Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of p-nitrocatechol sulfate dipotassium salt dihydrate (dipotassium 2-oxido-5-nitrophenyl sulfate dihydrate), K2(C6H3NO7S)·2H2O, is reported. An accurate structural determination was needed to derive reliable restraints for use in macromolecular refinement at medium resolution of a protein-substrate complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013426/ka1345sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013426/ka1345Isup2.hkl
Contains datablock I

CCDC reference: 132685

Comment top

The structure of the title compound, (I), was investigated to determine the structure of the chromogenic sulfatase substrate, which should be used to generate accurate restraints in the refinement of an enzyme-substrate complex. Experimentally determined bond lengths and angles to be used as restraints in macromolecular refinement should whenever possible be prefered to models derived from databanks.

Sulfatases are enzymes involved in the degradation of sulfated substrates. The physiological importance of these enzymes is illustrated by seven distinct human disorders (Mehl et al. 1964). Arylsulfatase A belongs to the sulfatase family and is a human lysosomal enzyme required for desulfatation of cerebroside 3-sulfate, a major constituent of myelin sheats. Naturally occurring mutants determine two genetical defects: metachromatic leukodystrophy (MLD), a fatal lysosomal storage disorder associated with severe neurological symptoms, and multiple sulfatase deficiency (MSD). There is no medical treatment known for patients suffering from either of these defects (von Figura et al., 1998).

Compound (I) is the synthetic substrate for sulfatases and it is universally used as the standard substrate for in vitro tests. A substrate enzyme complex of sulfatases with p-nitrocatechol sulfate is of interest to explain the way in which it is bound to the enzyme. This previous knowledge is a key to understanding the catalytic mechanism (von Bülow et al. 1999).

The packing of the p-nitrocatechol sulfate in the crystal structure shows planes that are connected by the potassium ions and the sulfate groups. Stacking of the aromatic rings and the interaction of an oxygen atom from the nitro group with the cations form an additional contact between the layers.

The phenyl ring, the nitro group and the substituting oxygen atoms all lie in a plane with an r.m.s. deviation of 0.0713 Å from planarity. The angle between the aromatic plane and the substituting sulfate (C1—O4—S1) is 118.9 (1)°. The distances between the sulfur and three of the surrounding oxygen atoms lie in the range of 1.441 (2) and 1.451 (2) Å, which is shorter than the value expected and which underscores Kálmán's bond-length rule (Kálmán, 1971).

The two potassium atoms are coordinated by eight and nine oxygen atoms, respectively. In the case of K1 four of the nine oxygen atoms belong to three sulfate groups, one belongs to the nitro group, one is a phenolic group and three of them are water molecules. In the coordination sphere of K2 there are five O atoms belonging to three sulfate groups, one oxygen belonging to the nitro group and two are from water molecules. (Bond lengths can be found in Table 1.)

Experimental top

p-Nitrocatechol sulfate was purchased from Sigma. For crystallization, it was dissolved in H2O and crystallized from a 1:1 mixture of ethanol/water by vapor diffusion at 277 K.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 19XX); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.
2-Hydroxy-5-nitrophenyl sulfate top
Crystal data top
K2(C6H3NO7S)·2H2OZ = 2
Mr = 347.39F(000) = 352
Triclinic, P1Dx = 1.881 Mg m3
a = 6.9997 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4134 (14) ÅCell parameters from 8192 reflections
c = 12.348 (2) Åθ = 2.9–29.5°
α = 105.627 (3)°µ = 0.98 mm1
β = 90.456 (4)°T = 133 K
γ = 95.905 (3)°Blocks, yellow
V = 613.37 (19) Å30.3 × 0.2 × 0.2 mm
Data collection top
Stoe-Siemens-Huber four circle
diffractometer coupled to CCD area detector
2993 independent reflections
Radiation source: fine-focus sealed tube2457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.192 pixels/mm pixels mm-1θmax = 28.3°, θmin = 2.9°
ϕ and ω scanh = 99
Absorption correction: multi-scan
Bruker AXS SADABS (1999)
k = 99
Tmin = 0.757, Tmax = 0.828l = 016
9928 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.049P)2 + 0.3697P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.032
3098 reflectionsΔρmax = 0.47 e Å3
192 parametersΔρmin = 0.45 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Crystal data top
K2(C6H3NO7S)·2H2Oγ = 95.905 (3)°
Mr = 347.39V = 613.37 (19) Å3
Triclinic, P1Z = 2
a = 6.9997 (12) ÅMo Kα radiation
b = 7.4134 (14) ŵ = 0.98 mm1
c = 12.348 (2) ÅT = 133 K
α = 105.627 (3)°0.3 × 0.2 × 0.2 mm
β = 90.456 (4)°
Data collection top
Stoe-Siemens-Huber four circle
diffractometer coupled to CCD area detector
2993 independent reflections
Absorption correction: multi-scan
Bruker AXS SADABS (1999)
2457 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.828Rint = 0.038
9928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0357 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.47 e Å3
3098 reflectionsΔρmin = 0.45 e Å3
192 parameters
Special details top

Experimental. Intensities were measured with a Siemens CCD area detector

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.57768 (6)0.20632 (6)0.36245 (4)0.02386 (13)
K20.82444 (6)0.30999 (6)0.36347 (4)0.02052 (13)
S10.33713 (7)0.29321 (7)0.37880 (4)0.01836 (13)
O70.2363 (2)0.2079 (2)0.25231 (12)0.0243 (3)
O40.16784 (19)0.1669 (2)0.29273 (11)0.0198 (3)
O60.2745 (2)0.0264 (2)0.19788 (12)0.0270 (3)
O30.4375 (3)0.4193 (2)0.32235 (15)0.0349 (4)
O50.2664 (3)0.2993 (2)0.07706 (13)0.0302 (4)
O20.4595 (2)0.1642 (2)0.40584 (12)0.0227 (3)
O10.2222 (2)0.3800 (2)0.47189 (14)0.0324 (4)
N10.2648 (2)0.1252 (2)0.09892 (14)0.0214 (3)
C10.2163 (3)0.0634 (3)0.18502 (16)0.0181 (4)
C20.2402 (3)0.1320 (3)0.17011 (17)0.0199 (4)
C30.2677 (3)0.2370 (3)0.05663 (17)0.0226 (4)
H30.28190.36750.04120.026 (6)*
C40.2741 (3)0.1542 (3)0.03036 (17)0.0226 (4)
H40.29260.22740.10470.024 (6)*
C50.2535 (3)0.0377 (3)0.00991 (16)0.0194 (4)
C60.2236 (3)0.1484 (3)0.09973 (17)0.0196 (4)
H60.20890.27860.11380.030 (7)*
O100.8522 (3)0.1175 (3)0.52470 (16)0.0371 (4)
O110.8962 (3)0.5700 (3)0.25113 (15)0.0343 (4)
H131.003 (3)0.622 (5)0.250 (3)0.056 (10)*
H120.844 (4)0.584 (5)0.196 (2)0.047 (9)*
H100.840 (5)0.145 (5)0.5937 (19)0.059 (11)*
H110.969 (4)0.141 (10)0.524 (5)0.19 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0283 (2)0.0221 (2)0.0227 (2)0.00066 (17)0.00067 (17)0.00958 (17)
K20.0208 (2)0.0184 (2)0.0224 (2)0.00269 (15)0.00527 (15)0.00543 (16)
S10.0194 (2)0.0170 (2)0.0173 (2)0.00014 (17)0.00148 (17)0.00304 (17)
O70.0291 (8)0.0219 (7)0.0226 (7)0.0011 (6)0.0015 (6)0.0089 (6)
O40.0172 (6)0.0233 (7)0.0167 (6)0.0019 (5)0.0001 (5)0.0017 (5)
O60.0363 (8)0.0262 (8)0.0170 (7)0.0008 (6)0.0036 (6)0.0042 (6)
O30.0407 (9)0.0299 (9)0.0354 (9)0.0136 (7)0.0112 (7)0.0179 (7)
O50.0476 (10)0.0192 (7)0.0237 (8)0.0026 (7)0.0029 (7)0.0058 (6)
O20.0204 (7)0.0246 (7)0.0232 (7)0.0015 (5)0.0023 (5)0.0071 (6)
O10.0292 (8)0.0346 (9)0.0259 (8)0.0099 (7)0.0021 (6)0.0072 (7)
N10.0236 (8)0.0204 (8)0.0196 (8)0.0008 (6)0.0002 (6)0.0051 (6)
C10.0156 (8)0.0201 (9)0.0161 (8)0.0004 (7)0.0012 (7)0.0011 (7)
C20.0174 (9)0.0209 (9)0.0205 (9)0.0015 (7)0.0010 (7)0.0057 (7)
C30.0292 (10)0.0144 (9)0.0230 (10)0.0015 (7)0.0002 (8)0.0032 (7)
C40.0248 (10)0.0207 (10)0.0200 (9)0.0018 (8)0.0012 (7)0.0020 (7)
C50.0202 (9)0.0205 (9)0.0173 (9)0.0006 (7)0.0003 (7)0.0052 (7)
C60.0185 (9)0.0173 (9)0.0214 (9)0.0018 (7)0.0015 (7)0.0026 (7)
O100.0389 (10)0.0465 (11)0.0365 (10)0.0154 (8)0.0141 (8)0.0248 (9)
O110.0366 (9)0.0387 (10)0.0314 (9)0.0094 (8)0.0043 (7)0.0209 (8)
Geometric parameters (Å, º) top
K1—O72.7376 (16)S1—O11.4507 (16)
K1—O3i2.7575 (17)S1—O41.6205 (14)
K1—O2ii2.8105 (16)S1—K1ii3.4837 (9)
K1—O6iii2.8617 (16)S1—K2vii3.6088 (9)
K1—O22.8630 (16)O7—C21.285 (2)
K1—O11i3.032 (2)O4—C11.408 (2)
K1—O1ii3.0899 (18)O4—K2vii2.7794 (15)
K1—O103.141 (2)O6—N11.250 (2)
K1—O10ii3.3778 (19)O6—K2iii2.7845 (16)
K1—S1ii3.4837 (9)O6—K1iii2.8617 (16)
K1—C23.522 (2)O3—K1vi2.7575 (17)
K1—K24.0308 (9)O5—N11.245 (2)
K2—O112.6731 (18)O2—K1ii2.8105 (16)
K2—O1iv2.6777 (16)O1—K2iv2.6777 (16)
K2—O102.7603 (18)O1—K2vii3.0139 (17)
K2—O4v2.7794 (15)O1—K1ii3.0899 (18)
K2—O22.7795 (15)N1—C51.417 (3)
K2—O6iii2.7845 (16)C1—C61.364 (3)
K2—O32.9834 (19)C1—C21.438 (3)
K2—O1v3.0139 (17)C2—C31.433 (3)
K2—S13.4091 (8)C3—C41.373 (3)
K2—S1v3.6088 (9)C4—C51.399 (3)
K2—K1vi4.1400 (9)C5—C61.411 (3)
S1—O31.4410 (16)O10—K1ii3.3778 (19)
S1—O21.4479 (15)O11—K1vi3.032 (2)
O7—K1—O3i79.87 (5)O6iii—K2—S181.48 (4)
O7—K1—O2ii113.12 (5)O3—K2—S124.93 (3)
O3i—K1—O2ii89.03 (5)O1v—K2—S1151.63 (4)
O7—K1—O6iii82.23 (5)O11—K2—S1v87.10 (4)
O3i—K1—O6iii125.97 (5)O1iv—K2—S1v102.14 (4)
O2ii—K1—O6iii144.52 (5)O10—K2—S1v79.22 (4)
O7—K1—O268.29 (4)O4v—K2—S1v25.39 (3)
O3i—K1—O2142.56 (5)O2—K2—S1v147.99 (4)
O2ii—K1—O285.98 (5)O6iii—K2—S1v98.77 (4)
O6iii—K1—O269.77 (4)O3—K2—S1v162.89 (3)
O7—K1—O11i122.49 (5)O1v—K2—S1v23.15 (3)
O3i—K1—O11i73.93 (5)S1—K2—S1v171.73 (2)
O2ii—K1—O11i116.54 (5)O11—K2—K1147.93 (4)
O6iii—K1—O11i73.99 (5)O1iv—K2—K1122.80 (4)
O2—K1—O11i140.20 (5)O10—K2—K151.02 (5)
O7—K1—O1ii143.96 (5)O4v—K2—K191.22 (3)
O3i—K1—O1ii70.56 (5)O2—K2—K145.25 (3)
O2ii—K1—O1ii48.11 (4)O6iii—K2—K145.22 (3)
O6iii—K1—O1ii131.98 (5)O3—K2—K189.37 (3)
O2—K1—O1ii127.82 (4)O1v—K2—K1110.34 (4)
O11i—K1—O1ii68.75 (5)S1—K2—K167.778 (14)
O7—K1—O10132.48 (5)S1v—K2—K1106.519 (16)
O3i—K1—O10142.89 (5)O11—K2—K1vi47.00 (4)
O2ii—K1—O1063.59 (5)O1iv—K2—K1vi48.25 (4)
O6iii—K1—O1082.27 (5)O10—K2—K1vi132.39 (4)
O2—K1—O1064.20 (5)O4v—K2—K1vi135.39 (3)
O11i—K1—O1095.45 (5)O2—K2—K1vi86.13 (3)
O1ii—K1—O1072.45 (5)O6iii—K2—K1vi121.18 (4)
O7—K1—O10ii52.06 (5)O3—K2—K1vi41.72 (3)
O3i—K1—O10ii85.26 (6)O1v—K2—K1vi114.49 (4)
O2ii—K1—O10ii61.45 (4)S1—K2—K1vi62.585 (14)
O6iii—K1—O10ii120.62 (5)S1v—K2—K1vi123.164 (15)
O2—K1—O10ii59.92 (4)K1—K2—K1vi130.265 (19)
O11i—K1—O10ii159.18 (5)O3—S1—O2112.51 (10)
O1ii—K1—O10ii104.15 (5)O3—S1—O1115.92 (11)
O10—K1—O10ii101.01 (5)O2—S1—O1113.09 (10)
O7—K1—S1ii129.60 (3)O3—S1—O4107.30 (9)
O3i—K1—S1ii77.64 (4)O2—S1—O4107.03 (8)
O2ii—K1—S1ii23.64 (3)O1—S1—O499.60 (8)
O6iii—K1—S1ii146.01 (4)O3—S1—K260.77 (7)
O2—K1—S1ii107.66 (3)O2—S1—K252.62 (6)
O11i—K1—S1ii93.29 (4)O1—S1—K2129.33 (7)
O1ii—K1—S1ii24.57 (3)O4—S1—K2130.64 (5)
O10—K1—S1ii67.41 (4)O3—S1—K1ii132.02 (7)
O10ii—K1—S1ii81.50 (3)O2—S1—K1ii51.11 (6)
O7—K1—C218.87 (4)O1—S1—K1ii62.33 (7)
O3i—K1—C292.27 (5)O4—S1—K1ii120.48 (6)
O2ii—K1—C2127.99 (5)K2—S1—K1ii83.512 (16)
O6iii—K1—C263.37 (5)O3—S1—K2vii111.26 (8)
O2—K1—C262.98 (4)O2—S1—K2vii134.61 (6)
O11i—K1—C2113.66 (5)O1—S1—K2vii54.74 (7)
O1ii—K1—C2161.64 (5)O4—S1—K2vii47.35 (5)
O10—K1—C2124.01 (5)K2—S1—K2vii171.73 (2)
O10ii—K1—C266.86 (5)K1ii—S1—K2vii104.360 (16)
S1ii—K1—C2147.56 (4)C2—O7—K1117.60 (12)
O7—K1—K299.52 (3)C1—O4—S1118.93 (12)
O3i—K1—K2169.22 (4)C1—O4—K2vii129.41 (11)
O2ii—K1—K2100.99 (3)S1—O4—K2vii107.26 (7)
O6iii—K1—K243.69 (3)N1—O6—K2iii149.92 (13)
O2—K1—K243.58 (3)N1—O6—K1iii118.26 (12)
O11i—K1—K297.78 (4)K2iii—O6—K1iii91.09 (5)
O1ii—K1—K2113.36 (4)S1—O3—K1vi139.97 (11)
O10—K1—K243.08 (3)S1—O3—K294.30 (8)
O10ii—K1—K2102.94 (4)K1vi—O3—K292.21 (5)
S1ii—K1—K2110.211 (16)S1—O2—K2102.93 (7)
C2—K1—K284.71 (3)S1—O2—K1ii105.25 (7)
O11—K2—O1iv80.48 (6)K2—O2—K1ii110.42 (5)
O11—K2—O10160.44 (6)S1—O2—K1150.03 (9)
O1iv—K2—O1088.75 (6)K2—O2—K191.17 (4)
O11—K2—O4v89.70 (5)K1ii—O2—K194.02 (5)
O1iv—K2—O4v127.42 (5)S1—O1—K2iv146.57 (11)
O10—K2—O4v83.92 (5)S1—O1—K2vii102.12 (8)
O11—K2—O2124.76 (5)K2iv—O1—K2vii98.62 (5)
O1iv—K2—O287.75 (5)S1—O1—K1ii93.09 (8)
O10—K2—O270.55 (5)K2iv—O1—K1ii91.46 (5)
O4v—K2—O2136.40 (5)K2vii—O1—K1ii133.26 (7)
O11—K2—O6iii104.96 (5)O5—N1—O6121.13 (17)
O1iv—K2—O6iii158.65 (5)O5—N1—C5119.37 (17)
O10—K2—O6iii90.99 (6)O6—N1—C5119.50 (17)
O4v—K2—O6iii73.71 (5)C6—C1—O4118.88 (18)
O2—K2—O6iii72.09 (5)C6—C1—C2123.84 (18)
O11—K2—O375.92 (5)O4—C1—C2117.08 (17)
O1iv—K2—O373.30 (5)O7—C2—C3122.23 (18)
O10—K2—O3116.64 (5)O7—C2—C1122.60 (18)
O4v—K2—O3152.96 (5)C3—C2—C1115.17 (17)
O2—K2—O349.11 (4)O7—C2—K143.53 (9)
O6iii—K2—O387.83 (5)C3—C2—K1112.49 (13)
O11—K2—O1v93.65 (6)C1—C2—K1113.47 (12)
O1iv—K2—O1v81.38 (5)C4—C3—C2121.77 (19)
O10—K2—O1v68.46 (6)C3—C4—C5120.25 (18)
O4v—K2—O1v47.62 (4)C4—C5—C6120.75 (18)
O2—K2—O1v137.69 (5)C4—C5—N1120.52 (17)
O6iii—K2—O1v118.24 (5)C6—C5—N1118.73 (18)
O3—K2—O1v153.82 (5)C1—C6—C5118.20 (18)
O11—K2—S1100.85 (4)K2—O10—K185.90 (6)
O1iv—K2—S177.20 (4)K2—O10—K1ii96.30 (5)
O10—K2—S192.52 (4)K1—O10—K1ii78.99 (5)
O4v—K2—S1154.84 (3)K2—O11—K1vi92.84 (5)
O2—K2—S124.45 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formulaK2(C6H3NO7S)·2H2O
Mr347.39
Crystal system, space groupTriclinic, P1
Temperature (K)133
a, b, c (Å)6.9997 (12), 7.4134 (14), 12.348 (2)
α, β, γ (°)105.627 (3), 90.456 (4), 95.905 (3)
V3)613.37 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerStoe-Siemens-Huber four circle
diffractometer coupled to CCD area detector
Absorption correctionMulti-scan
Bruker AXS SADABS (1999)
Tmin, Tmax0.757, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
9928, 2993, 2457
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.08
No. of reflections3098
No. of parameters192
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.45

Computer programs: SMART (Siemens, 1996), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 19XX), SHELXL97.

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds