Download citation
Download citation
link to html
Operando characterization provides direct insight into material response under application conditions and it is essential to understand the stability limits of thermoelectric materials and their decomposition mechanisms. An operando setup capable of maintaining a thermal gradient while running DC current through a bar-shaped sample has been developed. Under operating conditions, X-ray scattering data can be measured along the sample to obtain spatially resolved structural knowledge in concert with measurement of electrical resistance and the Seebeck coefficient. Here thermoelectric β-Zn4Sb3, which is a mixed ionic–electronic conductor, is studied, and a significant temperature dependence of the Zn migration is directly observed. Measurements with the thermal gradient applied either along or opposite to the DC current establish that the ion migration is an electrochemical effect rather than a thermodiffusion. Consideration of only the applied critical voltage or current density is insufficient for deducing the stability limits and structural integrity of materials with temperature-dependent ion mobility. The present operando setup is not limited to studies of thermoelectric materials, and it also lends itself to studies of, for example, ion diffusion in solid-state electrolytes or structural transformations in solid-state reactions.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576721006294/kc5130sup1.pdf
Supplementary material


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds