Download citation
Download citation
link to html
An optimized synchrotron-based X-ray diffraction method is described for the direct and efficient measurement of crystallite phase and orientation at micrometre resolution across textured polycrystalline samples of millimetre size (high scale dynamics) within a reasonable time frame. The method is demonstrated by application to biomineral fish otoliths. Otoliths are calcium carbonate accretions formed in the inner ears of vertebrates. Fish otoliths are essential biological archives, providing information for individual age estimation, the study of population dynamics and fish stock management, as well as past environmental and climatic conditions from archaeological specimens. Here, X-ray diffraction mapping is discussed as a means of describing the mineralogical structure and microtexture of otoliths. Texture maps could be generated with a few a priori hypotheses on the aragonitic system. Full-section imaging allows quantitative intercomparison of crystal orientation coupled to microstructural description, across the zones of the otoliths that represent distinctive mineral organization. It reveals the extents of these regions and their internal textural structure. Characterization of structural and textural correlations across whole images is therefore proposed as a complementary approach to investigate and validate the local in-depth nanometre-scale study of biominerals. The estimation of crystallite size and orientational distribution points to diffracting domains intermediate in size between the otolith nanogranules and the crystalline units, in agreement with recently reported results.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576718008610/kc5074sup1.pdf
Additional table and figures


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds