.612 (7)C1Aii—C3A—H3A1116.9
Cl4—Cd2—Cd1iii129.825 (10)C1A—C3A—H3A1102.6
Cl4iii—Cd2—Cd1iii50.175 (10)C1Aii—C3A—H3A2112.7
Cl3iii—Cd2—Cd1iii50.612 (7)C1A—C3A—H3A2105.5
Cl3iv—Cd2—Cd1iii50.612 (7)H3A1—C3A—H3A2111.1
Cl3—Cd2—Cd1iii129.388 (7)C1Aii—C3A—H3A395.7
Cl3ii—Cd2—Cd1iii129.388 (7)C1A—C3A—H3A3118.2
Cd1—Cd2—Cd1iii180.000 (4)H3A1—C3A—H3A3110.1
Cd1—Cl2—Cd1v158.42 (3)H3A2—C3A—H3A3109.1
Cd2—Cl3—Cd180.182 (9)C1Aii—C4A—H4A1115.2
Cd2—Cl4—Cd181.988 (13)C1A—C4A—H4A198.0
C4Bvi—C1B—C3Bvi114.6 (3)C1Aii—C4A—H4A294.2
C4B—C1B—C3Bvi125.8 (3)C1A—C4A—H4A2117.8
C4Bvi—C1B—C3B125.8 (3)H4A1—C4A—H4A2111.3
C4B—C1B—C3B114.6 (3)C1Aii—C4A—H4A3112.1
C4Bvi—C1B—N2B119.1 (3)C1A—C4A—H4A3106.2
C4B—C1B—N2B119.1 (3)H4A1—C4A—H4A3111.6
C3Bvi—C1B—N2B114.4 (3)H4A2—C4A—H4A3111.2
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x1/2, y, z+1/2; (vi) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H2B2···Cl3vi0.892.683.3363 (16)131.5
N2A—H2A2···Cl10.892.533.3052 (16)145.8
N2A—H2A3···Cl3i0.892.543.4240 (13)174.6
Symmetry codes: (i) x+1/2, y, z+1/2; (vi) x, y, z.
(pbca) top
Crystal data top
C12H40Cd3Cl10N4Dx = 1.941 Mg m3
Mr = 932.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3010 reflections
a = 7.4298 (5) Åθ = 2.8–25.7°
b = 22.0791 (5) ŵ = 2.83 mm1
c = 19.4442 (6) ÅT = 320 K
V = 3189.7 (2) Å3, colorles
Z = 40.25 × 0.2 × 0.08 mm
F(000) = 1816
Data collection top
KUMA KM4-CCD
diffractometer
2449 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.7°, θmin = 2.8°
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 97
Tmin = 0.49, Tmax = 0.79k = 2626
26736 measured reflectionsl = 2323
3010 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.019
S = 1.01Δρmax = 0.36 e Å3
3010 reflectionsΔρmin = 0.50 e Å3
146 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.00290 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H40Cd3Cl10N4V = 3189.7 (2) Å3
Mr = 932.18Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 7.4298 (5) ŵ = 2.83 mm1
b = 22.0791 (5) ÅT = 320 K
c = 19.4442 (6) Å0.25 × 0.2 × 0.08 mm
Data collection top
KUMA KM4-CCD
diffractometer
3010 independent reflections
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2449 reflections with I > 2σ(I)
Tmin = 0.49, Tmax = 0.79Rint = 0.030
26736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024146 parameters
wR(F2) = 0.0626 restraints
S = 1.01Δρmax = 0.36 e Å3
3010 reflectionsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.52017 (2)0.430197 (8)0.158516 (8)0.04030 (5)
Cd20.50000.50000.00000.04401 (7)
Cl30.26055 (7)0.42592 (3)0.06079 (3)0.05479 (17)
Cl50.74789 (7)0.42648 (3)0.04773 (3)0.05430 (17)
Cl40.51532 (7)0.54646 (3)0.12158 (3)0.04751 (15)
Cl20.80024 (9)0.45142 (3)0.23883 (3)0.06418 (19)
Cl10.52907 (11)0.31885 (3)0.17788 (4)0.0748 (2)
N1B1.0235 (7)0.5343 (3)0.1286 (3)0.0682 (16)*0.448 (3)
H1A1.13080.53550.10840.102*0.45
H1B0.94200.51970.10040.102*0.45
H1C1.03110.51050.16610.102*0.45
C2B1.0753 (13)0.6158 (4)0.2077 (5)0.094 (3)*0.448 (3)
H22A1.04950.59020.24640.140*0.448 (3)
H22B1.04490.65690.21880.140*0.448 (3)
H22C1.20100.61330.19680.140*0.448 (3)
C1B0.9736 (8)0.5968 (3)0.1510 (4)0.0592 (16)*0.448 (3)
H10.85460.59420.16870.071*0.45
C3C0.8975 (9)0.6484 (3)0.1159 (3)0.0635 (17)*0.448 (3)
H31A0.77100.65070.12560.095*0.448 (3)
H31B0.91540.64410.06730.095*0.448 (3)
H31C0.95560.68470.13160.095*0.448 (3)
C2C1.0983 (8)0.5948 (3)0.2009 (3)0.0693 (17)*0.552 (3)
H21A1.16800.62890.21580.104*0.552 (3)
H21B1.16760.55840.20660.104*0.552 (3)
H21C0.99040.59210.22780.104*0.552 (3)
C3B0.9773 (9)0.6415 (4)0.0939 (4)0.102 (2)*0.552 (3)
H32A0.87420.63560.06500.153*0.552 (3)
H32B1.08510.63610.06740.153*0.552 (3)
H32C0.97510.68180.11260.153*0.552 (3)
N1C0.9824 (5)0.5438 (2)0.0978 (2)0.0533 (11)*0.552 (3)
H2A0.88500.53240.12110.080*0.55
H2B1.06730.51560.10190.080*0.55
H2C0.95540.54920.05400.080*0.55
C1C1.0507 (6)0.60221 (19)0.1275 (2)0.0401 (10)*0.552 (3)
H1C11.16920.60600.10580.048*0.552 (3)
N1AD1.0060 (3)0.33058 (12)0.15318 (13)0.0679 (7)
H1D0.8944 (9)0.3411 (10)0.1465 (8)0.102*
H1E1.0797 (14)0.3531 (8)0.1289 (7)0.102*
H1F1.035 (2)0.3311 (12)0.1968 (4)0.102*
C1A0.9725 (8)0.2675 (3)0.1267 (3)0.0687 (17)*0.50
H1A10.84740.25440.13240.082*0.50
C2A1.0321 (11)0.2656 (5)0.0568 (6)0.147 (4)*0.50
H21D0.97650.29780.03140.221*0.50
H21E0.99930.22740.03680.221*0.50
H21F1.16050.27020.05530.221*0.50
C3A1.0981 (11)0.2266 (4)0.1554 (4)0.103 (2)*0.50
H31D1.21510.23410.13630.154*0.50
H31E1.06210.18580.14510.154*0.50
H31F1.10230.23190.20440.154*0.50
C1D1.0586 (10)0.2741 (3)0.1208 (4)0.083 (2)*0.50
H1D11.18640.27050.10780.099*0.50
C2D0.9272 (9)0.2664 (3)0.0540 (3)0.0754 (18)*0.50
H22D0.93000.22510.03860.113*0.50
H22E0.96820.29250.01770.113*0.50
H22F0.80630.27720.06640.113*0.50
C3D0.9956 (9)0.2217 (4)0.1721 (4)0.095 (3)*0.50
H3D11.06850.22260.21290.142*0.50
H3D21.00860.18310.14990.142*0.50
H3D30.87170.22780.18430.142*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03529 (8)0.05048 (11)0.03514 (9)0.00050 (7)0.00044 (6)0.00162 (7)
Cd20.03482 (12)0.06790 (18)0.02930 (12)0.00418 (10)0.00130 (9)0.00328 (11)
Cl30.0396 (3)0.0719 (4)0.0529 (3)0.0140 (3)0.0028 (3)0.0005 (3)
Cl50.0420 (3)0.0747 (4)0.0462 (3)0.0179 (3)0.0020 (3)0.0019 (3)
Cl40.0573 (3)0.0495 (3)0.0357 (3)0.0002 (3)0.0012 (2)0.0028 (3)
Cl20.0584 (3)0.0737 (4)0.0604 (4)0.0020 (3)0.0306 (3)0.0004 (3)
Cl10.1032 (6)0.0457 (4)0.0754 (5)0.0020 (4)0.0064 (4)0.0057 (4)
N1AD0.0842 (17)0.0495 (14)0.0699 (17)0.0026 (11)0.0110 (12)0.0027 (12)
Geometric parameters (Å, º) top
Cd1—Cl12.4881 (8)C2C—H21B0.9600
Cd1—Cl2i2.6218 (6)C2C—H21C0.9600
Cd1—Cl22.6435 (6)C3B—H32A0.9600
Cd1—Cl42.6657 (7)C3B—H32B0.9600
Cd1—Cl32.7094 (6)C3B—H32C0.9600
Cd1—Cl52.7403 (6)N1C—C1C1.503 (6)
Cd1—Cd23.4493 (2)N1C—H2A0.8900
Cd2—Cl42.5795 (6)N1C—H2B0.8904
Cd2—Cl4ii2.5795 (6)N1C—H2C0.8827
Cd2—Cl52.6245 (6)C1C—H1C10.9800
Cd2—Cl5ii2.6245 (6)N1AD—C1D1.450 (8)
Cd2—Cl32.6902 (6)N1AD—C1A1.504 (7)
Cd2—Cl3ii2.6902 (6)N1AD—H1D0.871 (7)
Cd2—Cd1ii3.4493 (2)N1AD—H1E0.877 (8)
Cl2—Cd1iii2.6218 (6)N1AD—H1F0.874 (8)
N1B—C1B1.495 (9)C1A—C2A1.431 (13)
N1B—C1C1.514 (7)C1A—C3A1.415 (10)
N1B—H1A0.8889C1A—H1A10.9800
N1B—H1B0.8775C2A—H21D0.9600
N1B—H1C0.9005C2A—H21E0.9600
N1B—H2A1.0401C2A—H21F0.9600
C2B—C1B1.401 (11)C3A—H31D0.9600
C2B—H22A0.9600C3A—H31E0.9600
C2B—H22B0.9600C3A—H31F0.9600
C2B—H22C0.9600C1D—C3D1.598 (11)
C1B—C3C1.443 (9)C1D—C2D1.634 (10)
C1B—C3B1.485 (10)C1D—H1D10.9857
C1B—N1C1.565 (8)C2D—H22D0.9600
C1B—H10.9511C2D—H22E0.9600
C3C—H31A0.9600C2D—H22F0.9600
C3C—H31B0.9600C3D—H3D10.9600
C3C—H31C0.9600C3D—H3D20.9600
C2C—C1C1.478 (7)C3D—H3D30.9600
C2C—H21A0.9600
Cl1—Cd1—Cl2i94.47 (3)C2B—C1B—H1103.5
Cl1—Cd1—Cl293.72 (3)N1B—C1B—H1106.2
Cl2i—Cd1—Cl290.526 (9)C3B—C1B—H1109.2
Cl1—Cd1—Cl4173.04 (2)N1C—C1B—H1103.5
Cl2i—Cd1—Cl491.41 (2)C1B—C3C—H31A109.5
Cl2—Cd1—Cl489.95 (2)C1B—C3C—H31B109.5
Cl1—Cd1—Cl395.20 (2)H31A—C3C—H31B109.5
Cl2i—Cd1—Cl395.53 (2)C1B—C3C—H31C109.5
Cl2—Cd1—Cl3168.79 (2)H31A—C3C—H31C109.5
Cl4—Cd1—Cl380.499 (19)H31B—C3C—H31C109.5
Cl1—Cd1—Cl594.19 (2)C1C—C2C—H21A109.5
Cl2i—Cd1—Cl5171.34 (2)C1C—C2C—H21B109.5
Cl2—Cd1—Cl589.07 (2)H21A—C2C—H21B109.5
Cl4—Cd1—Cl579.944 (19)C1C—C2C—H21C109.5
Cl3—Cd1—Cl583.523 (19)H21A—C2C—H21C109.5
Cl1—Cd1—Cd2125.30 (2)H21B—C2C—H21C109.5
Cl2i—Cd1—Cd2124.984 (17)C1B—C3B—H32A109.5
Cl2—Cd1—Cd2118.873 (17)C1B—C3B—H32B109.5
Cl4—Cd1—Cd247.812 (13)H32A—C3B—H32B109.5
Cl3—Cd1—Cd250.052 (13)C1B—C3B—H32C109.5
Cl5—Cd1—Cd248.530 (13)H32A—C3B—H32C109.5
Cl4—Cd2—Cl4ii180.00 (3)H32B—C3B—H32C109.5
Cl4—Cd2—Cl583.735 (19)C1C—N1C—H1B151.4
Cl4ii—Cd2—Cl596.265 (19)C1B—N1C—H1B125.0
Cl4—Cd2—Cl5ii96.265 (19)H1A—N1C—H1B108.7
Cl4ii—Cd2—Cl5ii83.735 (19)C1C—N1C—H2A108.7
Cl5—Cd2—Cl5ii180.00 (2)H1A—N1C—H2A130.6
Cl4—Cd2—Cl382.429 (19)C1C—N1C—H2B109.1
Cl4ii—Cd2—Cl397.571 (19)C1B—N1C—H2B119.6
Cl5—Cd2—Cl386.14 (2)H2A—N1C—H2B109.4
Cl5ii—Cd2—Cl393.86 (2)N1B—N1C—H2C163.7
Cl4—Cd2—Cl3ii97.571 (19)C1C—N1C—H2C109.4
Cl4ii—Cd2—Cl3ii82.429 (19)C1B—N1C—H2C121.7
Cl5—Cd2—Cl3ii93.86 (2)H1A—N1C—H2C114.8
Cl5ii—Cd2—Cl3ii86.14 (2)H2A—N1C—H2C110.1
Cl3—Cd2—Cl3ii180.00 (3)H2B—N1C—H2C110.1
Cl4—Cd2—Cd1ii130.031 (15)C2C—C1C—N1C110.9 (4)
Cl4ii—Cd2—Cd1ii49.969 (15)C2C—C1C—H1C1102.1
Cl5—Cd2—Cd1ii128.522 (13)N1C—C1C—H1C1102.1
Cl5ii—Cd2—Cd1ii51.478 (13)N1B—C1C—H1C1102.1
Cl3—Cd2—Cd1ii129.458 (13)C1D—N1AD—H1D115.0 (15)
Cl3ii—Cd2—Cd1ii50.542 (13)C1A—N1AD—H1E116.3 (13)
Cl4—Cd2—Cd149.969 (15)H1D—N1AD—H1E111.3 (13)
Cl4ii—Cd2—Cd1130.031 (15)C1D—N1AD—H1F111.5 (18)
Cl5—Cd2—Cd151.478 (13)C1A—N1AD—H1F112.6 (18)
Cl5ii—Cd2—Cd1128.522 (13)H1D—N1AD—H1F111.9 (12)
Cl3—Cd2—Cd150.542 (13)H1E—N1AD—H1F111.2 (13)
Cl3ii—Cd2—Cd1129.458 (13)C2A—C1A—N1AD107.6 (6)
Cd1ii—Cd2—Cd1180.000 (6)C3A—C1A—N1AD110.3 (5)
Cd2—Cl3—Cd179.406 (16)C2A—C1A—H1A1113.1
Cd2—Cl5—Cd179.992 (16)C3A—C1A—H1A1113.1
Cd2—Cl4—Cd182.219 (19)N1AD—C1A—H1A1113.1
Cd1iii—Cl2—Cd1155.32 (3)C1A—C2A—H21D109.5
N1C—N1B—C1B82.2 (7)C1A—C2A—H21E109.5
N1C—N1B—C1C75.6 (7)H21D—C2A—H21E109.5
N1C—N1B—H1A90.2C1A—C2A—H21F109.5
C1B—N1B—H1A108.8H21D—C2A—H21F109.5
C1B—N1B—H1B110.4H21E—C2A—H21F109.5
C1C—N1B—H1B116.4H21D—C2A—H1D1127.4
H1A—N1B—H1B110.7H21E—C2A—H1D1121.3
N1C—N1B—H1C152.9C1A—C3A—H31D109.5
C1B—N1B—H1C108.7C1A—C3A—H31E109.5
C1C—N1B—H1C125.5H31D—C3A—H31E109.5
H1A—N1B—H1C108.6C1A—C3A—H31F109.5
H1B—N1B—H1C109.6H31D—C3A—H31F109.5
C1B—N1B—H2A80.4H31E—C3A—H31F109.5
C1C—N1B—H2A99.7H31E—C3A—H1D1127.0
H1A—N1B—H2A145.7H31F—C3A—H1D1121.3
C1B—N1B—H2B146.0N1AD—C1D—C3D105.9 (5)
C1C—N1B—H2B119.0N1AD—C1D—C2D105.9 (5)
H1C—N1B—H2B102.4C3D—C1D—C2D104.2 (5)
H2A—N1B—H2B108.3N1AD—C1D—H1D1116.1
C1B—C2B—H22A109.5C3D—C1D—H1D1112.6
C1B—C2B—H22B109.5C2D—C1D—H1D1111.3
H22A—C2B—H22B109.5C1D—C2D—H22D109.5
C1B—C2B—H22C109.5C1D—C2D—H22E109.5
H22A—C2B—H22C109.5H22D—C2D—H22E109.5
H22B—C2B—H22C109.5C1D—C2D—H22F109.5
C2B—C1B—C3C110.3 (6)H22D—C2D—H22F109.5
C2B—C1B—N1B111.8 (6)H22E—C2D—H22F109.5
C3C—C1B—N1B133.6 (6)C1D—C3D—H3D1109.5
C2B—C1B—C3B112.3 (6)C1D—C3D—H3D2109.5
N1B—C1B—C3B113.1 (6)H3D1—C3D—H3D2109.5
C2B—C1B—N1C136.2 (6)C1D—C3D—H3D3109.5
C3C—C1B—N1C107.2 (5)H3D1—C3D—H3D3109.5
C3B—C1B—N1C90.2 (5)H3D2—C3D—H3D3109.5
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y+1, z; (iii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1C···Cl20.902.583.269 (6)134.2
N1C—H2A···Cl40.892.763.502 (4)141.1
N1AD—H1D···Cl10.87 (1)2.83 (1)3.586 (2)147 (2)
N1AD—H1E···Cl3iv0.88 (1)2.48 (1)3.352 (2)173 (2)
N1AD—H1F···Cl1iii0.87 (1)2.45 (1)3.299 (3)163 (2)
Symmetry codes: (iii) x+1/2, y, z+1/2; (iv) x+1, y, z.
(P212121) top
Crystal data top
C12H40Cd3Cl10N4Dx = 1.962 Mg m3
Mr = 932.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8299 reflections
a = 7.3918 (2) Åθ = 2.8–29.8°
b = 22.0135 (7) ŵ = 2.86 mm1
c = 19.3938 (5) ÅT = 275 K
V = 3155.75 (15) Å3, colorles
Z = 40.25 × 0.2 × 0.08 mm
F(000) = 1816
Data collection top
KUMA KM4-CCD
diffractometer
4686 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 25.7°, θmin = 2.8°
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 96
Tmin = 0.49, Tmax = 0.79k = 2626
25040 measured reflectionsl = 2323
5945 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0183P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.016
S = 0.83Δρmax = 0.52 e Å3
5945 reflectionsΔρmin = 0.37 e Å3
267 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.45 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H40Cd3Cl10N4V = 3155.75 (15) Å3
Mr = 932.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3918 (2) ŵ = 2.86 mm1
b = 22.0135 (7) ÅT = 275 K
c = 19.3938 (5) Å0.25 × 0.2 × 0.08 mm
Data collection top
KUMA KM4-CCD
diffractometer
5945 independent reflections
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
4686 reflections with I > 2σ(I)
Tmin = 0.49, Tmax = 0.79Rint = 0.043
25040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.047Δρmax = 0.52 e Å3
S = 0.83Δρmin = 0.37 e Å3
5945 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
267 parametersAbsolute structure parameter: 0.45 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.97951 (7)0.072912 (16)0.163198 (16)0.03076 (10)
Cd21.02144 (7)0.067097 (16)0.153763 (16)0.02966 (10)
Cd31.00412 (10)0.005030 (17)0.004188 (18)0.03294 (9)
Cl31.2449 (2)0.07719 (9)0.06873 (8)0.0412 (4)
Cl10.9662 (3)0.18464 (6)0.18676 (8)0.0553 (4)
Cl21.1922 (2)0.04967 (7)0.26783 (8)0.0461 (4)
Cl40.9810 (3)0.04358 (5)0.12480 (6)0.0355 (3)
Cl50.75902 (19)0.07969 (9)0.05147 (8)0.0394 (4)
Cl60.7637 (2)0.07220 (9)0.05468 (8)0.0409 (4)
Cl71.25552 (19)0.06714 (9)0.04336 (8)0.0413 (4)
Cl81.0095 (3)0.04975 (5)0.11884 (5)0.0369 (3)
Cl90.8027 (2)0.04738 (8)0.25714 (8)0.0477 (4)
Cl101.0323 (3)0.17967 (6)0.16920 (7)0.0551 (4)
N1A1.5009 (10)0.16849 (16)0.1459 (2)0.0517 (12)
H1A11.44200.14300.11820.078*
H1A21.46340.16320.18910.078*
H1A31.61910.16120.14340.078*
C11A1.5629 (17)0.2217 (6)0.1037 (7)0.049 (2)*0.50
H11A1.58640.18380.11980.059*0.50
H10.36430.09700.16320.059*0.50
C12A1.4635 (19)0.2334 (5)0.1237 (6)0.049 (2)*0.50
H12A1.34560.24070.14750.059*0.50
C21A1.457 (2)0.2309 (8)0.0435 (9)0.062 (3)*0.50
H21A1.34500.25000.05590.094*0.50
H21B1.43320.19250.02190.094*0.50
H21C1.52200.25660.01200.094*0.50
C22A1.401 (2)0.2292 (8)0.0470 (10)0.062 (3)*0.50
H22A1.39850.26920.02730.094*0.50
H22B1.28280.21160.04480.094*0.50
H22C1.48480.20440.02160.094*0.50
C31A1.6291 (18)0.2726 (7)0.1372 (8)0.061 (3)*0.50
H31A1.75490.27760.12650.091*0.50
H31B1.61490.26760.18610.091*0.50
H31C1.56310.30780.12240.091*0.50
C32A1.5628 (19)0.2766 (6)0.1552 (8)0.061 (3)*0.50
H32A1.49380.29420.19210.091*0.50
H32B1.59420.30760.12250.091*0.50
H32C1.67120.25870.17350.091*0.50
N1B0.5213 (10)0.0396 (2)0.1208 (3)0.095 (2)
H1B10.48820.01290.15280.142*
H1B20.45810.03310.08240.142*
H1B30.63880.03530.11190.142*
C1B0.4864 (13)0.1013 (3)0.1458 (4)0.081 (2)
C2B0.4636 (14)0.1441 (3)0.0940 (4)0.109 (3)
H2B10.57710.15090.07120.164*
H2B20.37650.12940.06120.164*
H2B30.42140.18150.11370.164*
C3B0.5851 (9)0.1143 (4)0.2075 (3)0.072 (2)
H3B10.53450.14950.22950.108*
H3B20.57760.08020.23820.108*
H3B30.70950.12190.19630.108*
N1C1.5224 (9)0.04044 (17)0.1013 (2)0.0549 (13)
H1C11.43940.01170.10810.082*
H1C21.54420.04400.05640.082*
H1C31.62400.03030.12310.082*
C1C1.4539 (8)0.0998 (2)0.1289 (3)0.0417 (16)
H1C1.34490.11040.10280.050*
C2C1.4011 (9)0.0939 (3)0.2016 (3)0.0602 (19)
H2C11.50650.08620.22910.090*
H2C21.34480.13090.21670.090*
H2C31.31730.06090.20650.090*
C3C1.5915 (9)0.1478 (3)0.1149 (3)0.064 (2)
H3C11.69910.13950.14090.096*
H3C21.61990.14820.06660.096*
H3C31.54400.18670.12810.096*
N1D0.4930 (9)0.17110 (16)0.1617 (2)0.0487 (12)
H1D10.44140.14170.13710.073*
H1D20.46190.16720.20580.073*
H1D30.61270.16850.15770.073*
C11D0.507 (2)0.2303 (6)0.1302 (7)0.052 (2)*0.50
H11D0.37320.24000.12610.063*0.50
C12D0.4305 (19)0.2320 (7)0.1353 (8)0.052 (2)*0.50
H12D0.29930.22840.14120.063*0.50
H1D0.29640.22880.14130.063*0.50
C21D0.552 (2)0.2384 (9)0.0630 (9)0.075 (3)*0.50
H21D0.50500.27670.04730.112*0.50
H21E0.50100.20620.03590.112*0.50
H21F0.68110.23820.05820.112*0.50
C22D0.444 (2)0.2372 (9)0.0630 (9)0.075 (3)*0.50
H22D0.40250.27670.04910.112*0.50
H22E0.36990.20670.04160.112*0.50
H22F0.56730.23190.04920.112*0.50
C31D0.554 (2)0.2792 (10)0.1754 (11)0.078 (3)*0.50
H31D0.67810.27480.18970.117*0.50
H31E0.47700.27840.21510.117*0.50
H31F0.53980.31710.15170.117*0.50
C32D0.469 (2)0.2796 (9)0.1794 (10)0.078 (3)*0.50
H32D0.59790.28460.18260.117*0.50
H32E0.42080.27090.22430.117*0.50
H32F0.41560.31620.16190.117*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0283 (2)0.0381 (2)0.02589 (18)0.0009 (2)0.00002 (18)0.00299 (15)
Cd20.0275 (2)0.0362 (2)0.02527 (18)0.0011 (2)0.00046 (18)0.00208 (15)
Cd30.02812 (15)0.0492 (2)0.02151 (15)0.00323 (17)0.00068 (16)0.00343 (14)
Cl30.0303 (8)0.0518 (11)0.0416 (9)0.0094 (8)0.0030 (6)0.0036 (8)
Cl10.0765 (12)0.0349 (7)0.0546 (9)0.0012 (9)0.0015 (9)0.0033 (6)
Cl20.0429 (9)0.0501 (11)0.0454 (9)0.0020 (8)0.0226 (7)0.0040 (8)
Cl40.0411 (9)0.0371 (7)0.0284 (6)0.0019 (8)0.0020 (7)0.0012 (5)
Cl50.0317 (8)0.0524 (11)0.0340 (8)0.0122 (7)0.0010 (6)0.0008 (7)
Cl60.0318 (8)0.0551 (11)0.0357 (8)0.0130 (8)0.0021 (6)0.0008 (8)
Cl70.0340 (8)0.0571 (12)0.0327 (8)0.0142 (8)0.0028 (6)0.0062 (8)
Cl80.0486 (8)0.0362 (6)0.0259 (6)0.0016 (9)0.0005 (8)0.0025 (5)
Cl90.0418 (9)0.0588 (12)0.0425 (9)0.0014 (8)0.0197 (7)0.0006 (7)
Cl100.0777 (12)0.0344 (7)0.0533 (9)0.0045 (9)0.0096 (10)0.0028 (6)
N1A0.073 (3)0.038 (2)0.045 (3)0.003 (4)0.001 (4)0.004 (2)
N1B0.081 (5)0.053 (3)0.151 (6)0.022 (4)0.036 (5)0.038 (3)
C1B0.101 (6)0.048 (4)0.094 (5)0.013 (5)0.046 (6)0.027 (4)
C2B0.170 (9)0.091 (5)0.066 (5)0.016 (7)0.040 (6)0.017 (4)
C3B0.058 (5)0.120 (6)0.037 (4)0.000 (4)0.004 (3)0.009 (4)
N1C0.051 (3)0.040 (3)0.074 (3)0.006 (3)0.019 (3)0.018 (2)
C1C0.042 (4)0.037 (3)0.045 (3)0.002 (3)0.003 (3)0.006 (3)
C2C0.073 (5)0.066 (4)0.042 (4)0.006 (3)0.003 (3)0.005 (3)
C3C0.077 (5)0.051 (4)0.064 (5)0.002 (3)0.031 (3)0.007 (4)
N1D0.065 (3)0.031 (2)0.050 (3)0.005 (3)0.015 (4)0.0016 (19)
Geometric parameters (Å, º) top
Cd1—Cl12.5036 (14)N1B—H1B20.8900
Cd1—Cl22.6175 (14)N1B—H1B30.8900
Cd1—Cl9i2.6557 (15)C1B—C2B1.387 (9)
Cd1—Cl42.6703 (12)C1B—C3B1.431 (8)
Cd1—Cl32.6859 (15)C1B—H10.9674
Cd1—Cl52.7155 (16)C2B—H2B10.9600
Cd1—Cd33.4316 (5)C2B—H2B20.9600
Cd2—Cl102.4975 (14)C2B—H2B30.9600
Cd2—Cl92.6121 (14)C3B—H3B10.9600
Cd2—Cl2ii2.6344 (14)C3B—H3B20.9600
Cd2—Cl82.6613 (12)C3B—H3B30.9600
Cd2—Cl62.7083 (16)N1C—C1C1.501 (6)
Cd2—Cl72.7529 (15)N1C—H1C10.8900
Cd2—Cd33.4527 (5)N1C—H1C20.8900
Cd3—Cl42.5778 (11)N1C—H1C30.8900
Cd3—Cl82.5813 (11)C1C—C2C1.468 (8)
Cd3—Cl52.6123 (18)C1C—C3C1.491 (8)
Cd3—Cl72.6130 (17)C1C—H1C0.9800
Cd3—Cl32.6941 (17)C2C—H2C10.9600
Cd3—Cl62.7116 (18)C2C—H2C20.9600
Cl2—Cd2iii2.6344 (14)C2C—H2C30.9600
Cl9—Cd1iv2.6557 (15)C3C—H3C10.9600
N1A—C12A1.517 (12)C3C—H3C20.9600
N1A—H1A10.8900C3C—H3C30.9600
N1A—H1A20.8900N1D—C12D1.507 (15)
N1A—H1A30.8900N1D—H1D10.8900
C11A—C31A1.386 (18)N1D—H1D20.8900
C11A—H11A0.9300N1D—H1D30.8900
C11A—C21A1.42 (2)C11D—C21D1.36 (2)
C12A—C32A1.348 (17)C11D—C31D1.43 (2)
C12A—C22A1.56 (2)C12D—C32D1.38 (2)
C12A—H12A0.9997C12D—C22D1.41 (2)
C21A—H21A0.9600C12D—H12D0.9800
C21A—H21B0.9600C21D—H21D0.9600
C21A—H21C0.9600C21D—H21E0.9600
C22A—H22A0.9600C21D—H21F0.9600
C22A—H22B0.9600C22D—H22D0.9600
C22A—H22C0.9600C22D—H22E0.9600
C31A—H31A0.9600C22D—H22F0.9600
C31A—H31B0.9600C31D—H31D0.9600
C31A—H31C0.9600C31D—H31E0.9600
C32A—H32A0.9600C31D—H31F0.9600
C32A—H32B0.9600C32D—H32D0.9600
C32A—H32C0.9600C32D—H32E0.9600
N1B—C1B1.466 (7)C32D—H32F0.9600
N1B—H1B10.8900
Cl1—Cd1—Cl294.25 (6)H31A—C31A—H31B109.5
Cl1—Cd1—Cl9i94.07 (6)C11A—C31A—H31C109.5
Cl2—Cd1—Cl9i88.81 (7)H31A—C31A—H31C109.5
Cl1—Cd1—Cl4173.98 (5)H31B—C31A—H31C109.5
Cl2—Cd1—Cl491.49 (5)C12A—C32A—H32A109.5
Cl9i—Cd1—Cl487.83 (5)C12A—C32A—H32B109.5
Cl1—Cd1—Cl396.82 (6)H32A—C32A—H32B109.5
Cl2—Cd1—Cl395.57 (6)C12A—C32A—H32C109.5
Cl9i—Cd1—Cl3167.92 (6)H32A—C32A—H32C109.5
Cl4—Cd1—Cl380.82 (5)H32B—C32A—H32C109.5
Cl1—Cd1—Cl593.91 (6)C1B—N1B—H1B1109.5
Cl2—Cd1—Cl5171.83 (6)C1B—N1B—H1B2109.5
Cl9i—Cd1—Cl590.26 (5)H1B1—N1B—H1B2109.5
Cl4—Cd1—Cl580.36 (5)C1B—N1B—H1B3109.5
Cl3—Cd1—Cl583.81 (4)H1B1—N1B—H1B3109.5
Cl1—Cd1—Cd3126.43 (4)H1B2—N1B—H1B3109.5
Cl2—Cd1—Cd3125.43 (4)C2B—C1B—C3B122.2 (7)
Cl9i—Cd1—Cd3118.18 (4)C2B—C1B—N1B114.2 (7)
Cl4—Cd1—Cd348.01 (2)C3B—C1B—N1B111.8 (7)
Cl3—Cd1—Cd350.47 (4)C2B—C1B—H1101.9
Cl5—Cd1—Cd348.60 (4)C3B—C1B—H1101.8
Cl10—Cd2—Cl995.32 (6)N1B—C1B—H1100.8
Cl10—Cd2—Cl2ii92.84 (6)C1B—C2B—H2B1109.5
Cl9—Cd2—Cl2ii91.74 (7)C1B—C2B—H2B2109.5
Cl10—Cd2—Cl8172.14 (4)H2B1—C2B—H2B2109.5
Cl9—Cd2—Cl890.81 (5)C1B—C2B—H2B3109.5
Cl2ii—Cd2—Cl891.88 (5)H2B1—C2B—H2B3109.5
Cl10—Cd2—Cl693.81 (6)H2B2—C2B—H2B3109.5
Cl9—Cd2—Cl696.66 (5)C1B—C3B—H3B1109.5
Cl2ii—Cd2—Cl6168.76 (6)C1B—C3B—H3B2109.5
Cl8—Cd2—Cl680.57 (6)H3B1—C3B—H3B2109.5
Cl10—Cd2—Cl794.17 (6)C1B—C3B—H3B3109.5
Cl9—Cd2—Cl7170.46 (6)H3B1—C3B—H3B3109.5
Cl2ii—Cd2—Cl786.79 (6)H3B2—C3B—H3B3109.5
Cl8—Cd2—Cl779.82 (6)C1C—N1C—H1C1109.5
Cl6—Cd2—Cl783.70 (4)C1C—N1C—H1C2109.5
Cl10—Cd2—Cd3124.32 (4)H1C1—N1C—H1C2109.5
Cl9—Cd2—Cd3125.56 (4)C1C—N1C—H1C3109.5
Cl2ii—Cd2—Cd3118.35 (4)H1C1—N1C—H1C3109.5
Cl8—Cd2—Cd347.82 (2)H1C2—N1C—H1C3109.5
Cl6—Cd2—Cd350.47 (4)C2C—C1C—C3C114.8 (5)
Cl7—Cd2—Cd348.20 (4)C2C—C1C—N1C110.8 (5)
Cl4—Cd3—Cl8176.36 (8)C3C—C1C—N1C108.8 (5)
Cl4—Cd3—Cl584.07 (5)C2C—C1C—H1C107.4
Cl8—Cd3—Cl595.46 (5)C3C—C1C—H1C107.4
Cl4—Cd3—Cl796.61 (5)N1C—C1C—H1C107.4
Cl8—Cd3—Cl783.96 (6)C1C—C2C—H2C1109.5
Cl5—Cd3—Cl7178.42 (8)C1C—C2C—H2C2109.5
Cl4—Cd3—Cl382.36 (5)H2C1—C2C—H2C2109.5
Cl8—Cd3—Cl3101.21 (5)C1C—C2C—H2C3109.5
Cl5—Cd3—Cl385.65 (4)H2C1—C2C—H2C3109.5
Cl7—Cd3—Cl393.02 (6)H2C2—C2C—H2C3109.5
Cl4—Cd3—Cl694.49 (5)C1C—C3C—H3C1109.5
Cl8—Cd3—Cl681.95 (5)C1C—C3C—H3C2109.5
Cl5—Cd3—Cl695.03 (7)H3C1—C3C—H3C2109.5
Cl7—Cd3—Cl686.35 (4)C1C—C3C—H3C3109.5
Cl3—Cd3—Cl6176.70 (7)H3C1—C3C—H3C3109.5
Cl4—Cd3—Cd150.34 (3)H3C2—C3C—H3C3109.5
Cl8—Cd3—Cd1131.71 (3)C12D—N1D—H1D1109.5
Cl5—Cd3—Cd151.23 (4)C12D—N1D—H1D2109.5
Cl7—Cd3—Cd1128.29 (4)H1D1—N1D—H1D2109.5
Cl3—Cd3—Cd150.26 (3)C12D—N1D—H1D3109.5
Cl6—Cd3—Cd1128.07 (4)H1D1—N1D—H1D3109.5
Cl4—Cd3—Cd2128.07 (3)H1D2—N1D—H1D3109.5
Cl8—Cd3—Cd249.81 (3)C21D—C11D—C31D115.5 (17)
Cl5—Cd3—Cd2128.79 (4)C21D—C11D—H1D112.0
Cl7—Cd3—Cd251.75 (3)C32D—C12D—C22D122.6 (17)
Cl3—Cd3—Cd2131.21 (4)C32D—C12D—N1D113.6 (13)
Cl6—Cd3—Cd250.39 (3)C22D—C12D—N1D112.9 (13)
Cd1—Cd3—Cd2178.21 (2)N1D—C12D—H11D134.9
Cd1—Cl3—Cd379.26 (4)C32D—C12D—H12D101.1
Cd1—Cl2—Cd2iii154.37 (8)C22D—C12D—H12D101.1
Cd3—Cl4—Cd181.65 (3)N1D—C12D—H12D101.1
Cd3—Cl5—Cd180.17 (4)C32D—C12D—H1D100.7
Cd2—Cl6—Cd379.14 (4)C22D—C12D—H1D100.9
Cd3—Cl7—Cd280.05 (4)N1D—C12D—H1D101.6
Cd3—Cl8—Cd282.37 (3)C11D—C21D—H21D109.5
Cd2—Cl9—Cd1iv153.84 (8)C11D—C21D—H21E109.5
C12A—N1A—H1A1109.5H21D—C21D—H21E109.5
C12A—N1A—H1A2109.5C11D—C21D—H21F109.5
H1A1—N1A—H1A2109.5H21D—C21D—H21F109.5
C12A—N1A—H1A3109.5H21E—C21D—H21F109.5
H1A1—N1A—H1A3109.5C12D—C22D—H22D109.5
H1A2—N1A—H1A3109.5C12D—C22D—H22E109.5
C31A—C11A—C21A117.7 (13)H11D—C22D—H22E102.0
C32A—C12A—N1A115.9 (11)H22D—C22D—H22E109.5
C32A—C12A—C22A129.4 (13)C12D—C22D—H22F109.5
N1A—C12A—C22A105.6 (10)H11D—C22D—H22F129.4
C32A—C12A—H12A98.7H22D—C22D—H22F109.5
N1A—C12A—H12A100.3H22E—C22D—H22F109.5
C22A—C12A—H12A101.2C11D—C31D—H31D109.5
C11A—C21A—H21A109.5C11D—C31D—H31E109.5
C11A—C21A—H21B109.5H31D—C31D—H31E109.5
H21A—C21A—H21B109.5C11D—C31D—H31F109.5
C11A—C21A—H21C109.5H31D—C31D—H31F109.5
H21A—C21A—H21C109.5H31E—C31D—H31F109.5
H21B—C21A—H21C109.5C12D—C32D—H32D109.5
C12A—C22A—H22A109.5H11D—C32D—H32D124.8
C12A—C22A—H22B109.5C12D—C32D—H32E109.5
H22A—C22A—H22B109.5H11D—C32D—H32E109.1
C12A—C22A—H22C109.5H32D—C32D—H32E109.5
H22A—C22A—H22C109.5C12D—C32D—H32F109.5
H22B—C22A—H22C109.5H32D—C32D—H32F109.5
C11A—C31A—H31A109.5H32E—C32D—H32F109.5
C11A—C31A—H31B109.5
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+5/2, y, z1/2; (iii) x+5/2, y, z+1/2; (iv) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···Cl70.892.613.496 (5)177
N1A—H1A2···Cl1ii0.892.513.274 (4)145
N1A—H1A2···Cl2ii0.892.883.418 (5)121
N1A—H1A3···Cl6v0.892.823.376 (5)122
N1B—H1B1···Cl2iv0.892.463.319 (6)163
N1B—H1B2···Cl7vi0.892.773.411 (6)130
N1B—H1B3···Cl80.892.763.616 (8)161
N1B—H1B3···Cl60.892.773.303 (6)120
N1C—H1C1···Cl30.892.553.363 (5)153
N1C—H1C2···Cl6v0.892.773.581 (6)153
N1C—H1C3···Cl4v0.892.663.421 (7)145
N1C—H1C3···Cl9iii0.892.943.598 (5)133
N1D—H1D1···Cl3vi0.892.433.300 (5)167
N1D—H1D2···Cl10i0.892.443.290 (4)160
N1D—H1D3···Cl10.892.703.544 (7)160
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+5/2, y, z1/2; (iii) x+5/2, y, z+1/2; (iv) x+3/2, y, z1/2; (v) x+1, y, z; (vi) x1, y, z.

Experimental details

(Cmce)(pbca)(P212121)
Crystal data
Chemical formulaC12H40Cd3Cl10N4C12H40Cd3Cl10N4C12H40Cd3Cl10N4
Mr932.18932.18932.18
Crystal system, space groupOrthorhombic, CmceOrthorhombic, PbcaOrthorhombic, P212121
Temperature (K)375320275
a, b, c (Å)7.4634 (2), 22.0476 (10), 19.6139 (9)7.4298 (5), 22.0791 (5), 19.4442 (6)7.3918 (2), 22.0135 (7), 19.3938 (5)
V3)3227.5 (2)3189.7 (2)3155.75 (15)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.792.832.86
Crystal size (mm)0.25 × 0.2 × 0.080.25 × 0.2 × 0.080.25 × 0.2 × 0.08
Data collection
DiffractometerKUMA KM4-CCD
diffractometer
KUMA KM4-CCD
diffractometer
KUMA KM4-CCD
diffractometer
Absorption correctionMulti-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.6 (release 21-05-2007 CrysAlis171 .NET) (compiled May 21 2007,16:32:00) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.49, 0.790.49, 0.790.49, 0.79
No. of measured, independent and
observed [I > 2σ(I)] reflections
14304, 2333, 1659 26736, 3010, 2449 25040, 5945, 4686
Rint0.0310.0300.043
(sin θ/λ)max1)0.6980.6100.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 0.90 0.024, 0.062, 1.01 0.028, 0.047, 0.83
No. of reflections233330105945
No. of parameters101146267
No. of restraints060
Δρmax, Δρmin (e Å3)0.35, 0.410.36, 0.500.52, 0.37
Absolute structure??Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter??0.45 (4)

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) for (Cmce) top
D—H···AD—HH···AD···AD—H···A
N2B—H2B2···Cl3i0.892.683.3363 (16)131.5
N2A—H2A2···Cl10.892.533.3052 (16)145.8
N2A—H2A3···Cl3ii0.892.543.4240 (13)174.6
Symmetry codes: (i) x, y, z; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (pbca) top
D—H···AD—HH···AD···AD—H···A
N1B—H1C···Cl20.902.583.269 (6)134.2
N1C—H2A···Cl40.892.763.502 (4)141.1
N1AD—H1D···Cl10.871 (7)2.825 (8)3.586 (2)146.7 (15)
N1AD—H1E···Cl3i0.877 (8)2.479 (9)3.352 (2)173.3 (15)
N1AD—H1F···Cl1ii0.874 (8)2.453 (8)3.299 (3)163.3 (15)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (P212121) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···Cl70.892.613.496 (5)176.5
N1A—H1A2···Cl1i0.892.513.274 (4)144.6
N1A—H1A2···Cl2i0.892.883.418 (5)120.7
N1A—H1A3···Cl6ii0.892.823.376 (5)122.1
N1B—H1B1···Cl2iii0.892.463.319 (6)163.0
N1B—H1B2···Cl7iv0.892.773.411 (6)129.8
N1B—H1B3···Cl80.892.763.616 (8)161.2
N1B—H1B3···Cl60.892.773.303 (6)119.5
N1C—H1C1···Cl30.892.553.363 (5)152.9
N1C—H1C2···Cl6ii0.892.773.581 (6)152.7
N1C—H1C3···Cl4ii0.892.663.421 (7)144.8
N1C—H1C3···Cl9v0.892.943.598 (5)132.6
N1D—H1D1···Cl3iv0.892.433.300 (5)167.3
N1D—H1D2···Cl10vi0.892.443.290 (4)160.0
N1D—H1D3···Cl10.892.703.544 (7)159.5
Symmetry codes: (i) x+5/2, y, z1/2; (ii) x+1, y, z; (iii) x+3/2, y, z1/2; (iv) x1, y, z; (v) x+5/2, y, z+1/2; (vi) x+3/2, y, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds